3EZ6.8~3EZ51 SILICON ZENER DIODES VOLTAGE 6.8 to 51 Volts POWER 3.0 Watts DO-15 Unit: inch(mm) FEATURES • Low profile package 1.0(25.4)MIN. .034(.86) • Built-in strain relief • Low inductance • Plastic package has Underwriters Laboratory Flammability Classification 94V-O .028(.71) .300(7.6) • In compliance with EU RoHS 2002/95/EC directives MECHANICAL DATA • Case: JEDEC DO-15, Molded plastic • Terminals: Solder plated, solderable per MIL-STD-750, Method 2026 .230(5.8) • High temperature soldering : 260°C /10 seconds at terminals .140(3.6) 1.0(25.4)MIN. .104(2.6) • Polarity: Color band denotes positive end (cathode) • Standard packing: 52mm tape • Weight: 0.014 ounce, 0.0397 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified. Parameter Symbol Value Units Peak Pulse Power Dissipation on TL =50 O C (Notes A) Derate above 50 O C PD 3.0 W atts Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC method) IFSM 15 Amps TJ,TSTG -55 to + 150 Operating Junction and Storage Temperature Range O C NOTES: A.Mounted on 5.0mm2 (.013mm thick) land areas. B.Measured on8.3ms, and single half sine-wave or equivalent square wave ,duty cycle=4 pulses per minute maximum STAD-FEB.10.2009 1 PAGE . 1 3EZ6.8~3EZ51 N o m i na l Ze ne r V o l t a g e Part Number V Z @ IZT No m. V Max Reverse Leakage Current M a x i m u m Z e n e r Im p e d a n c e Z ZT @ IZT IZT Z ZK @ IZK IZK IR @VR M i n. V M a x. V Ω mA Ω mA µA V Marking C ode 3.0 Watt ZENER 3EZ6.8 6.8 6.46 7.14 2 110 700 1 5 4 3EZ6.8 3EZ7.5 7.5 7.13 7.88 2 100 700 0.5 5 5 3EZ7.5 3EZ8.2 8.2 7.79 8.61 2 91 700 0.5 5 6 3EZ8.2 3EZ8.7 8.7 8.27 9.14 2 85 700 0.5 4 6.6 3EZ8.7 3EZ9.1 9.1 8.65 9.56 3 82 700 0.5 3 7 3EZ9.1 3EZ10 10 9.5 10.5 4 75 700 0.25 3 7.6 3EZ10 3EZ11 11 10.45 11.55 4 68 700 0.25 1 8.4 3EZ11 3EZ12 12 11.4 12.6 5 63 700 0.25 1 9.1 3EZ12 3EZ13 13 12.35 13.65 5 58 700 0.25 0.5 9.9 3EZ13 3EZ14 14 13.3 14.7 5 53 700 0.25 0.5 10.6 3EZ14 3EZ15 15 14.25 15.75 6 50 700 0.25 0.5 11.4 3EZ15 3EZ16 16 15.2 16.8 6 47 700 0.25 0.5 12.2 3EZ16 3EZ17 17 16.15 17.85 6 44 750 0.25 0.5 13 3EZ17 3EZ18 18 17.1 18.9 6 42 750 0.25 0.5 13.7 3EZ18 3EZ19 19 18.05 19.95 7 40 750 0.25 0.5 14.4 3EZ19 3EZ20 20 19 21 7 37 750 0.25 0.5 15.2 3EZ20 3EZ22 22 20.9 23.1 8 34 750 0.25 0.5 16.7 3EZ22 3EZ24 24 22.8 25.2 9 31 750 0.25 0.5 18.2 3EZ24 3EZ25 25 23.75 26.25 10 30 750 0.25 0.5 19 3EZ25 3EZ27 27 25.65 28.35 10 28 750 0.25 0.5 20.6 3EZ27 3EZ28 28 26.6 29.4 12 27 750 0.25 0.5 21.3 3EZ28 3EZ30 30 28.5 31.5 16 25 1000 0.25 0.5 22.5 3EZ30 3EZ33 33 31.35 34.65 20 23 1000 0.25 0.5 25.1 3EZ33 3EZ36 36 34.2 37.8 22 21 1000 0.25 0.5 27.4 3EZ36 3EZ39 39 37.05 40.95 28 19 1000 0.25 0.5 29.7 3EZ39 3EZ43 43 40.85 45.15 33 17 1500 0.25 0.5 32.7 3EZ43 3EZ47 47 44.65 49.35 38 16 1500 0.25 0.5 35.8 3EZ47 3EZ51 51 48.45 53.55 45 15 1500 0.25 0.5 38.8 3EZ51 STAD-FEB.10.2009 1 PAGE . 2 3EZ6.8~3EZ51 5 3 2 1 0 0 20 40 60 80 100 120 140 160 180 O T , Lead Temperature ( C) L Fig.1 Power Temperature Derating Curve P PK, PEAK SURGE POWER (WATTS) P D , Maximum Power Dissipation (Watts) 500 4 RECTANGU LAR NON - REPETITIVE T J=25 OC PRIOR TOINTIAL PULSE 250 100 100 50 25 15 10 5 0.1 0.20.3 0.5 1 2 3 5 10 20 30 50 100 P.W.PULSE WIDTH(ms) FIGURE 2. MAXIMUM SURGE POWER FIGURE 3. TYPICAL THERMAL RESPONSEL, APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, T L, should be determined from: T L= L A P D + T A O L is the lead-to-ambient thermal resistance ( C/W) and Pd is the power dissipation. The value for L A will vary and depends A O on the device mounting method. L A is generally 30-40 C/W for the various clips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: T J = T L + T JL T JL is the increase in junction temperature above the lead temperature and may be found from Figure 3 for a train of power pulses or from Figure 10 for dc power. T JL = J L P D For worst-case design, using expected limits of I Z, limits of P D and the extremes of T J( T J) may be estimated. Changes in voltage, V Z, can then be found from: V = VZ T J V Z , the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 3 should not be used to compute surge capa-bility. Surge limitations are given in Figure 2. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 2 be exceeded. STAD-FEB.10.2009 1 PAGE . 3 O V Z, JUNCTION - LEAD THERMAL RESISTANCE ( C/W) 3EZ6.8~3EZ51 80 70 60 50 40 30 20 PRIMARY PATH OF CONEUCTION IS THROUGH THE CATHODE LEAD 10 0 0 1/8 4/1 3/8 1/2 5/8 3/4 7/8 1 L, LEAD LENGTH TO HEAT SINK (INCH) FIGURE 4. TYPLCAL THERMAL RESISTANCE STAD-FEB.10.2009 1 PAGE . 4