ONSEMI MC74LVX8053DR2G

MC74LVX8053
Analog Multiplexer /
Demultiplexer
High−Performance Silicon−Gate CMOS
The MC74LVX8053 utilizes silicon−gate CMOS technology to
achieve fast propagation delays, low ON resistances, and low OFF
leakage currents. This analog multiplexer/demultiplexer controls
analog voltages that may vary across the complete power supply range
(from VCC to GND).
The LVX8053 is similar in pinout to the high−speed HC4053A, and
the metal−gate MC14053B. The Channel−Select inputs determine
which one of the Analog Inputs/Outputs is to be connected, by means
of an analog switch, to the Common Output/Input. When the Enable
pin is HIGH, all analog switches are turned off.
The Channel−Select and Enable inputs are compatible with standard
CMOS outputs; with pull−up resistors they are compatible with
LSTTL outputs.
This device has been designed so that the ON resistance (Ron) is
more linear over input voltage than Ron of metal−gate CMOS analog
switches.
http://onsemi.com
MARKING
DIAGRAMS
16
SOIC−16
D SUFFIX
CASE 751B
LVX8053
AWLYWW
1
16
LVX
8053
ALYW
TSSOP−16
DT SUFFIX
CASE 948F
1
Features
•
•
•
•
•
•
•
•
•
•
Fast Switching and Propagation Speeds
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Analog Power Supply Range (VCC − GND) = 2.5 to 6.0 V
Digital (Control) Power Supply Range (VCC − GND) = 2.5 to 6.0 V
Improved Linearity and Lower ON Resistance Than Metal−Gate
Counterparts
Low Noise
In Compliance With the Requirements of JEDEC Standard No. 7A
Chip Complexity: LVX8053 − 156 FETs or 39 Equivalent Gates
Pb−Free Packages are Available*
16
SOEIAJ−16
M SUFFIX
CASE 966
LVX8053
ALYW
1
A
WL or L
Y
WW or W
=
=
=
=
Assembly Location
Wafer Lot
Year
Work Week
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
 Semiconductor Components Industries, LLC, 2005
April, 2005 − Rev. 4
1
Publication Order Number:
MC74LVX8053/D
MC74LVX8053
12
X0
13
X1
X SWITCH
2
ANALOG
INPUTS/OUTPUTS
Y0
1
Y1
Y SWITCH
5
Z0
3
Z1
Z SWITCH
14
15
4
X
Y
Y
X
X1
X0
A
B
C
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
Y1
Y0
Z1
Z
Z0
Enable
NC
GND
PIN CONNECTION AND
MARKING DIAGRAM (Top View)
COMMON
OUTPUTS/INPUTS
Z
11
A
10
CHANNEL-SELECT
B
INPUTS
9
C
6
ENABLE
VCC
FUNCTION TABLE − MC74LVX8053
PIN 16 = VCC
PIN 8 = GND
Control Inputs
NOTE: This device allows independent control of each switch.
Channel−Select Input A controls the X−Switch, Input B controls the
Y−Switch and Input C controls the Z−Switch
LOGIC DIAGRAM
Triple Single−Pole, Double−Position Plus Common Off
Enable
C
L
L
L
L
L
L
L
L
H
L
L
L
L
H
H
H
H
X
Select
B
A
L
L
H
H
L
L
H
H
X
L
H
L
H
L
H
L
H
X
ON Channels
Z0
Z0
Z0
Z0
Z1
Z1
Z1
Z1
Y0
Y0
Y1
Y1
Y0
Y0
Y1
Y1
NONE
X0
X1
X0
X1
X0
X1
X0
X1
X = Don’t Care
ORDERING INFORMATION
Package
Shipping†
MC74LVX8053DR2
SOIC−16
2500 Tape & Reel
MC74LVX8053DR2G
SOIC−16
(Pb−Free)
2500 Tape & Reel
MC74LVX8053DTR2
TSSOP−16*
2500 Tape & Reel
MC74LVX8053M
SOEIAJ−16
50 Units / Rail
MC74LVX8053MG
SOEIAJ−16
(Pb−Free)
50 Units / Rail
MC74LVX8053MEL
SOEIAJ−16
2000 Tape & Reel
MC74LVX8053MELG
SOEIAJ−16
(Pb−Free)
2000 Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
2
MC74LVX8053
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
– 0.5 to + 7.0
V
Analog Input Voltage
− 0.5 to VCC + 0.5
V
Digital Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
± 20
mA
500
450
mW
– 65 to + 150
C
260
C
VCC
Positive DC Supply Voltage
VIS
Vin
I
(Referenced to GND)
DC Current, Into or Out of Any Pin
PD
Power Dissipation in Still Air,
SOIC Package†
TSSOP Package†
Tstg
Storage Temperature Range
TL
Lead Temperature, 1 mm from Case for 10 Seconds
Maximum ratings are those values beyond which device damage can occur. Maximum ratings
applied to the device are individual stress limit values (not normal operating conditions) and are
not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
†Derating — SOIC Package: – 7 mW/C from 65 to 125C
TSSOP Package: − 6.1 mW/C from 65 to 125C
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
VCC
Positive DC Supply Voltage
(Referenced to GND)
VIS
Analog Input Voltage
Vin
Digital Input Voltage (Referenced to GND)
VIO*
Static or Dynamic Voltage Across Switch
TA
Operating Temperature Range, All Package Types
tr, tf
Input Rise/Fall Time
(Channel Select or Enable Inputs)
VCC = 3.3 V ± 0.3 V
VCC = 5.0 V ± 0.5 V
Min
Max
Unit
2.5
6.0
V
0.0
VCC
V
GND
VCC
V
1.2
V
+ 85
C
– 55
ns/V
0
0
100
20
*For voltage drops across switch greater than 1.2 V (switch on), excessive VCC current may be
drawn; i.e., the current out of the switch may contain both VCC and switch input components. The
reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
http://onsemi.com
3
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND (Vin or Vout) VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or V CC ).
Unused outputs must be left open.
MC74LVX8053
DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND)
Symbol
Parameter
Condition
Guaranteed Limit
VCC
V
−55 to 25°C
≤ 85°C
≤ 125°C
Unit
VIH
Minimum High−Level Input Voltage,
Channel−Select or Enable Inputs
Ron = Per Spec
2.5
3.0
4.5
5.5
1.50
2.10
3.15
3.85
1.50
2.10
3.15
3.85
1.50
2.10
3.15
3.85
V
VIL
Maximum Low−Level Input Voltage,
Channel−Select or Enable Inputs
Ron = Per Spec
2.5
3.0
4.5
5.5
0.5
0.9
1.35
1.65
0.5
0.9
1.35
1.65
0.5
0.9
1.35
1.65
V
Iin
Maximum Input Leakage Current,
Channel−Select or Enable Inputs
Vin = VCC or GND,
5.5
± 0.1
± 1.0
± 1.0
A
ICC
Maximum Quiescent Supply
Current (per Package)
Channel Select, Enable and
VIS = VCC or GND; VIO = 0 V
5.5
4
40
160
A
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
DC ELECTRICAL CHARACTERISTICS Analog Section
Symbol
Ron
Parameter
Maximum “ON” Resistance
Guaranteed Limit
VCC
V
−55 to 25°C
85C
≤ 125°C
Unit
Vin = VIL or VIH
VIS = VCC to GND
|IS| 10.0 mA (Figures 1, 2)
3.0
4.5
5.5
40
30
25
45
32
28
50
37
30
Vin = VIL or VIH
VIS = VCC or GND (Endpoints)
|IS| 10.0 mA (Figures 1, 2)
3.0
4.5
5.5
30
25
20
35
28
25
40
35
30
Test Conditions
Ron
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIL or VIH
VIS = 1/2 (VCC − GND)
|IS| 10.0 mA
3.0
4.5
5.5
15
8.0
8.0
20
12
12
25
15
15
Ioff
Maximum Off−Channel Leakage
Current, Any One Channel
Vin = VIL or VIH;
VIO = VCC or GND;
Switch Off (Figure 3)
5.5
0.1
0.5
1.0
A
Maximum Off−Channel
Leakage Current,
Common Channel
Vin = VIL or VIH;
VIO = VCC or GND;
Switch Off (Figure 4)
5.5
0.1
1.0
2.0
Maximum On−Channel
Leakage Current,
Channel−to−Channel
Vin = VIL or VIH;
Switch−to−Switch =
VCC or GND; (Figure 5)
5.5
0.1
1.0
2.0
Ion
http://onsemi.com
4
A
MC74LVX8053
AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 3 ns)
Symbol
Parameter
Guaranteed Limit
VCC
V
−55 to 25°C
≤ 85°C
≤ 125°C
Unit
tPLH,
tPHL
Maximum Propagation Delay, Channel−Select to Analog Output
(Figure 9)
2.5
3.0
4.5
5.5
30
20
15
15
35
25
18
18
40
30
22
20
ns
tPLH,
tPHL
Maximum Propagation Delay, Analog Input to Analog Output
(Figure 10)
2.5
3.0
4.5
5.5
4.0
3.0
1.0
1.0
6.0
5.0
2.0
2.0
8.0
6.0
2.0
2.0
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Enable to Analog Output
(Figure 11)
2.5
3.0
4.5
5.5
30
20
15
15
35
25
18
18
40
30
22
20
ns
tPZL,
tPZH
Maximum Propagation Delay, Enable to Analog Output
(Figure 11)
2.5
3.0
4.5
5.5
20
12
8.0
8.0
25
14
10
10
30
15
12
12
ns
Cin
Maximum Input Capacitance, Channel−Select or Enable Inputs
10
10
10
pF
CI/O
Maximum Capacitance
Analog I/O
35
35
35
pF
Common O/I
50
50
50
Feedthrough
1.0
1.0
1.0
(All Switches Off)
Typical @ 25°C, VCC = 5.0 V
CPD
45
Power Dissipation Capacitance (Figure 13)*
* Used to determine the no−load dynamic power consumption: P D = CPD VCC2 f + ICC VCC .
http://onsemi.com
5
pF
MC74LVX8053
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
Symbol
BW
−
Parameter
VCC
V
Condition
Maximum On−Channel Bandwidth
or Minimum
Mi i
F
Frequency R
Response
(Figure 6)
fin = 1MHz Sine Wave; Adjust fin Voltage to Obtain
0dB att VOS; IIncrease fin Frequency
0dBm
F
Until
U til dB
Meter Reads −3dB;
RL = 50, CL = 10pF
Off−Channel Feedthrough Isolation
(Figure 7)
fin = Sine Wave; Adjust fin Voltage to Obtain 0dBm
at VIS
fin = 10kHz, RL = 600, CL = 50pF
fin = 1.0MHz, RL = 50, CL = 10pF
−
Feedthrough Noise.
Channel−Select Input to Common
I/O (Figure 8)
Vin ≤ 1MHz Square Wave (tr = tf = 6ns); Adjust RL
at Setup so that IS = 0A;
Enable = GND
RL = 600, CL = 50pF
RL = 10k, CL = 10pF
−
Crosstalk Between Any Two
Switches (Figure 12)
fin = Sine Wave; Adjust fin Voltage to Obtain 0dBm
at VIS
fin = 10kHz, RL = 600, CL = 50pF
fin = 1.0MHz, RL = 50, CL = 10pF
THD
Total Harmonic Distortion
(Figure 14)
fin = 1kHz, RL = 10k, CL = 50pF
THD = THDmeasured − THDsource
VIS = 2.0VPP sine wave
VIS = 4.0VPP sine wave
VIS = 5.5VPP sine wave
Ron , ON RESISTANCE (OHMS)
40
35
125°C
85°C
25°C
20
−55 °C
15
10
5
00
1.0
2.0
3.0
VIN, INPUT VOLTAGE (VOLTS)
Figure 1a. Typical On Resistance, VCC = 3.0 V
http://onsemi.com
6
Unit
MHz
3.0
4.5
5.5
120
120
120
3.0
4.5
5.5
−50
−50
−50
3.0
4.5
5.5
−37
−37
−37
3.0
4.5
5.5
25
105
135
3.0
4.5
5.5
35
145
190
3.0
4.5
5.5
−50
−50
−50
3.0
4.5
5.5
−60
−60
−60
3.0
4.5
5.5
45
25
25°C
dB
mVPP
dB
%
*Limits not tested. Determined by design and verified by qualification.
30
Limit*
4.0
0.10
0.08
0.05
MC74LVX8053
30
25
125°C
85°C
20
25°C
15
−55 °C
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
30
10
5
0
25
125°C
85°C
20
25°C
−55 °C
15
10
5
0
1.0
2.0
3.0
4.0
0
5.0
0
1.0
2.0
VIN, INPUT VOLTAGE (VOLTS)
Figure 1b. Typical On Resistance, VCC = 4.5 V
4.0
5.0
Figure 1c. Typical On Resistance, VCC = 5.5 V
PLOTTER
PROGRAMMABLE
POWER
SUPPLY
−
3.0
VIN, INPUT VOLTAGE (VOLTS)
MINI COMPUTER
DC ANALYZER
+
VCC
DEVICE
UNDER TEST
ANALOG IN
COMMON OUT
GND
GND
Figure 2. On Resistance Test Set−Up
http://onsemi.com
7
6.0
MC74LVX8053
VCC
VCC
VCC
16
GND
GND
ANALOG I/O
OFF
A
VCC
VIH
OFF
VIH
6
8
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set−Up
VCC
Figure 4. Maximum Off Channel Leakage Current,
Common Channel, Test Set−Up
VCC
VCC
16
A
fin
dB
METER
ON
N/C
COMMON O/I
OFF
VOS
16
0.1F
ON
VCC
COMMON O/I
6
8
GND
OFF
VCC
COMMON O/I
OFF
NC
VCC
16
RL
CL*
ANALOG I/O
VIL
6
6
8
8
*Includes all probe and jig capacitance
Figure 5. Maximum On Channel Leakage Current,
Channel to Channel, Test Set−Up
VCC
VIS
VCC
VOS
16
0.1F
fin
dB
METER
OFF
RL
Figure 6. Maximum On Channel Bandwidth,
Test Set−Up
CL*
16
RL
COMMON O/I
ON/OFF
ANALOG I/O
RL
OFF/ON
RL
RL
6
6
8
VIL or VIH
VCC
GND
CHANNEL SELECT
Vin ≤ 1 MHz
tr = tf = 3 ns
8
CL*
TEST
POINT
VCC
11
CHANNEL SELECT
*Includes all probe and jig capacitance
*Includes all probe and jig capacitance
Figure 7. Off Channel Feedthrough Isolation,
Test Set−Up
Figure 8. Feedthrough Noise, Channel Select to
Common Out, Test Set−Up
http://onsemi.com
8
MC74LVX8053
VCC
VCC
16
VCC
CHANNEL
SELECT
COMMON O/I
ON/OFF
50%
ANALOG I/O
OFF/ON
GND
tPLH
CL*
TEST
POINT
tPHL
6
ANALOG
OUT
50%
8
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 9a. Propagation Delays, Channel Select
to Analog Out
Figure 9b. Propagation Delay, Test Set−Up Channel
Select to Analog Out
VCC
16
VCC
ANALOG
IN
COMMON O/I
ANALOG I/O
ON
50%
CL*
TEST
POINT
GND
tPLH
tPHL
ANALOG
OUT
6
8
50%
*Includes all probe and jig capacitance
Figure 10a. Propagation Delays, Analog In
to Analog Out
tf
tr
90%
50%
10%
ENABLE
tPZL
ANALOG
OUT
tPLZ
1
VCC
GND
VCC
VCC
HIGH
IMPEDANCE
10%
POSITION 1 WHEN TESTING tPHZ AND tPZH
POSITION 2 WHEN TESTING tPLZ AND tPZL
2
16
1
ON/OFF
CL*
VOL
tPHZ
ENABLE
90%
1k
ANALOG I/O
2
50%
tPZH
ANALOG
OUT
Figure 10b. Propagation Delay, Test Set−Up
Analog In to Analog Out
VOH
50%
8
HIGH
IMPEDANCE
Figure 11a. Propagation Delays, Enable to
Analog Out
6
Figure 11b. Propagation Delay, Test Set−Up
Enable to Analog Out
http://onsemi.com
9
TEST
POINT
MC74LVX8053
VCC
VIS
A
VCC
16
RL
fin
16
VOS
ON
COMMON O/I
ON/OFF
NC
ANALOG I/O
0.1F
OFF/ON
OFF
RL
RL
CL*
RL
CL*
VCC
6
6
8
8
CHANNEL SELECT
11
*Includes all probe and jig capacitance
Figure 12. Crosstalk Between Any Two
Switches, Test Set−Up
Figure 13. Power Dissipation Capacitance,
Test Set−Up
0
VIS
VCC
−10
VOS
16
0.1F
fin
ON
CL*
TO
DISTORTION
METER
−30
−40
dB
RL
FUNDAMENTAL FREQUENCY
−20
−50
DEVICE
−60
6
SOURCE
−70
8
−80
−90
*Includes all probe and jig capacitance
− 100
1.0
2.0
3.125
FREQUENCY (kHz)
Figure 14a. Total Harmonic Distortion, Test Set−Up
Figure 14b. Plot, Harmonic Distortion
APPLICATIONS INFORMATION
The Channel Select and Enable control pins should be at
VCC or GND logic levels. VCC being recognized as a logic
high and GND being recognized as a logic low. In this
example:
VCC = +5V = logic high
GND = 0V = logic low
The maximum analog voltage swing is determined by the
supply voltages VCC. The positive peak analog voltage
should not exceed VCC. Similarly, the negative peak analog
voltage should not go below GND. In this example, the
difference between VCC and GND is five volts. Therefore,
using the configuration of Figure 15, a maximum analog
signal of five volts peak−to−peak can be controlled. Unused
analog inputs/outputs may be left floating (i.e., not
connected). However, tying unused analog inputs and
outputs to VCC or GND through a low value resistor helps
minimize crosstalk and feedthrough noise that may be
picked up by an unused switch.
Although used here, balanced supplies are not a
requirement. The only constraints on the power supplies are
that:
VCC − GND = 2 to 6 volts
When voltage transients above VCC and/or below GND
are anticipated on the analog channels, external Germanium
or Schottky diodes (Dx) are recommended as shown in
Figure 16. These diodes should be able to absorb the
maximum anticipated current surges during clipping.
http://onsemi.com
10
MC74LVX8053
VCC
+5V
+5V
16
ANALOG
SIGNAL
0V
ON
6
8
Dx
+5V
ANALOG
SIGNAL
VCC
16
Dx
Dx
VEE
VEE
8
Figure 15. Application Example
Figure 16. External Germanium or
Schottky Clipping Diodes
+5V
+5V
16
ANALOG
SIGNAL
GND
ON/OFF
6
8
Dx
ON/OFF
0V
TO EXTERNAL CMOS
CIRCUITRY 0 to 5V
DIGITAL SIGNALS
11
10
9
VCC
+5V
ANALOG
SIGNAL
+5V
*
R
R
11
10
9
+5V
+5V
GND
GND
16
ANALOG
SIGNAL
ON/OFF
+5V
ANALOG
SIGNAL
R
GND
+5V
6
LSTTL/NMOS
CIRCUITRY
8
* 2K ≤ R ≤ 10K
11
10
9
LSTTL/NMOS
CIRCUITRY
VHC1GT50
BUFFERS
a. Using Pull−Up Resistors
b. Using HCT Interface
Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs
A
11
13
LEVEL
SHIFTER
12
14
B
10
1
LEVEL
SHIFTER
2
15
C
9
3
LEVEL
SHIFTER
5
4
ENABLE
6
LEVEL
SHIFTER
Figure 18. Function Diagram, LVX8053
http://onsemi.com
11
X1
X0
X
Y1
Y0
Y
Z1
Z0
Z
MC74LVX8053
PACKAGE DIMENSIONS
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
B
M
S
G
R
K
DIM
A
B
C
D
F
G
J
K
M
P
R
F
X 45 C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0
7
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0
7
0.229
0.244
0.010
0.019
S
TSSOP−16
DT SUFFIX
CASE 948F−01
ISSUE A
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
8
1
N
0.25 (0.010)
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DETAIL E
G
http://onsemi.com
12
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0
8
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0
8
MC74LVX8053
SOEIAJ−16
M SUFFIX
CASE 966−01
ISSUE O
16
LE
9
Q1
M
E HE
1
8
L
DETAIL P
Z
D
e
VIEW P
A
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
A1
b
0.13 (0.005)
c
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH OR PROTRUSIONS AND ARE MEASURED
AT THE PARTING LINE. MOLD FLASH OR
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
0.10 (0.004)
http://onsemi.com
13
MILLIMETERS
MIN
MAX
−−−
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 0
0.70
0.90
−−−
0.78
INCHES
MIN
MAX
−−−
0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 0
0.028
0.035
−−−
0.031
MC74LVX8053
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
14
For additional information, please contact your
local Sales Representative.
MC74LVX8053/D