ONSEMI MC74HC4316AN

MC74HC4316A
Quad Analog Switch/
Multiplexer/Demultiplexer
with Separate Analog and
Digital Power Supplies
http://onsemi.com
High−Performance Silicon−Gate CMOS
The MC74HC4316A utilizes silicon−gate CMOS technology to
achieve fast propagation delays, low ON resistances, and low
OFF−channel leakage current. This bilateral switch/multiplexer/
demultiplexer controls analog and digital voltages that may vary
across the full analog power−supply range (from VCC to VEE).
The HC4316A is similar in function to the metal−gate CMOS
MC14016 and MC14066, and to the High−Speed CMOS HC4066A.
Each device has four independent switches. The device control and
Enable inputs are compatible with standard CMOS outputs; with
pullup resistors, they are compatible with LSTTL outputs. The device
has been designed so that the ON resistances (RON) are much more
linear over input voltage than RON of metal−gate CMOS analog
switches. Logic−level translators are provided so that the On/Off
Control and Enable logic−level voltages need only be VCC and GND,
while the switch is passing signals ranging between VCC and VEE.
When the Enable pin (active−low) is high, all four analog switches are
turned off.
•
•
•
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
June, 2005 − Rev. 4
PDIP−16
N SUFFIX
CASE 648
16
1
MC74HC139AN
AWLYYWWG
1
16
SOIC−16
D SUFFIX
CASE 751B
16
1
HC139AG
AWLYWW
1
16
SOEIAJ−16
F SUFFIX
CASE 966
16
74HC139A
ALYWG
1
Logic−Level Translator for On/Off Control and Enable Inputs
Fast Switching and Propagation Speeds
High ON/OFF Output Voltage Ratio
Diode Protection on All Inputs/Outputs
Analog Power−Supply Voltage Range (VCC − VEE) = 2.0 to 12.0 V
Digital (Control) Power−Supply Voltage Range
(VCC − GND) = 2.0 V to 6.0 V, Independent of VEE
Improved Linearity of ON Resistance
Chip Complexity: 66 FETs or 16.5 Equivalent Gates
Pb−Free Packages are Available*
© Semiconductor Components Industries, LLC, 2005
16
1
Features
•
•
•
•
•
•
MARKING
DIAGRAMS
1
A
L, WL
Y, YY
W, WW
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Package
Shipping †
MC74HC4316AN
PDIP−16
500 Units / Box
MC74HC4316ANG
PDIP−16
(Pb−Free)
500 Units / Box
MC74HC4316ADR2
SOIC−16
2500/Tape&Reel
MC74HC4316ADR2G
SOIC−16 2500/Tape&Reel
(Pb−Free)
MC74HC4316AFEL
SOEIAJ−16
50/Tape&Reel
MC74HC4316AFELG
SOEIAJ−16
(Pb−Free)
50/Tape&Reel
Device
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Publication Order Number:
MC74HC4316A/D
MC74HC4316A
XA
1
16
YA
2
15
YB
3
14
XB
B ON/OFF
CONTROL
C ON/OFF
CONTROL
ENABLE
4
13
VCC
A ON/OFF
CONTROL
D ON/OFF
CONTROL
XD
5
12
YD
6
11
YC
7
10
XC
GND
8
9
VEE
FUNCTION TABLE
Inputs
Enable
On/Off Control
State of Analog
Switch
L
L
H
H
L
X
On
Off
Off
X = Don’t Care.
Figure 1. Pin Assignment
XA
A ON/OFF CONTROL
XB
B ON/OFF CONTROL
XC
C ON/OFF CONTROL
XD
D ON/OFF CONTROL
ENABLE
1
15
7
3
YB
ANALOG
OUTPUTS/INPUTS
ANALOG
SWITCH
11
ANALOG
SWITCH
12
YC
LEVEL
TRANSLATOR
13
14
ANALOG
SWITCH
YA
LEVEL
TRANSLATOR
10
6
2
LEVEL
TRANSLATOR
4
5
ANALOG
SWITCH
YD
LEVEL
TRANSLATOR
ANALOG INPUTS/OUTPUTS = XA, XB, XC, XD
Figure 2. Logic Diagram
http://onsemi.com
2
PIN 16 = VCC
PIN 8 = GND
PIN 9 = VEE
GND ≥ VEE
MC74HC4316A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
– 0.5 to + 7.0
– 0.5 to + 14.0
V
Negative DC Supply Voltage (Ref. to GND)
– 7.0 to + 0.5
V
Analog Input Voltage
VEE – 0.5
to VCC + 0.5
V
VCC
Positive DC Supply Voltage
(Ref. to GND)
(Ref. to VEE)
VEE
VIS
Vin
DC Input Voltage (Ref. to GND)
– 0.5 to VCC + 0.5
V
DC Current Into or Out of Any Pin
± 25
mA
PD
Power Dissipation in Still Air
750
500
450
mW
Tstg
Storage Temperature
– 65 to + 150
°C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
(Plastic DIP, SOIC or TSSOP Package)
I
Plastic DIP*
EIAJ/SOIC Package*
TSSOP Package*
°C
260
Maximum ratings are those values beyond which device damage can occur. Maximum ratings
applied to the device are individual stress limit values (not normal operating conditions) and are
not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
*Derating − Plastic DIP: – 10 mW/°C from 65° to 125°C
EIAJ/SOIC Package: – 7 mW/°C from 65° to 125°C
TSSOP Package: − 6.1 mW/°C from 65° to 125°C
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor
High−Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
VCC
Positive DC Supply Voltage (Ref. to GND)
2.0
6.0
V
VEE
Negative DC Supply Voltage (Ref. to GND)
– 6.0
GND
V
VIS
Analog Input Voltage
VEE
VCC
V
Vin
Digital Input Voltage (Ref. to GND)
GND
VCC
V
VIO*
Static or Dynamic Voltage Across Switch
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Control or Enable Inputs)
(Figure 10)
−
1.2
V
– 55
+ 125
°C
0
0
0
0
1000
600
500
400
ns
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
*For voltage drops across the switch greater than 1.2 V (switch on), excessive VCC current may
be drawn; i.e., the current out of the switch may contain both VCC and switch input components.
The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
http://onsemi.com
3
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
I/O pins must be connected to a
properly terminated line or bus.
MC74HC4316A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS Digital Section (Voltages Referenced to GND) VEE = GND Except Where Noted
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
– 55 to
25°C
v 85°C
v 125°C
Unit
VIH
Minimum High−Level Voltage, Control
or Enable Inputs
Ron = Per Spec
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL
Maximum Low−Level Voltage, Control
or Enable Inputs
Ron = Per Spec
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
Iin
Maximum Input Leakage Current,
Control or Enable Inputs
Vin = VCC or GND
VEE = – 6.0 V
6.0
± 0.1
± 1.0
± 1.0
mA
ICC
Maximum Quiescent Supply Current
(per Package)
Vin = VCC or GND
VEE = GND
VIO = 0 V
VEE = – 6.0
6.0
6.0
2
4
20
40
40
160
NOTE:
mA
Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book
(DL129/D).
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS Analog Section (Voltages Referenced to VEE)
Guaranteed Limit
VCC
V
VEE
V
– 55 to
25°C
v 85°C
v 125°C
Unit
Vin = VIH
VIS = VCC to VEE
IS v 2.0 mA (Figures 1, 2)
2.0*
45
4.5
6.0
0.0
0.0
− 4.5
− 6.0
−
160
90
90
−
200
110
110
−
240
130
130
W
Vin = VIH
VIS = VCC or VEE (Endpoints)
IS v 2.0 mA (Figures 1, 2)
2.0
4.5
4.5
6.0
0.0
0.0
− 4.5
− 6.0
−
90
70
70
−
115
90
90
−
140
105
105
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIH
VIS = 1/2 (VCC − VEE)
IS v 2.0 mA
2.0
4.5
4.5
6.0
0.0
0.0
– 4.5
– 6.0
−
20
15
15
−
25
20
20
−
30
25
25
W
Ioff
Maximum Off−Channel
Leakage Current, Any One
Channel
Vin = VIL
VIO = VCC or VEE
Switch Off (Figure 3)
6.0
– 6.0
0.1
0.5
1.0
mA
Ion
Maximum On−Channel
Leakage Current, Any One
Channel
Vin = VIH
VIS = VCC or VEE
(Figure 4)
6.0
– 6.0
0.1
0.5
1.0
mA
Symbol
Ron
DRon
Parameter
Maximum “ON” Resistance
Test Conditions
NOTE:
Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book
(DL129/D).
*At supply voltage (VCC − VEE) approaching 2.0 V the analog switch−on resistance becomes extremely non−linear. Therefore, for low−voltage
operation, it is recommended that these devices only be used to control digital signals.
http://onsemi.com
4
MC74HC4316A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Control or Enable tr = tf = 6 ns, VEE = GND)
Guaranteed Limit
Symbol
tPLH,
tPHL
Parameter
Maximum Propagation Delay, Analog Input to Analog Output
(Figures 8 and 9)
VCC
V
– 55 to
25°C
v 85°C
v 125°C
2.0
4.5
6.0
40
6
5
50
8
7
60
9
8
Unit
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Control or Enable to Analog Output
(Figures 10 and 11)
2.0
4.5
6.0
130
40
30
160
50
40
200
60
50
ns
tPZL,
tPZH
Maximum Propagation Delay, Control or Enable to Analog Output
(Figures 10 and 11)
2.0
4.5
6.0
140
40
30
175
50
40
250
60
50
ns
−
10
10
10
pF
C
Maximum Capacitance
ON/OFF Control
and Enable Inputs
Control Input = GND
Analog I/O
−
35
35
35
Feedthrough
−
1.0
1.0
1.0
1. For propagation delays with loads other than 50 pF, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
2. Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
15
Power Dissipation Capacitance (Per Switch) (Figure 13)*
pF
CPD
*Used to determine the no−load dynamic power consumption: P D = CPD V CC2 f + ICC VCC . For load considerations, see Chapter 2of the
ON Semiconductor High−Speed CMOS Data Book (DL129/D).
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
VCC
V
VEE
V
Limit*
25°C
fin = 1 MHz Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VOS
Increase fin Frequency Until dB Meter
Reads – 3 dB
RL = 50 W, CL = 10 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
150
160
160
MHz
fin Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 W, CL = 50 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 50
– 50
– 50
dB
fin = 1.0 MHz, RL = 50 W, CL = 10 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 40
– 40
– 40
Vin v 1 MHz Square Wave (tr = tf = 6 ns)
Adjust RL at Setup so that IS = 0 A
RL = 600 W, CL = 50 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
60
130
200
RL = 10 kW, CL = 10 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
30
65
100
fin Sine Wave
Adjust fin Voltage to Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 W, CL = 50 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 70
– 70
– 70
fin = 1.0 MHz, RL = 50 W, CL = 10 pF
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
– 80
– 80
– 80
Symbol
Parameter
Test Conditions
BW
Maximum On–Channel Bandwidth
or
Minimum Frequency Response
(Figure 5)
Off–Channel Feedthrough
Isolation
(Figure 6)
−
−
−
THD
Feedthrough Noise, Control to
Switch
(Figure 7)
Crosstalk Between Any Two
Switches
(Figure 12)
Total Harmonic Distortion
(Figure 14)
fin = 1 kHz, RL = 10 kW, CL = 50 pF
THD = THDMeasured − THDSource
VIS = 4.0 VPP sine wave
VIS = 8.0 VPP sine wave
VIS = 11.0 VPP sine wave
*Limits not tested. Determined by design and verified by qualification.
http://onsemi.com
5
Unit
mVPP
dB
%
2.25
4.50
6.00
– 2.25
– 4.50
– 6.00
0.10
0.06
0.04
MC74HC4316A
TBD
TBD
Figure 1a. Typical On Resistance,
VCC − VEE = 2.0 V
Figure 1b. Typical On Resistance,
VCC − VEE = 4.5 V
TBD
TBD
Figure 1d. Typical On Resistance,
VCC − VEE = 9.0 V
Figure 1c. Typical On Resistance,
VCC − VEE = 6.0 V
PLOTTER
PROGRAMMABLE
POWER
SUPPLY
TBD
−
MINI COMPUTER
DC ANALYZER
+
VCC
DEVICE
UNDER TEST
ANALOG IN
COMMON OUT
GND
Figure 1e. Typical On Resistance,
VCC − VEE = 12.0 V
VEE
Figure 2. On Resistance Test Set−Up
http://onsemi.com
6
MC74HC4316A
VCC
16
VEE
A
VCC
VCC
VCC
16
A
OFF
O/I
N/C
ON
VEE
VIL
7
8
9
VCC
VIH
7
8
9
SELECTED
CONTROL
INPUT
SELECTED
CONTROL
INPUT
VEE
VEE
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set−Up
Figure 4. Maximum On Channel Leakage Current,
Test Set−Up
VIS
VCC
VCC
16
fin
VCC
RL
ON
0.1 mF
C L*
RL
7
8
9
VEE
16
TO dB
METER
fin
OFF
0.1 mF
VCC
RL
RL
7
8
9
SELECTED
CONTROL
INPUT
VEE
*Includes all probe and jig capacitance.
C L*
TO dB
METER
SELECTED
CONTROL
INPUT
*Includes all probe and jig capacitance.
Figure 5. Maximum On−Channel Bandwidth
Test Set−Up
Figure 6. Off−Channel Feedthrough Isolation,
Test Set−Up
VCC
16
ON/OFF
RL
7
8
9
VEE
RL
C L*
TEST
POINT
VCC
ANALOG IN
SELECTED
CONTROL
INPUT
50%
GND
tPLH
CONTROL
ANALOG OUT
tPHL
50%
*Includes all probe and jig capacitance.
Figure 7. Feedthrough Noise, Control to Analog Out,
Test Set−Up
Figure 8. Propagation Delays, Analog In to
Analog Out
http://onsemi.com
7
MC74HC4316A
VCC
16
ANALOG I/O
tr
ANALOG O/I
ON
tf
ENABLE
TEST
POINT
VCC
50%
CONTROL
50 pF*
GND
tPZL
7
8
9
SELECTED
CONTROL
INPUT
VCC
tPLZ
HIGH
IMPEDANCE
50%
ANALOG
OUT
tPZH
tPHZ
10%
VOL
90%
VOH
50%
HIGH
IMPEDANCE
*Includes all probe and jig capacitance.
Figure 9. Propagation Delay Test Set−Up
Figure 10. Propagation Delay, ON/OFF Control
to Analog Out
VIS
1
POSITIONWHEN
TESTING tPHZ AND tPZH
2
POSITIONWHEN
TESTING tPLZ AND tPZL
1
2
fin
VCC
VCC
1
RL
ON
TEST
POINT
ON/OFF
2
16
0.1 mF
1 kW
16
VCC
RL
ANALOG I/O
50 pF*
C L*
TEST
POINT
OFF
CONTROL
OR
ENABLE
7
8
9
8
9
VEE
*Includes all probe and jig capacitance.
RL
C L*
VCC
SELECTED
CONTROL
INPUT
*Includes all probe and jig capacitance.
Figure 11. Propagation Delay Test Set−Up
Figure 12. Crosstalk Between Any Two Switches,
Test Set−Up (Adjacent Channels Used)
VCC
A
VIS
16
N/C
ON/OFF
VCC
10 mF
N/C
VOS
16
fin
ON
RL
7
8
9
VEE
SELECTED
CONTROL
INPUT
7
8
9
VEE
CONTROL
SELECTED
CONTROL
INPUT
C L*
TO
DISTORTION
METER
VCC
*Includes all probe and jig capacitance.
Figure 13. Power Dissipation Capacitance
Test Set−Up
Figure 14. Total Harmonic Distortion, Test Set−Up
http://onsemi.com
8
MC74HC4316A
APPLICATIONS INFORMATION
0
−10
FUNDAMENTAL FREQUENCY
−20
−30
dBm
−40
−50
DEVICE
−60
SOURCE
−70
−80
−90
− 100
1.0
3.0
2.0
FREQUENCY (kHz)
Figure 15. Plot, Harmonic Distortion
The Enable and Control pins should be at VCC or GND
logic levels, VCC being recognized as logic high and GND
being recognized as a logic low. Unused analog
inputs/outputs may be left floating (not connected).
However, it is advisable to tie unused analog inputs and
outputs to VCC or VEE through a low value resistor. This
minimizes crosstalk and feedthrough noise that may be
picked up by the unused I/O pins.
The maximum analog voltage swings are determined by
the supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In the example
below, the difference between VCC and VEE is 12 V.
Therefore, using the configuration in Figure 16, a maximum
analog signal of twelve volts peak−to−peak can be
controlled.
When voltage transients above VCC and/or below VEE are
anticipated on the analog channels, external diodes (Dx) are
recommended as shown in Figure 17. These diodes should
be small signal, fast turn−on types able to absorb the
maximum anticipated current surges during clipping. An
alternate method would be to replace the Dx diodes with
MOSORBs (MOSORBt is an acronym for high current
surge protectors). MOSORBs are fast turn−on devices
ideally suited for precise dc protection with no inherent wear
out mechanism.
VCC
VCC = 6 V
+6V
16
ANALOG I/O
ON
ANALOG O/I
+6V
SELECTED
CONTROL
INPUT
VEE
8
16
Dx
SELECTED
CONTROL
INPUT
Dx
Dx
+6V
ON
−6 V
−6 V
VCC
VCC
Dx
VEE
ENABLE CONTROL
INPUTS
(VCC OR GND)
VEE
VEE
ENABLE CONTROL
INPUTS
(VCC OR GND)
−6 V
Figure 16.
Figure 17. Transient Suppressor Application
http://onsemi.com
9
MC74HC4316A
VCC = 5 V
+5 V
16
ANALOG
SIGNALS
R* R* R* R* R*
HC4316A
7
5
6
14
15
TTL
16
ANALOG
SIGNALS
ANALOG
SIGNALS
HCT
BUFFER
VEE = 0
TO −6 V
ENABLE
AND
CONTROL 9
INPUTS
8
HC4016A
5
LSTTL/
NMOS
6
14
ANALOG
SIGNALS
VEE = 0
TO −6 V
CONTROL
INPUTS 9
15
7
R* = 2 TO 10 kW
a. Using Pull−Up Resistors
b. Using HCT Buffer
Figure 18. LSTTL/NMOS to HCMOS Interface
VCC = 12 V
R1
12 V
POWER
SUPPLY
GND = 6 V
R2
VEE = 0 V
R1 = R2
VCC
12 VPP
ANALOG
INPUT
SIGNAL
R3
C
R4
1 OF 4
SWITCHES
ANALOG
OUTPUT
SIGNAL
12 V
0
R1 = R2
R3 = R4
VEE
Figure 19. Switching a 0−to−12 V Signal Using a
Single Power Supply (GND ≠ 0 V)
CHANNEL 4
1 OF 4
SWITCHES
CHANNEL 3
1 OF 4
SWITCHES
CHANNEL 2
1 OF 4
SWITCHES
CHANNEL 1
1 OF 4
SWITCHES
COMMON I/O
−
INPUT
1 OF 4
SWITCHES
+
OUTPUT
LF356 OR
EQUIVALENT
0.01 mF
1
2
3 4
CONTROL INPUTS
Figure 20. 4−Input Multiplexer
Figure 21. Sample/Hold Amplifier
http://onsemi.com
10
MC74HC4316A
PACKAGE DIMENSIONS
PDIP−16
N SUFFIX
CASE 648−08
ISSUE T
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
−A−
16
9
1
8
B
F
C
L
DIM
A
B
C
D
F
G
H
J
K
L
M
S
S
−T−
SEATING
PLANE
K
H
D
M
J
G
16 PL
0.25 (0.010)
T A
M
M
INCHES
MIN
MAX
0.740 0.770
0.250 0.270
0.145 0.175
0.015 0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008 0.015
0.110 0.130
0.295 0.305
0_
10 _
0.020 0.040
MILLIMETERS
MIN
MAX
18.80 19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
http://onsemi.com
11
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC74HC4316A
PACKAGE DIMENSIONS
SOEIAJ−16
F SUFFIX
CASE 966−01
ISSUE O
16
LE
9
Q1
M_
E HE
1
8
L
DETAIL P
Z
D
e
VIEW P
A
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
A1
b
0.13 (0.005)
c
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
M
0.10 (0.004)
MILLIMETERS
MIN
MAX
−−−
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
−−−
0.78
INCHES
MIN
MAX
−−− 0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
−−− 0.031
MOSORB is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
12
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MC74HC4316A/D