!"#" $%$ " &'(µ ))*Ω +$##$",- .#/*0*#,!$1" .#/)0)#,!$1" .#/(0(#,!$1" 23$3 ", ",- .#/*0*#,!$1" .#/)0)#,!$1" .#/(0(#,!$1" 4, ",- .#/*04*#,!$1" .#/)04)#,!$1" .#/(04(#,!$1" "3$",- .#/*04#*.#/)04#* 5.""%36**7/8/ 4""%38*77#* 9:;""%3))8(( 6:;""%3'8/**<7) +6:;""%37<8)0 46:;""%38/77*07=*#7 +6""%38(<)) ' .#/*0=/)0=/(044#* ' * *7 *&3,3 ))#3 >->- 79,13,- !$$?-3@>&!$3A! (- !$$? !$$?-3 ' .#/*0=/)0=/(044#* ' ) *7 *&3,3 ))#3 >->- 79,13,- !$$?-3@>&!$3A! (- !$$? !$$?-3 ' .#/*0=/)0=/(044#* ' 7 *7 *&3,3 ))#3 >->- 79,13,- !$$?-3@>&!$3A! (- !$$? !$$?-3 ' .#/*0=/)0=/(044#* ' ( *7 *&3,3 ))#3 >->- 79,13,- !$$?-3@>&!$3A! (- !$$? !$$?-3 ' .#/*0=/)0=/(044#* ' *7 *&3,3 ))#3 >->- 79,13,- !$$?-3@>&!$3A! (- !$$? !$$?-3 ' .#/*0=/)0=/(044#* ' 0 *7 ' .#/*0=/)0=/(044#* ± ± !± "# "± !# "± !" ' < *7 )° ! $% & ' ()*+ * * ! $./*+ * 0 * /.$*+ * * $$% & ' $ " * 3 * 1+% .45 °$ 6+% .45 " °$ " °$ &,- 1-- 2 &*+ 2" 6+% *9*(B0 $%$ !$$? 3 !$$> !3 *4!?>33,!3!"1 33?>,$$,3 ! ,31 3 )! $%$ >!C#, ,, !$$? 3 7!>%""$3%$ !$$? >% )9*4,3 ' .#/*0=/)0=/(044#* ' / *7 )° &,- 1-- * = $ *+ * 7 " * &8"' ()$% & 7 7 µ' *8* $ $ 7 " *838 9:; $$% & 7 7 ' *8"*3&8 $./ <*+ <* 0 7 7 * &8 ' &8 /.$ <*+ <* 7 7 * &8 µ' &8 & " 7 ' 2 $%( $( 7 = $./ 6%*+ * 7 " * &8"' &8 ' &( ( 7 Ω $* 4=(: *838 >:; $$% (',6 /( $:'('$/(&6&$6 " " #" ! +$ × × $ 7 $%.1 ?%@ 7 0 7 :; (( 7 0 µ ( 7 0 µ &8' *8* *8*3&8"' (8 Ω3.< *8"*3&8"' (8 Ω × * ' .#/*0=/)0=/(044#* ' 8 *7 .#/*0 . B* .#/*0 /B*0 .#/*0 D *7B)0 .#/*0 )B( .#/*0 + 7B0 .#/*0 .D+ B0 .#/0 D *7B)0 .#/0 DD *7B( .#/0 )B( .#/0 ++ )B0 .#/0 DD+- B0 )( )° ' .#/*0=/)0=/(044#* ' * *7 Fig.1 Forword Current vs. Ambient Temperatute Fig.2 Collector Power Dissiption vs. Ambient Temperature Collector Power dissipation Pc (mW) 60 Forward current IF (mA) 50 40 30 20 10 0 -30 0 25 50 75 100 125 200 150 100 50 0 -30 o 7mA 2 Ta= 75 C 50 C o 200 o 25 C 0C -25 C o 100 o 50 20 10 5 2 1 0 2 4 6 8 10 12 14 16 18 20 0 0.5 1.0 1.5 2.0 2.5 3.0 Forward voltage VF (V) Forward current IF (mA) Fig.5 Current Transfer Ratio vs. Forward Current Fig.6 Collector Current vs. Collector-emitter Voltage 200 50 VCE= 5V Ta= 25 C 180 o o 160 Collector current Ic (mA) Current transfer ratio CTR (%) 125 1 0 140 120 100 80 60 40 40 25mA 30 20mA 2 5 10 20 50 Forward current IF(mA) ' .#/*0=/)0=/(044#* Pc(MAX.) 15mA 20 10mA 10 5mA 0 1 Ta= 25 C IF = 30mA 20 0 100 o Forward current IF (mA) Collecotr-emitter saturation voltage VCE (sat) (V) 5mA 3 75 500 O Ta= 25 C 1mA 3mA 4 50 Fig.4 Forward Current vs. Forward Voltage 6 5 25 Ambient temperature Ta ( C) Fig.3 Collector-emitter Saturation Voltage vs. Forward Current Ic= 0.5mA 0 o Ambient temperature Ta ( C) 0 1 2 3 4 5 6 7 8 9 Collector-emitter voltage VCE (V) ' ** *7 Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature Relative current transfer ratio (%) 150 Collector-emitter saturation voltage VCE (sat) (V) Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature I F = 5mA VCE= 5V 100 50 0 -30 0 25 50 75 0.16 I F= 20mA Ic= 1mA 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 -25 100 50 75 100 Fig.10 Response Time vs. Load Resistance -5 500 VCE= 20V -6 10 Response time ( s) Collector dark current I CEO (A) 25 Ambient temperature Ta ( C) Fig.9 Collector Dark Current vs. Ambient Temperature 10 0 o o Ambient temperature Ta ( C) -7 10 -8 10 -9 10 200 100 50 tr 20 10 td tf 5 ts 2 1 -10 10 VCE = 2V Ic= 2mA o Ta= 25 C 0.5 -11 10 -25 0 25 50 75 0.2 0.05 100 o Ambient temperature Ta ( C) 0.1 0.2 1 2 5 10 Test Circuit for Response Time Fig.11 Frequency Response Vcc Voltage gain Av (dB) 0.5 Load resistance RL (k ) VCE = 2V Ic= 2mA o Ta= 25 C 0 Input RD RL Input Output Output 10% 90% ts td tr 10 tf RL= 10k 1k 100 Test Circuit for Frequency Response Vcc 20 0.5 1 RD 2 5 10 20 50 100 RL Output 500 Frequency f (kHz) ' .#/*0=/)0=/(044#* ' *) *7 ' .#/*0=/)0=/(044#* ' *7 *7