ONSEMI MC74HCT4051ADG

MC74HCT4051A,
MC74HCT4052A,
MC74HCT4053A
Analog Multiplexers /
Demultiplexers with LSTTL
Compatible Inputs
http://onsemi.com
MARKING
DIAGRAMS
High−Performance Silicon−Gate CMOS
The MC74HCT4051A, MC74HCT4052A and MC74HCT4053A
utilize silicon−gate CMOS technology to achieve fast propagation
delays, low ON resistances, and low OFF leakage currents. These
analog multiplexers/demultiplexers control analog voltages that may
vary across the complete power supply range (from VCC to VEE).
The HCT4051A, HCT4052A and HCT4053A are identical in
pinout to the metal−gate MC14051AB, MC14052AB and
MC14053AB. The Channel−Select inputs determine which one of the
Analog Inputs/Outputs is to be connected, by means of an analog
switch, to the Common Output/Input. When the Enable pin is HIGH,
all analog switches are turned off.
The Channel−Select and Enable inputs are compatible with standard
CMOS and LSTTL outputs.
These devices have been designed so that the ON resistance (Ron) is
more linear over input voltage than Ron of metal−gate CMOS analog
switches.
For a multiplexer/demultiplexer with injection current protection,
see HC4851A and HCT4851A.
Features
•
•
•
•
•
•
•
•
•
•
Fast Switching and Propagation Speeds
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Analog Power Supply Range (VCC − VEE) = 2.0 to 12.0 V
Digital (Control) Power Supply Range (VCC − GND) = 2.0 to 6.0 V
Improved Linearity and Lower ON Resistance Than Metal−Gate
Counterparts
Low Noise
In Compliance with the Requirements of JEDEC Standard No. 7A
Chip Complexity: HCT4051A − 184 FETs or 46 Equivalent Gates
HCT4052A − 168 FETs or 42 Equivalent Gates
HCT4053A − 156 FETs or 39 Equivalent Gates
These are Pb−Free Devices
© Semiconductor Components Industries, LLC, 2010
January, 2010 − Rev. 0
1
16
SOIC−16 WIDE
DW SUFFIX
CASE 751G
16
1
1
SOIC−16
D SUFFIX
CASE 751B
16
1
HCT405xA
AWLYWWG
16
HCT405xAG
AWLYWW
1
16
16
1
HCT40
5xA
ALYWG
G
TSSOP−16
DT SUFFIX
CASE 948F
1
x
= Specific Device Code
A
= Assembly Location
WL, L = Wafer Lot
YY, Y
= Year
WW, W = Work Week
G
= Pb−Free Package
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 14 of this data sheet.
Publication Order Number:
MC74HCT4051A/D
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
FUNCTION TABLE − MC74HCT4051A
Control Inputs
13
X0
14
X1
15
X2
ANALOG
12
MULTIPLEXER/
INPUTS/ X3
DEMULTIPLEXER
OUTPUTS X4 1
5
X5
2
X6
4
X7
11
A
CHANNEL
10
B
SELECT
9
INPUTS
C
6
ENABLE
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
3
Enable
C
L
L
L
L
L
L
L
L
H
L
L
L
L
H
H
H
H
X
COMMON
X
OUTPUT/
INPUT
Select
B
A
L
L
H
H
L
L
H
H
X
ON Channels
X0
X1
X2
X3
X4
X5
X6
X7
NONE
L
H
L
H
L
H
L
H
X
X = Don’t Care
VCC
X2
X1
X0
X3
A
B
C
16
15
14
13
12
11
10
9
6
7
8
GND
Figure 1. Logic Diagram − MC74HCT4051A
Single−Pole, 8−Position Plus Common Off
1
2
3
4
5
X4
X6
X
X7
X5
Enable VEE
Figure 2. Pinout: MC74HCT4051A
(Top View)
FUNCTION TABLE − MC74HCT4052A
Control Inputs
Enable
B
L
L
L
L
H
L
L
H
H
X
12
ANALOG
INPUTS/OUTPUTS
CHANNEL‐SELECT
INPUTS
X0
14
X1
15
X2
11
X3
Y0
Y1
Y2
Y3
A
B
ENABLE
X SWITCH
13
X
COMMON
OUTPUTS/INPUTS
1
5
2
Y SWITCH
3
Y
4
Select
A
ON Channels
L
H
L
H
X
Y0
Y1
Y2
Y3
X0
X1
X2
X3
NONE
X = Don’t Care
VCC
X2
X1
X
X0
X3
A
B
16
15
14
13
12
11
10
9
6
7
8
GND
10
9
6
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
Figure 3. Logic Diagram − MC74HCT4052A
Double−Pole, 4−Position Plus Common Off
1
2
3
4
5
Y0
Y2
Y
Y3
Y1
Enable VEE
Figure 4. Pinout: MC74HCT4052A (Top View)
http://onsemi.com
2
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
FUNCTION TABLE − MC74HCT4053A
Control Inputs
12
X0
13
X1
14
X SWITCH
2
ANALOG
INPUTS/OUTPUTS
Y0
1
Y1
15
Y SWITCH
5
Z0
3
Z1
4
Z SWITCH
Enable
C
L
L
L
L
L
L
L
L
H
L
L
L
L
H
H
H
H
X
X
Y
COMMON
OUTPUTS/INPUTS
Select
B
A
L
L
H
H
L
L
H
H
X
ON Channels
Z0
Z0
Z0
Z0
Z1
Z1
Z1
Z1
L
H
L
H
L
H
L
H
X
Y0
Y0
Y1
Y1
Y0
Y0
Y1
Y1
NONE
X0
X1
X0
X1
X0
X1
X0
X1
X = Don’t Care
Z
11
A
10
B
9
C
6
ENABLE
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
CHANNEL‐SELECT
INPUTS
VCC
Y
X
X1
X0
A
B
C
16
15
14
13
12
11
10
9
6
7
8
GND
NOTE: This device allows independent control of each switch.
Channel−Select Input A controls the X−Switch, Input B controls
the Y−Switch and Input C controls the Z−Switch
Figure 5. Logic Diagram − MC74HCT4053A
Triple Single−Pole, Double−Position Plus Common Off
1
2
3
4
5
Y1
Y0
Z1
Z
Z0
Enable VEE
Figure 6. Pinout: MC74HCT4053A (Top View)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Symbol
Parameter
Unit
−0.5 to +7.0
−0.5 to +14.0
V
VCC
Positive DC Supply Voltage
VEE
Negative DC Supply Voltage (Referenced to GND)
−7.0 to +5.0
V
VIS
Analog Input Voltage
VEE − 0.5 to
VCC + 0.5
V
Vin
Digital Input Voltage (Referenced to GND)
I
(Referenced to GND)
(Referenced to VEE)
Value
−0.5 to VCC + 0.5
V
±25
mA
500
450
mW
−65 to +150
°C
DC Current, Into or Out of Any Pin
PD
Power Dissipation in Still Air,
Tstg
Storage Temperature Range
SOIC Package†
TSSOP Package†
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress
ratings only. Functional operation above the Recommended Operating Conditions is not implied.
Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
†Derating − SOIC Package: − 7 mW/°C from 65°C to 125°C
TSSOP Package: − 6.1 mW/°C from 65°C to 125°C
http://onsemi.com
3
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
2.0
2.0
6.0
12.0
V
Negative DC Supply Voltage, Output (Referenced to
GND)
−6.0
GND
V
VIS
Analog Input Voltage
VEE
VCC
V
Vin
Digital Input Voltage (Referenced to GND)
GND
VCC
V
VIO*
Static or Dynamic Voltage Across Switch
1.2
V
−55
+125
°C
0
0
0
0
1000
600
500
400
ns
VCC
Positive DC Supply Voltage
VEE
(Referenced to GND)
(Referenced to VEE)
TA
Operating Temperature Range, All Package Types
tr, tf
Input Rise/Fall Time
(Channel Select or Enable Inputs)
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
*For voltage drops across switch greater than 1.2 V (switch on), excessive VCC current may be
drawn; i.e., the current out of the switch may contain both VCC and switch input components. The
reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND) VEE = GND, Except Where Noted
Symbol
Parameter
Condition
VCC
V
Guaranteed Limit
−55 to 25°C
≤85°C
≤125°C
Unit
VIH
Minimum High−Level Input Voltage,
Channel−Select or Enable Inputs
Ron = Per Spec
4.5 to
5.5
2.0
2.0
2.0
V
VIL
Maximum Low−Level Input Voltage,
Channel−Select or Enable Inputs
Ron = Per Spec
4.5 to
5.5
0.8
0.8
0.8
V
Iin
Maximum Input Leakage Current,
Channel−Select or Enable Inputs
Vin = VCC or GND,
VEE = − 6.0 V
6.0
±0.1
±1.0
±1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Channel Select, Enable and
VIS = VCC or GND;
VEE = GND
VEE = − 6.0
VIO = 0 V
6.0
6.0
1
4
10
40
20
80
http://onsemi.com
4
mA
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
DC CHARACTERISTICS − Analog Section
Guaranteed Limit
Symbol
Ron
Parameter
Maximum “ON” Resistance
VCC
VEE
−55 to 25°C
Vin = VIL or VIH; VIS = VCC to
VEE; IS ≤ 2.0 mA
(Figures 7, 8)
4.5
4.5
6.0
0.0
−4.5
−6.0
190
120
100
240
150
125
280
170
140
Vin = VIL or VIH; VIS = VCC or
VEE (Endpoints); IS ≤ 2.0 mA
(Figures 7, 8)
4.5
4.5
6.0
0.0
−4.5
−6.0
150
100
80
190
125
100
230
140
115
Condition
≤85°C
≤125°C
Unit
W
DRon
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIL or VIH;
VIS = 1/2 (VCC − VEE);
IS ≤ 2.0 mA
4.5
4.5
6.0
0.0
−4.5
−6.0
30
12
10
35
15
12
40
18
14
Ioff
Maximum Off−Channel Leakage
Current, Any One Channel
Vin = VIL or VIH;
VIO = VCC − VEE;
Switch Off (Figure 3)
6.0
−6.0
0.1
0.5
1.0
Maximum Off−Channel HCT4051A Vin = VIL or VIH;
Leakage Current,
HCT4052A VIO = VCC − VEE;
Common Channel
HCT4053A Switch Off (Figure 10)
6.0
6.0
6.0
−6.0
−6.0
−6.0
0.2
0.1
0.1
2.0
1.0
1.0
4.0
2.0
2.0
Maximum On−Channel HCT4051A Vin = VIL or VIH;
Leakage Current,
HCT4052A Switch−to−Switch =
Channel−to−Channel HCT4053A VCC − VEE; (Figure 11)
6.0
6.0
6.0
−6.0
−6.0
−6.0
0.2
0.1
0.1
2.0
1.0
1.0
4.0
2.0
2.0
Ion
http://onsemi.com
5
W
mA
mA
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)
Parameter
Symbol
Guaranteed Limit
VCC
V
−55 to 25°C
≤85°C
≤125°C
Unit
tPLH,
tPHL
Maximum Propagation Delay, Channel−Select to Analog Output
(Figure 15)
2.0
3.0
4.5
6.0
270
90
59
45
320
110
79
65
350
125
85
75
ns
tPLH,
tPHL
Maximum Propagation Delay, Analog Input to Analog Output
(Figure 16)
2.0
3.0
4.5
6.0
40
25
12
10
60
30
15
13
70
32
18
15
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Enable to Analog Output
(Figure 17)
2.0
3.0
4.5
6.0
160
70
48
39
200
95
63
55
220
110
76
63
ns
tPZL,
tPZH
Maximum Propagation Delay, Enable to Analog Output
(Figure 17)
2.0
3.0
4.5
6.0
245
115
49
39
315
145
69
58
345
155
83
67
ns
Cin
Maximum Input Capacitance, Channel−Select or Enable Inputs
10
10
10
pF
CI/O
Maximum Capacitance
Analog I/O
35
35
35
pF
Common O/I: HCT4051A
HCT4052A
HCT4053A
130
80
50
130
80
50
130
80
50
Feed−through
1.0
1.0
1.0
(All Switches Off)
Typical @ 25°C, VCC = 5.0 V, VEE = 0 V
CPD
Power Dissipation Capacitance (Figure 19)*
HCT4051A
HCT4052A
HCT4053A
*Used to determine the no−load dynamic power consumption: PD = CPD VCC 2 f + ICC VCC .
http://onsemi.com
6
45
80
45
pF
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
Parameter
Symbol
BW
−
−
Condition
Maximum On−Channel Bandwidth
or Minimum Frequency Response
(Figure 12)
fin = 1 MHz Sine Wave; Adjust fin Voltage
to Obtain 0 dBm at VOS; Increase fin
Frequency Until dB Meter Reads −3 dB;
RL = 50 W, CL = 10 pF
Off−Channel Feed−through
Isolation (Figure 13)
Feedthrough Noise.
Channel−Select Input to Common
I/O (Figure 14)
−
Crosstalk Between Any Two
Switches (Figure 18)
(Test does not apply to HCT4051A)
THD
VCC
V
Total Harmonic Distortion
(Figure 20)
Limit*
VEE
V
25°C
‘52
‘53
80
80
80
95
95
95
120
120
120
2.25
4.50
6.00
−2.25
−4.50
−6.00
fin = Sine Wave; Adjust fin Voltage to
Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 W, CL = 50 pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−50
−50
−50
fin = 1.0 MHz, RL = 50 W, CL = 10 pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−40
−40
−40
Vin ≤ 1 MHz Square Wave (tr = tf = 6 ns);
Adjust RL at Setup so that IS = 0 A;
Enable = GND RL = 600 W, CL = 50 pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
25
105
135
RL = 10 kW, CL = 10 pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
35
145
190
fin = Sine Wave; Adjust fin Voltage to
Obtain 0 dBm at VIS
fin = 10 kHz, RL = 600 W, CL = 50 pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−50
−50
−50
fin = 1.0 MHz, RL = 50 W, CL = 10 pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−60
−60
−60
fin = 1 kHz, RL = 10 kW, CL = 50 pF
THD = THDmeasured − THDsource
VIS = 4.0 VPP sine wave
VIS = 8.0 VPP sine wave
VIS = 11.0 VPP sine wave
Unit
‘51
MHz
dB
mVPP
dB
%
2.25
4.50
6.00
−2.25
−4.50
−6.00
0.10
0.08
0.05
*Limits not tested. Determined by design and verified by qualification.
180
160
250
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
300
200
125°C
150
25°C
-55°C
100
50
140
120
125°C
100
80
25°C
60
-55°C
40
20
0
0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
0
2.25
0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 7.
Figure 7a. Typical On Resistance, VCC − VEE = 2.0 V
0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
Figure 7b. Typical On Resistance, VCC − VEE = 3.0 V
http://onsemi.com
7
120
105
100
90
80
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
125°C
60
25°C
40
-55°C
20
0
75
125°C
60
25°C
45
-55°C
30
15
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
4.5
0
0.5
Figure 7c. Typical On Resistance, VCC − VEE = 4.5 V
3.0 3.5
4.0
4.5 5.0 5.5 6.0
60
70
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
2.0 2.5
Figure 7d. Typical On Resistance, VCC − VEE = 6.0 V
80
60
50
125°C
40
30
25°C
20
-55°C
10
0
1.0 1.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
0
1
2
3
4
5
6
7
8
50
125°C
40
25°C
30
-55°C
20
10
0
0
9
1
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
2
3
4
5
8
9
10
11
12
Figure 7f. Typical On Resistance, VCC − VEE = 12.0 V
PLOTTER
-
7
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 7e. Typical On Resistance, VCC − VEE = 9.0 V
PROGRAMMABLE
POWER
SUPPLY
6
MINI COMPUTER
DC ANALYZER
+
VCC
DEVICE
UNDER TEST
ANALOG IN
COMMON OUT
VEE
GND
Figure 8. On Resistance Test Set−Up
http://onsemi.com
8
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
VCC
VCC
VCC
16
VEE
ANALOG I/O
OFF
A
VCC
VIH
OFF
VCC
COMMON O/I
OFF
NC
OFF
VIH
6
7
8
VEE
COMMON O/I
6
7
8
VEE
Figure 9. Maximum Off Channel Leakage Current,
Any One Channel, Test Set−Up
Figure 10. Maximum Off Channel Leakage Current,
Common Channel, Test Set−Up
VCC
VCC
VCC
16
A
VEE
fin
COMMON O/I
OFF
VOS
16
0.1mF
ON
VCC
VCC
16
VEE
dB
METER
ON
N/C
RL
CL*
ANALOG I/O
VIL
6
7
8
6
7
8
VEE
VEE
Figure 11. Maximum On Channel Leakage Current,
Channel to Channel, Test Set−Up
VCC
VIS
fin
VCC
dB
METER
OFF
RL
Figure 12. Maximum On Channel Bandwidth,
Test Set−Up
VOS
16
0.1mF
*Includes all probe and jig capacitance
CL*
16
RL
COMMON O/I
ON/OFF
ANALOG I/O
RL
OFF/ON
RL
RL
6
7
8
VEE
VIL or VIH
3.0 V
GND
CHANNEL SELECT
Vin ≤ 1 MHz
tr = tf = 6 ns
6
7
8
VEE
TEST
POINT
CL*
VCC
11
CHANNEL SELECT
*Includes all probe and jig capacitance
*Includes all probe and jig capacitance
Figure 13. Off Channel Feedthrough Isolation,
Test Set−Up
Figure 14. Feedthrough Noise, Channel Select to
Common Out, Test Set−Up
http://onsemi.com
9
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
VCC
VCC
16
VCC
CHANNEL
SELECT
(VI)
ON/OFF
Vm
COMMON O/I
ANALOG I/O
OFF/ON
GND
tPLH
TEST
POINT
CL*
tPHL
ANALOG
OUT
6
7
8
50%
VI = GND to 3.0 V
Vm = 1.3 V
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 15a. Propagation Delays, Channel Select
to Analog Out
Figure 15b. Propagation Delay, Test Set−Up Channel
Select to Analog Out
Figure 15.
VCC
16
VCC
ANALOG
IN
COMMON O/I
ANALOG I/O
ON
50%
TEST
POINT
CL*
GND
tPLH
tPHL
ANALOG
OUT
6
7
8
50%
*Includes all probe and jig capacitance
Figure 16a. Propagation Delays, Analog In
to Analog Out
Figure 16b. Propagation Delay, Test Set−Up
Analog In to Analog Out
Figure 16.
tf
ENABLE
(VI)
tr
90%
VM
VM
10%
tPZL
ANALOG
OUT
1
VCC
2
GND
tPLZ
CL*
VOL
VOH
50%
Figure 17a. Propagation Delays, Enable to
Analog Out
TEST
POINT
ON/OFF
ENABLE
VI = GND to 3.0 V
Vm = 1.3 V
1kW
ANALOG I/O
2
tPHZ
90%
ANALOG
OUT
16
1
50%
tPZH
VCC
VCC
HIGH
IMPEDANCE
10%
POSITION 1 WHEN TESTING tPHZ AND tPZH
POSITION 2 WHEN TESTING tPLZ AND tPZL
6
7
8
HIGH
IMPEDANCE
Figure 17.
Figure 17b. Propagation Delay, Test Set−Up
Enable to Analog Out
http://onsemi.com
10
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
VCC
VIS
A
VCC
16
RL
fin
16
VOS
ON/OFF
ON
COMMON O/I
NC
ANALOG I/O
0.1mF
OFF/ON
OFF
VEE
RL
RL
CL*
RL
CL*
6
7
8
VEE
VCC
6
7
8
11
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 18. Crosstalk Between Any Two
Switches, Test Set−Up
Figure 19. Power Dissipation Capacitance,
Test Set−Up
0
VIS
VCC
0.1mF
fin
ON
CL*
-20
TO
DISTORTION
METER
-30
-40
dB
RL
FUNDAMENTAL FREQUENCY
-10
VOS
16
-50
DEVICE
-60
6
7
8
VEE
SOURCE
-70
-80
*Includes all probe and jig capacitance
-90
- 100
Figure 20.
Figure 20a. Total Harmonic Distortion, Test Set−Up
1.0
2.0
3.125
FREQUENCY (kHz)
Figure 20b. Plot, Harmonic Distortion
APPLICATIONS INFORMATION
The maximum analog voltage swings are determined by
the supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In this example,
the difference between VCC and VEE is ten volts. Therefore,
using the configuration of Figure 21, a maximum analog
signal of ten volts peak−to−peak can be controlled. Unused
analog inputs/outputs may be left floating (i.e., not
connected). However, tying unused analog inputs and
outputs to VCC or GND through a low value resistor helps
minimize crosstalk and feed−through noise that may be
picked up by an unused switch.
Although used here, balanced supplies are not a
requirement. The only constraints on the power supplies are
that:
VCC − GND = 2 to 6 V
VEE − GND = 0 to −6 V
VCC − VEE = 2 to 12 V
and VEE ≤ GND
When voltage transients above VCC and/or below VEE are
anticipated on the analog channels, external Germanium or
Schottky diodes (Dx) are recommended as shown in
Figure 22. These diodes should be able to absorb the
maximum anticipated current surges during clipping.
http://onsemi.com
11
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
VCC
+5V
16
+5V
ANALOG
SIGNAL
-5V
ON
6
7
8
Dx
+5V
ANALOG
SIGNAL
VCC
16
Dx
Dx
VEE
VEE
7
8
-5V
VEE
Figure 21. Application Example
Figure 22. External Germanium or
Schottky Clipping Diodes
+5V
+5V
16
+5V
ANALOG
SIGNAL
VEE
ON/OFF
HC405x
6
7
8
VEE
Dx
ON/OFF
-5V
TO EXTERNAL CMOS
CIRCUITRY 0 to 5V
DIGITAL SIGNALS
11
10
9
VCC
ANALOG
SIGNAL
+5V
*
R
R
11
10
9
+5V
+5V
VEE
VEE
16
ANALOG
SIGNAL
ON/OFF
+5V
ANALOG
SIGNAL
VEE
HCT405x
R
+5V
6
7
8
LSTTL/NMOS
CIRCUITRY
11
10
9
LSTTL/NMOS
CIRCUITRY
VEE
* 2K ≤ R ≤ 10K
a. Using Pull−Up Resistors with a HC Device
b. Using HCT Interface
Figure 23. Interfacing LSTTL/NMOS to CMOS Inputs
A
11
13
LEVEL
SHIFTER
14
B
10
15
LEVEL
SHIFTER
12
C
9
1
LEVEL
SHIFTER
5
ENABLE
6
2
LEVEL
SHIFTER
4
3
Figure 24. Function Diagram, HCT4051A
http://onsemi.com
12
X0
X1
X2
X3
X4
X5
X6
X7
X
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
A
10
12
LEVEL
SHIFTER
14
B
9
15
LEVEL
SHIFTER
11
13
ENABLE
6
1
LEVEL
SHIFTER
5
2
4
3
X0
X1
X2
X3
X
Y0
Y1
Y2
Y3
Y
Figure 26. Function Diagram, HCT4052A
A
11
13
LEVEL
SHIFTER
12
14
B
10
1
LEVEL
SHIFTER
2
15
C
9
3
LEVEL
SHIFTER
5
4
ENABLE
6
LEVEL
SHIFTER
Figure 25. Function Diagram, HCT4053A
http://onsemi.com
13
X1
X0
X
Y1
Y0
Y
Z1
Z0
Z
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
ORDERING INFORMATION
Package
Shipping†
MC74HCT4051ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74HCT4051ADR2G
SOIC−16
(Pb−Free)
2500 / Tape & Reel
MC74HCT4051ADTG
TSSOP−16*
96 Units / Rail
MC74HCT4051ADTR2G
TSSOP−16*
2500 / Tape & Reel
MC74HCT4051ADWG
SOIC−16 WIDE
(Pb−Free)
48 Units / Rail
MC74HCT4051ADWR2G
SOIC−16 WIDE
(Pb−Free)
1000 / Tape & Reel
MC74HCT4052ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74HCT4052ADR2G
SOIC−16
(Pb−Free)
2500 / Tape & Reel
MC74HCT4052ADTG
TSSOP−16*
96 Units / Rail
MC74HCT4052ADTR2G
TSSOP−16*
2500 / Tape & Reel
MC74HCT4052ADWG
SOIC−16 WIDE
(Pb−Free)
48 Units / Rail
MC74HCT4052ADWR2G
SOIC−16 WIDE
(Pb−Free)
1000 / Tape & Reel
MC74HCT4053ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74HCT4053ADR2G
SOIC−16
(Pb−Free)
2500 / Tape & Reel
TSSOP−16*
96 Units / Rail
Device
MC74HCT4053ADTG
MC74HCT4053ADTR2G
TSSOP−16*
2500 / Tape & Reel
MC74HCT4053ADWG
SOIC−16 WIDE
(Pb−Free)
48 Units / Rail
MC74HCT4053ADWR2G
SOIC−16 WIDE
(Pb−Free)
1000 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
14
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
PACKAGE DIMENSIONS
SOIC−16 WIDE
DW SUFFIX
CASE 751G−03
ISSUE C
A
D
9
h X 45 _
E
0.25
1
16X
M
14X
e
T A
S
B
S
L
A
0.25
B
B
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INLCUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 TOTAL IN
EXCESS OF THE B DIMENSION AT MAXIMUM
MATERIAL CONDITION.
MILLIMETERS
DIM MIN
MAX
A
2.35
2.65
A1 0.10
0.25
B
0.35
0.49
C
0.23
0.32
D 10.15 10.45
E
7.40
7.60
e
1.27 BSC
H 10.05 10.55
h
0.25
0.75
L
0.50
0.90
q
0_
7_
8
A1
H
8X
M
B
M
16
q
SEATING
PLANE
T
C
http://onsemi.com
15
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
PACKAGE DIMENSIONS
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE K
−A−
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
9
−B−
1
P
8 PL
0.25 (0.010)
8
B
M
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
SOLDERING FOOTPRINT*
8X
6.40
16X
1
1.12
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
16
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
PACKAGE DIMENSIONS
TSSOP−16
DT SUFFIX
CASE 948F−01
ISSUE B
16X K REF
0.10 (0.004)
0.15 (0.006) T U
T U
M
S
V
S
K
S
ÇÇÇ
ÉÉ
ÇÇÇ
ÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
N
8
1
0.25 (0.010)
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
17
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC74HCT4051A, MC74HCT4052A, MC74HCT4053A
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
18
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74HCT4051A/D