LITEON LTV852STA1-V

!"#$
%
&"'
%(
"
&"'
%)
#"
&"'
))
%
&""'
))
*+##+,
".-/0'11/2
+')
)
-+'/103
"
.-/0'11/2$
%4"+"'/ 5&$
%+"'2/// 5&$
%5' "-//'113/0$
%6
!7$'3/## .$
%6"
!7$'3/## .$
%.
&7'/0## .$
%),#+6 .$'0//# $
57 5$'3//#( 5$
# $'36
.&,
8
+
&7,#+7
9#
%.
-/0+:
5' 8)8)8)$
:+
&"
5"'
%;
%"7&7&
%*<
,
#&#& ='78;'$
5 8)8)8)$
5"
%;
%"7&7&
%*<
,
#&#& ='78;'$
5 8)8)8)$
5"
* %;
%"7&7&
%*<
,
#&#& ='78;'$
5 8)8)8)$
5"
0 5 8)8)8)$
±
!±
"#
"±
!#
"±
!"
±
5"
>°6$
!
$%
&
'
()*+
*
*
!
$./*+
*
*
/.$*+
*
*
$$%
&
'
$
"
*
2
*
0+%
.34
°$
5+%
.34
"
°$
"
°$
&,-
0--
1
&*+
1" 5+%
%6<8?@>0/A2/B
.+"#"7"#
$)7
#,7
#
,
$+"7C
*$7+#+"7+
%</)
5 8)8)8)$
5"
2 >°6$
&,-
0--
" " #" !
*+
*
6
"
*
&7
'
()$%
&
6
6
µ'
*7*
$
$
6
"
*727
89:
$$%
&
6
6
"
'
*7"*2&7
$./
;*+
;*
6
6
*
&7
'
&7
/.$
;*+
;*
6
6
*
&7
µ'
&7
&
'
$$%
(',5 /(
$9'('$/(&5&$5
% 6? =
$
1
$%(
$(
$./
5%*+
*
&(
(
+$
2 2 2
6
6
×
×
<
&7
'
*7"*
"
*
&7"'
&7
'
6
Ω
$*
3<(9
*727
=9:
$
6
$%.0 >%?
!
6
9:
((
6
µ
( 6
"
µ
*7"*2&7"'
(7
Ω2.;
*7"*2&7"'
(7
Ω
.
× //B
.
5 8)8)8)$
5"
3 A
A"
.
"
.
@
*
72>C$
"!
*
7
2>C$
#
*
7
*
$)
.
&,&/$@
%
.
&,*/
=B%0+
&*+
+ +
*+;
&%0%%
+"
=B%0).)+
*
.
*
*
!
(
+
2"
5?=B%(+
$%
&727
!
"&%$%
&
7
'
/0%%
&
.
!
&(
*+;
&%0%%E$*
(
7
=&,
7='D
=&,
7"$
=&,
$
(
+%
2
Ω
5
#"
%5
"#
"
-/0'11/2
%5D
, $+8
,
",""+"
E$,
"
"+" $
5 5"
Method (A) for type testing and random testing.
V
VINTIAL
Vpr
VIORM
tp
tb
t3
t1 tini t2
t4
t1, t2
= 1 to 10s
t3, t4
= 1s
tp (Partial Discharge Measuring Time)= 60s
tb
= 62s
tini
= 10s
t
Method (B) for routine testing.
V
Vpr
VIORM
t3
tp
tb
t4
t3, t4
= 0.1s
tp (Partial Discharge Measuring Time)= 1s
tb
= 1.2s
t
"+E
6"
"#"#
+
7+
5 5"
1 Fig.1 Forward Current vs.
Ambient Temperature
Fig.2 Collector Power Dissipation vs.
Ambient Temperature
Collector power dissipation Pc (mW)
Forward current I F (mA)
60
50
40
30
20
10
0
-30
0
25
50
75
100
125
200
150
100
50
0
-30
o
4
3
2.5
2
1.5
100
1
100 C
o
o
80 C
40 C
o
20 C
o
60 C
10
0.5
1
0
1
2
3
4
5
0.5 0.7 0.9 1.1
Fig.5 Current Transfer Ratio vs. Forward
Current
Fig.6 Collector Current vs.
Collector-emitter Voltage
7000
100
VCE= 2V
Collector current Ic (mA)
6000
5000
4000
3000
2000
2.5mA
10mA
5mA
80
3mA
2mA
1.5mA
60
1mA
PC (MAX.)
40
20
1000
0
0.1
1.3 1.5 1.7 1.9
Forward voltage (V)
Forward current IF (mA)
Current transfer ratio CTR (%)
80
o
0
I F= 0.5mA
0
1
10
Forward current (mA)
5 8)8)8)$
60
100
Ic= 5mA
10mA
30mA
50mA
70mA
100mA
3.5
40
Fig.4 Forward Current vs. Forward
Voltage
Forward current (mA)
Collector-emitter saturation voltage
V (sat) (V)
5
20
Ambient temperature Ta ( C)
Fig.3 Collector-emitter saturation
Voltage vs. Forward current
4.5
0
o
Ambient temperature Ta ( C)
0
1
2
3
4
5
Collector-emitter voltage VCE(V)
5" / Fig.7 Relative Current Transfer Ratio
vs. Ambient Temperature
Fig.8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
1.0
Relative current transfer ratio (%)
0.8
0.6
0.4
0.2
Collector-emitter saturation voltage
VCE (sat) (V)
1.20
IF= 1mA
VCE= 2V
0
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
20
40
60
80
20
100
O
60
100
Fig.10 Response Time vs. Load
Resistance
1000
VCE = 200V
Response time ( s)
500
100
VCE= 2V
I C= 20mA
tr
200
100
tf
50
td
ts
20
10
5
2
10
20
40
60
80
1
100
O
Ambient temperature Ta ( C)
0.1
Test Circuit for Response Time
Vcc
0
10
1
Load resistance RL (k )
Fig.11 Frequency Response
Voltage gain Av (dB)
80
Ambient temperature Ta ( C)
Fig.9 Collector Dark Current vs.
Temperature
1000
40
O
Ambient temperature Ta ( C)
Collector dark current ICEO (nA)
I F= 20mA
Ic= 100mA
1.10
VCE= 2V
I C= 20mA
Input
RD
RL
Input
Output
Output
10%
-5
90%
td
-10
ts
tr
-15
RL= 1k
100
tf
Test Circuit for Frequency Response
10
Vcc
-20
RD
-25
0.1
1
10
100
RL
Output
500
Frequency f (kHz)
5 8)8)8)$
5"