DATA SHEET 3EZ6.8~3EZ100 GLASS PASSIVATED JUNCTION SILICON ZENER DIODES 3.0 Watts VOLTAGE POWER 6.8 to 100 Volts DO-15 Unit: inch(mm) FEATURES • Low profile package .034(.86) 1.0(25.4)MIN. • Built-in strain relief • Glass passivated iunction • Low inductance • Typical ID less than 1.0µA above 11V .028(.71) .300(7.6) • High temperature soldering : 260°C /10 seconds at terminals • Pb free product are available : 99% Sn above can meet RoHS environment substance directive request .230(5.8) • Plastic package has Underwriters Laboratory Flammability Classification 94V-O .140(3.6) MECHANICALDATA 1.0(25.4)MIN. .104(2.6) Case: JEDEC DO-15, Molded plastic over passivated junction Terminals: Solder plated, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes positive end (cathode) Standard packing: 52mm tape Weight: 0.015 ounce, 0.04 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified. P aram eter S ym bol Value U nits P w ak P ulse P ow erD issipation on TA =50O C (N otes A ) D erate above 70O C PD 3.0 24.0 W atts m W /O C P eak Forw ard S urge C urrent8.3m s single halfsine-w ave superim posed on rated load (JE D E C m ethod) IFSM 15 A m ps TJ,TSTG -55 to + 150 O perating Junction and S torage Tem perature R ange O C NOTES: A.Mounted on 5.0mm2 (.013mm thick) land areas. B.Measured on8.3ms, and single half sine-wave or equivalent square wave ,duty cycle=4 pulses per minute maximum REV.0-JUN.9.2005 PAGE . 1 N o m i na l Ze ne r V o l t a g e Part Number V Z @ IZT Max Reverse Leakage Current M a x i m u m Z e n e r Im p e d a n c e Z ZT @ IZT IZT Z ZK @ IZK IZK IR @VR Marking C ode No m. V M i n. V M a x. V O hm s mA O hm s mA µA V 3EZ6.8 6.8 6.46 7.14 2.0 110.0 700 1.00 5.0 4.0 3EZ6.8 3EZ7.5 7.5 7.13 7.88 2.0 100.0 700 0.50 5.0 5.0 3EZ7.5 3EZ8.2 8.2 7.79 8.61 2.0 91.0 700 0.50 5.0 6.0 3EZ8.2 3EZ8.7 8.7 8.27 9.14 2.0 85.0 700 0.50 4.0 6.6 3EZ8.7 3EZ9.1 9.1 8.65 9.56 3.0 82.0 700 0.50 3.0 7.0 3EZ9.1 3EZ10 10.0 9.50 10.5 4.0 75.0 700 0.25 3.0 7.6 3EZ10 3EZ11 11.0 10.45 11.55 4.0 68.0 700 0.25 1.0 8.4 3EZ11 3EZ12 12.0 11.4 12.6 5.0 63.0 700 0.25 1.0 9.1 3EZ12 3EZ13 13.0 12.35 13.65 5.0 58.0 700 0.25 0.5 9.9 3EZ13 3EZ14 14.0 13.3 14.7 5.0 53.0 700 0.25 0.5 10.6 3EZ14 3EZ15 15.0 14.25 15.75 6.0 50.0 700 0.25 0.5 11.4 3EZ15 3EZ16 16.0 15.2 16.8 6.0 47.0 700 0.25 0.5 12.2 3EZ16 3EZ17 17.0 16.15 17.85 6.0 44.0 750 0.25 0.5 13.0 3EZ17 3EZ18 18.0 17.1 18.9 6.0 42.0 750 0.25 0.5 13.7 3EZ18 3EZ19 19.0 18.05 19.95 7.0 40.0 750 0.25 0.5 14.4 3EZ19 3EZ20 20.0 19.0 21.0 7.0 37.0 750 0.25 0.5 15.2 3EZ20 3EZ22 22.0 20.9 23.1 8.0 34.0 750 0.25 0.5 16.7 3EZ22 3EZ24 24.0 22.8 25.2 9.0 31.0 750 0.25 0.5 18.2 3EZ24 3EZ25 25.0 23.75 26.55 10 30.0 750 0.25 0.5 19.0 3EZ25 3EZ27 27.0 25.65 28.35 10 28.0 750 0.25 0.5 20.6 3EZ27 3EZ28 28.0 26.6 29.4 12.0 27.0 750 0.25 0.5 21.0 3EZ28 3EZ30 30.0 28.5 31.5 16.0 25.0 1000 0.25 0.5 22.5 3EZ30 3EZ33 33.0 31.35 34.65 20.0 23.0 1000 0.25 0.5 25.1 3EZ33 3EZ36 36.0 34.2 37.8 22.0 21.0 1000 0.25 0.5 27.4 3EZ36 3EZ39 39.0 37.05 40.95 28.0 19.0 1000 0.25 0.5 29.7 3EZ39 3EZ43 43.0 40.85 45.15 33.0 17.0 1500 0.25 0.5 32.7 3EZ43 3EZ47 47.0 44.65 49.35 38.0 16.0 1500 0.25 0.5 35.8 3EZ47 3EZ51 51.0 48.45 53.55 45.0 15.0 1500 0.25 0.5 38.8 3EZ51 3EZ56 56.0 53.20 58.8 50.0 13.0 2000 0.25 0.5 42.6 3EZ56 3EZ60 60.0 57.00 63.0 53.0 12.5 2000 0.25 0.5 45.6 3EZ60 3EZ62 62.0 58.90 65.1 55.0 12.0 2000 0.25 0.5 47.1 3EZ62 3EZ68 68.0 64.60 71.4 70.0 11.0 2000 0.25 0.5 51.7 3EZ68 3EZ75 75.0 71.25 78.75 85.0 10.0 2000 0.25 0.5 56.0 3EZ75 3EZ82 82.0 77.90 86.1 95.0 9.1 3000 0.25 0.5 62.2 3EZ82 3EZ87 87.0 82.65 91.35 100 8.5 3000 0.25 0.5 66.1 3EZ87 3EZ91 91.0 86.45 95.55 115 8.2 3000 0.25 0.5 69.2 3EZ91 3EZ100 100.0 95.00 105 160 7.5 3000 0.25 0.5 76.0 3EZ100 3.0 Watt ZENER REV.0-JUN.9.2005 PAGE . 2 1000 500 300 200 100 50 30 20 10 APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, T L , should be determined from: T L = q LA P D + T A O q L A is the lead-to-ambient thermal resistance ( C/W) and Pd is the power dissipation. The value for q L A will vary and depends on the device mounting method. q L A is generally 30-40 OC/W for the various clips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie poin The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: T J = T L + D T JL D T JL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power puls or from Figure 10 for dc power. D T JL = q J L P D For worst-case design, using expected limits of I Z , limits of P D and the extremes of T J ( D T J ) may be estimated. Changes in volta V Z , can then be found from: DV = qV Z DT J q V Z , the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resis For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capa-bility. Surge limitations are given in Figure 3. They are lower than w be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in s spots resulting in device degradation should the limits of Figure 3 be exceeded. REV.0-JUN.9.2005 PAGE . 3 REV.0-JUN.9.2005 PAGE . 4