PANJIT 3EZ15

3EZ6.8~3EZ51
SILICON ZENER DIODES
VOLTAGE
6.8 to 51 Volts
POWER
3.0 Watts
DO-15
Unit: inch(mm)
FEATURES
• Low profile package
1.0(25.4)MIN.
.034(.86)
• Built-in strain relief
• Low inductance
• Plastic package has Underwriters Laboratory Flammability
Classification 94V-O
.028(.71)
.300(7.6)
• In compliance with EU RoHS 2002/95/EC directives
MECHANICAL DATA
• Case: JEDEC DO-15, Molded plastic
• Terminals: Solder plated, solderable per MIL-STD-750, Method 2026
.230(5.8)
• High temperature soldering : 260°C /10 seconds at terminals
.140(3.6)
1.0(25.4)MIN.
.104(2.6)
• Polarity: Color band denotes positive end (cathode)
• Standard packing: 52mm tape
• Weight: 0.014 ounce, 0.0397 gram
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25°C ambient temperature unless otherwise specified.
Parameter
Symbol
Value
Units
Peak Pulse Power Dissipation on TL =50 O C (Notes A)
Derate above 50 O C
PD
3.0
W atts
Peak Forward Surge Current 8.3ms single half sine-wave
superimposed on rated load (JEDEC method)
IFSM
15
Amps
TJ,TSTG
-55 to + 150
Operating Junction and Storage Temperature Range
O
C
NOTES:
A.Mounted on 5.0mm2 (.013mm thick) land areas.
B.Measured on8.3ms, and single half sine-wave or equivalent square wave ,duty cycle=4 pulses per minute maximum
STAD-FEB.10.2009
1
PAGE . 1
3EZ6.8~3EZ51
N o m i na l Ze ne r V o l t a g e
Part
Number
V Z @ IZT
No m. V
Max Reverse
Leakage Current
M a x i m u m Z e n e r Im p e d a n c e
Z ZT @ IZT
IZT
Z ZK @ IZK
IZK
IR @VR
M i n. V
M a x. V
Ω
mA
Ω
mA
µA
V
Marking
C ode
3.0 Watt ZENER
3EZ6.8
6.8
6.46
7.14
2
110
700
1
5
4
3EZ6.8
3EZ7.5
7.5
7.13
7.88
2
100
700
0.5
5
5
3EZ7.5
3EZ8.2
8.2
7.79
8.61
2
91
700
0.5
5
6
3EZ8.2
3EZ8.7
8.7
8.27
9.14
2
85
700
0.5
4
6.6
3EZ8.7
3EZ9.1
9.1
8.65
9.56
3
82
700
0.5
3
7
3EZ9.1
3EZ10
10
9.5
10.5
4
75
700
0.25
3
7.6
3EZ10
3EZ11
11
10.45
11.55
4
68
700
0.25
1
8.4
3EZ11
3EZ12
12
11.4
12.6
5
63
700
0.25
1
9.1
3EZ12
3EZ13
13
12.35
13.65
5
58
700
0.25
0.5
9.9
3EZ13
3EZ14
14
13.3
14.7
5
53
700
0.25
0.5
10.6
3EZ14
3EZ15
15
14.25
15.75
6
50
700
0.25
0.5
11.4
3EZ15
3EZ16
16
15.2
16.8
6
47
700
0.25
0.5
12.2
3EZ16
3EZ17
17
16.15
17.85
6
44
750
0.25
0.5
13
3EZ17
3EZ18
18
17.1
18.9
6
42
750
0.25
0.5
13.7
3EZ18
3EZ19
19
18.05
19.95
7
40
750
0.25
0.5
14.4
3EZ19
3EZ20
20
19
21
7
37
750
0.25
0.5
15.2
3EZ20
3EZ22
22
20.9
23.1
8
34
750
0.25
0.5
16.7
3EZ22
3EZ24
24
22.8
25.2
9
31
750
0.25
0.5
18.2
3EZ24
3EZ25
25
23.75
26.25
10
30
750
0.25
0.5
19
3EZ25
3EZ27
27
25.65
28.35
10
28
750
0.25
0.5
20.6
3EZ27
3EZ28
28
26.6
29.4
12
27
750
0.25
0.5
21.3
3EZ28
3EZ30
30
28.5
31.5
16
25
1000
0.25
0.5
22.5
3EZ30
3EZ33
33
31.35
34.65
20
23
1000
0.25
0.5
25.1
3EZ33
3EZ36
36
34.2
37.8
22
21
1000
0.25
0.5
27.4
3EZ36
3EZ39
39
37.05
40.95
28
19
1000
0.25
0.5
29.7
3EZ39
3EZ43
43
40.85
45.15
33
17
1500
0.25
0.5
32.7
3EZ43
3EZ47
47
44.65
49.35
38
16
1500
0.25
0.5
35.8
3EZ47
3EZ51
51
48.45
53.55
45
15
1500
0.25
0.5
38.8
3EZ51
STAD-FEB.10.2009
1
PAGE . 2
3EZ6.8~3EZ51
5
3
2
1
0
0
20
40
60
80
100
120
140
160
180
O
T , Lead Temperature ( C)
L
Fig.1 Power Temperature Derating Curve
P PK, PEAK SURGE POWER (WATTS)
P D , Maximum Power Dissipation (Watts)
500
4
RECTANGU LAR
NON - REPETITIVE
T J=25 OC PRIOR
TOINTIAL PULSE
250
100
100
50
25
15
10
5
0.1 0.20.3 0.5
1
2 3
5
10 20 30 50
100
P.W.PULSE WIDTH(ms)
FIGURE 2. MAXIMUM SURGE POWER
FIGURE 3. TYPICAL THERMAL RESPONSEL,
APPLICATION NOTE:
Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction
temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:
Lead Temperature, T L, should be determined from:
T L= L A P D + T A
O
L
is
the
lead-to-ambient
thermal
resistance
(
C/W)
and
Pd is the power dissipation. The value for L A will vary and depends
A
O
on the device mounting method. L A is generally 30-40 C/W for the various clips and tie points in common use and for printed
circuit board wiring.
The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point.
The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges
generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of
TL, the junction temperature may be determined by:
T J = T L + T JL
T JL is the increase in junction temperature above the lead temperature and may be found from Figure 3 for a train of power pulses
or from Figure 10 for dc power.
T JL = J L P D
For worst-case design, using expected limits of I Z, limits of P D and the extremes of T J( T J) may be estimated. Changes in voltage,
V Z, can then be found from:
V = VZ T J
V Z , the zener voltage temperature coefficient, is found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance.
For best regulation, keep current excursions as low as possible.
Data of Figure 3 should not be used to compute surge capa-bility. Surge limitations are given in Figure 2. They are lower than would
be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small
spots resulting in device degradation should the limits of Figure 2 be exceeded.
STAD-FEB.10.2009
1
PAGE . 3
O
V Z, JUNCTION - LEAD THERMAL RESISTANCE ( C/W)
3EZ6.8~3EZ51
80
70
60
50
40
30
20
PRIMARY PATH OF
CONEUCTION IS THROUGH
THE CATHODE LEAD
10
0
0
1/8
4/1
3/8
1/2
5/8
3/4
7/8
1
L, LEAD LENGTH TO HEAT SINK (INCH)
FIGURE 4. TYPLCAL THERMAL RESISTANCE
STAD-FEB.10.2009
1
PAGE . 4