!"#$ % &"' %( " &"' %) #" &"' )) % &""' )) *+##+, ".-/0'11/2 +') ) -+'/103 " .-/0'11/2$ %4"+"'/ 5&$ %+"'2/// 5&$ %5' "-//'113/0$ %6 !7$'3/## .$ %6" !7$'3/## .$ %. &7'/0## .$ %),#+6 .$'0//# $ 57 5$'3//#( 5$ # $'36 .&, 8 + &7,#+7 9# %. -/0+: 5' 8)8)8)$ :+ &" 5"' %; %"7&7& %*< , #&#& ='78;'$ 5 8)8)8)$ 5" %; %"7&7& %*< , #&#& ='78;'$ 5 8)8)8)$ 5" * %; %"7&7& %*< , #&#& ='78;'$ 5 8)8)8)$ 5" 0 5 8)8)8)$ ± !± "# "± !# "± !" ± 5" >°6$ ! $% & ' ()*+ * * ! $./*+ * * /.$*+ * * $$% & ' $ " * 2 * 0+% .34 °$ 5+% .34 " °$ " °$ &,- 0-- 1 &*+ 1" 5+% %6<8?@>0/A2/B .+"#"7"# $)7 #,7 # , $+"7C *$7+#+"7+ %</) 5 8)8)8)$ 5" 2 >°6$ &,- 0-- " " #" ! *+ * 6 " * &7 ' ()$% & 6 6 µ' *7* $ $ 6 " *727 89: $$% & 6 6 " ' *7"*2&7 $./ ;*+ ;* 6 6 * &7 ' &7 /.$ ;*+ ;* 6 6 * &7 µ' &7 & ' $$% (',5 /( $9'('$/(&5&$5 % 6? = $ 1 $%( $( $./ 5%*+ * &( ( +$ 2 2 2 6 6 × × < &7 ' *7"* " * &7"' &7 ' 6 Ω $* 3<(9 *727 =9: $ 6 $%.0 >%? ! 6 9: (( 6 µ ( 6 " µ *7"*2&7"' (7 Ω2.; *7"*2&7"' (7 Ω . × //B . 5 8)8)8)$ 5" 3 A A" . " . @ * 72>C$ "! * 7 2>C$ # * 7 * $) . &,&/$@ % . &,*/ =B%0+ &*+ + + *+; &%0%% +" =B%0).)+ * . * * ! ( + 2" 5?=B%(+ $% &727 ! "&%$% & 7 ' /0%% & . ! &( *+; &%0%%E$* ( 7 =&, 7='D =&, 7"$ =&, $ ( +% 2 Ω 5 #" %5 "# " -/0'11/2 %5D , $+8 , ",""+" E$, " "+" $ 5 5" Method (A) for type testing and random testing. V VINTIAL Vpr VIORM tp tb t3 t1 tini t2 t4 t1, t2 = 1 to 10s t3, t4 = 1s tp (Partial Discharge Measuring Time)= 60s tb = 62s tini = 10s t Method (B) for routine testing. V Vpr VIORM t3 tp tb t4 t3, t4 = 0.1s tp (Partial Discharge Measuring Time)= 1s tb = 1.2s t "+E 6" "#"# + 7+ 5 5" 1 Fig.1 Forward Current vs. Ambient Temperature Fig.2 Collector Power Dissipation vs. Ambient Temperature Collector power dissipation Pc (mW) Forward current I F (mA) 60 50 40 30 20 10 0 -30 0 25 50 75 100 125 200 150 100 50 0 -30 o 4 3 2.5 2 1.5 100 1 100 C o o 80 C 40 C o 20 C o 60 C 10 0.5 1 0 1 2 3 4 5 0.5 0.7 0.9 1.1 Fig.5 Current Transfer Ratio vs. Forward Current Fig.6 Collector Current vs. Collector-emitter Voltage 7000 100 VCE= 2V Collector current Ic (mA) 6000 5000 4000 3000 2000 2.5mA 10mA 5mA 80 3mA 2mA 1.5mA 60 1mA PC (MAX.) 40 20 1000 0 0.1 1.3 1.5 1.7 1.9 Forward voltage (V) Forward current IF (mA) Current transfer ratio CTR (%) 80 o 0 I F= 0.5mA 0 1 10 Forward current (mA) 5 8)8)8)$ 60 100 Ic= 5mA 10mA 30mA 50mA 70mA 100mA 3.5 40 Fig.4 Forward Current vs. Forward Voltage Forward current (mA) Collector-emitter saturation voltage V (sat) (V) 5 20 Ambient temperature Ta ( C) Fig.3 Collector-emitter saturation Voltage vs. Forward current 4.5 0 o Ambient temperature Ta ( C) 0 1 2 3 4 5 Collector-emitter voltage VCE(V) 5" / Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature 1.0 Relative current transfer ratio (%) 0.8 0.6 0.4 0.2 Collector-emitter saturation voltage VCE (sat) (V) 1.20 IF= 1mA VCE= 2V 0 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 20 40 60 80 20 100 O 60 100 Fig.10 Response Time vs. Load Resistance 1000 VCE = 200V Response time ( s) 500 100 VCE= 2V I C= 20mA tr 200 100 tf 50 td ts 20 10 5 2 10 20 40 60 80 1 100 O Ambient temperature Ta ( C) 0.1 Test Circuit for Response Time Vcc 0 10 1 Load resistance RL (k ) Fig.11 Frequency Response Voltage gain Av (dB) 80 Ambient temperature Ta ( C) Fig.9 Collector Dark Current vs. Temperature 1000 40 O Ambient temperature Ta ( C) Collector dark current ICEO (nA) I F= 20mA Ic= 100mA 1.10 VCE= 2V I C= 20mA Input RD RL Input Output Output 10% -5 90% td -10 ts tr -15 RL= 1k 100 tf Test Circuit for Frequency Response 10 Vcc -20 RD -25 0.1 1 10 100 RL Output 500 Frequency f (kHz) 5 8)8)8)$ 5"