ONSEMI 2N4401RLRA

2N4401
General Purpose
Transistors
NPN Silicon
http://onsemi.com
Features
• Pb−Free Packages are Available*
COLLECTOR
3
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector − Emitter Voltage
VCEO
40
Vdc
Collector − Base Voltage
VCBO
60
Vdc
Emitter − Base Voltage
VEBO
6.0
Vdc
Collector Current − Continuous
IC
600
mAdc
Total Device Dissipation
@ TA = 25°C
Derate above 25°C
PD
625
5.0
mW
mW/°C
Total Device Dissipation
@ TC = 25°C
Derate above 25°C
PD
1.5
12
W
mW/°C
TJ, Tstg
−55 to
+150
°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction−to−Ambient
RqJA
200
°C/W
Thermal Resistance, Junction−to−Case
RqJC
83.3
°C/W
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
2
BASE
1
EMITTER
TO−92
CASE 29
STYLE 1
1
12
3
STRAIGHT LEAD
BULK PACK
2
3
BENT LEAD
TAPE & REEL
AMMO PACK
MARKING DIAGRAM
2N
4401
AYWW G
G
2N4401 = Device Code
A
= Assembly Location
Y
= Year
WW
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques Reference
Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2010
February, 2010 − Rev. 4
1
Publication Order Number:
2N4401/D
2N4401
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector−Emitter Breakdown Voltage (Note 1)
(IC = 1.0 mAdc, IB = 0)
V(BR)CEO
40
−
Vdc
Collector−Base Breakdown Voltage
(IC = 0.1 mAdc, IE = 0)
V(BR)CBO
60
−
Vdc
(IE = 0.1 mAdc, IC = 0)
Emitter−Base Breakdown Voltage
V(BR)EBO
6.0
−
Vdc
Base Cutoff Current
(VCE = 35 Vdc, VEB = 0.4 Vdc)
IBEV
−
0.1
mAdc
Collector Cutoff Current
(VCE = 35 Vdc, VEB = 0.4 Vdc)
ICEX
−
0.1
mAdc
20
40
80
100
40
−
−
−
300
−
ON CHARACTERISTICS (Note 1)
DC Current Gain
(IC = 0.1 mAdc, VCE = 1.0 Vdc)
(IC = 1.0 mAdc, VCE = 1.0 Vdc)
(IC = 10 mAdc, VCE = 1.0 Vdc)
(IC = 150 mAdc, VCE = 1.0 Vdc)
(IC = 500 mAdc, VCE = 2.0 Vdc)
hFE
−
Collector−Emitter Saturation Voltage
(IC = 150 mAdc, IB = 15 mAdc)
(IC = 500 mAdc, IB = 50 mAdc)
VCE(sat)
−
−
0.4
0.75
Vdc
Base−Emitter Saturation Voltage
(IC = 150 mAdc, IB = 15 mAdc)
(IC = 500 mAdc, IB = 50 mAdc)
VBE(sat)
0.75
−
0.95
1.2
Vdc
SMALL−SIGNAL CHARACTERISTICS
Current−Gain − Bandwidth Product
(IC = 20 mAdc, VCE = 10 Vdc, f = 100 MHz)
fT
250
−
MHz
Collector−Base Capacitance
(VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz)
Ccb
−
6.5
pF
Emitter−Base Capacitance
(VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz)
Ceb
−
30
pF
Input Impedance
(IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
hie
1.0
15
kW
Voltage Feedback Ratio
(IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
hre
0.1
8.0
X 10−4
Small−Signal Current Gain
(IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
hfe
40
500
−
Output Admittance
(IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
hoe
1.0
30
mmhos
(VCC = 30 Vdc, VBE = 2.0 Vdc,
IC = 150 mAdc, IB1 = 15 mAdc)
td
−
15
ns
tr
−
20
ns
(VCC = 30 Vdc, IC = 150 mAdc,
IB1 = IB2 = 15 mAdc)
ts
−
225
ns
tf
−
30
ns
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Storage Time
Fall Time
1. Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2.0%.
ORDERING INFORMATION
Package
Shipping†
TO−92
5000 Units / Bulk
TO−92
(Pb−Free)
5000 Units / Bulk
TO−92
2000 / Tape & Reel
2N4401RLRAG
TO−92
(Pb−Free)
2000 / Tape & Reel
2N4401RLRMG
TO−92
(Pb−Free)
2000 / Tape & Ammo Box
TO−92
2000 / Tape & Ammo Box
TO−92
(Pb−Free)
2000 / Tape & Ammo Box
Device
2N4401
2N4401G
2N4401RLRA
2N4401RLRP
2N4401RLRPG
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
2
2N4401
SWITCHING TIME EQUIVALENT TEST CIRCUITS
+30 V
+30 V
1.0 to 100 ms,
DUTY CYCLE ≈ 2.0%
+16 V
0
-2.0 V
200 W
1.0 to 100 ms,
DUTY CYCLE ≈ 2.0%
+16 V
200 W
0
1.0 kW
< 2.0 ns
1.0 kW
-14 V
CS* < 10 pF
CS* < 10 pF
< 20 ns
-4.0 V
Scope rise time < 4.0 ns
*Total shunt capacitance of test jig connectors, and oscilloscope
Figure 1. Turn−On Time
Figure 2. Turn−Off Time
TRANSIENT CHARACTERISTICS
25°C
100°C
30
10
7.0
5.0
10
7.0
5.0
QT
2.0
1.0
0.7
0.5
0.3
0.2
Ccb
3.0
2.0
0.1
VCC = 30 V
IC/IB = 10
3.0
Cobo
Q, CHARGE (nC)
CAPACITANCE (pF)
20
QA
0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
10
REVERSE VOLTAGE (VOLTS)
20 30
50
10
20
30
50 70 100
200
IC, COLLECTOR CURRENT (mA)
Figure 3. Capacitances
500
Figure 4. Charge Data
100
100
IC/IB = 10
70
VCC = 30 V
IC/IB = 10
70
tr
50
50
tr @ VCC = 30 V
tr @ VCC = 10 V
td @ VEB = 2.0 V
td @ VEB = 0
30
20
t, TIME (ns)
t, TIME (ns)
300
30
tf
20
10
10
7.0
7.0
5.0
5.0
10
20
30
50
70
100
200
300
10
500
20
30
50
70
100
200
IC, COLLECTOR CURRENT (mA)
IC, COLLECTOR CURRENT (mA)
Figure 5. Turn−On Time
Figure 6. Rise and Fall Times
http://onsemi.com
3
300
500
2N4401
300
100
ts′ = ts - 1/8 tf
IB1 = IB2
IC/IB = 10 to 20
VCC = 30 V
IB1 = IB2
70
50
t f , FALL TIME (ns)
t s′, STORAGE TIME (ns)
200
100
70
IC/IB = 20
30
20
IC/IB = 10
10
50
7.0
30
5.0
10
20
30
50
70
100
200
300
500
10
20
30
50
70
100
200
IC, COLLECTOR CURRENT (mA)
IC, COLLECTOR CURRENT (mA)
Figure 7. Storage Time
Figure 8. Fall Time
300
500
SMALL−SIGNAL CHARACTERISTICS
NOISE FIGURE
VCE = 10 Vdc, TA = 25°C; Bandwidth = 1.0 Hz
10
f = 1.0 kHz
RS = OPTIMUM
RS = SOURCE
RS = RESISTANCE
8.0
NF, NOISE FIGURE (dB)
NF, NOISE FIGURE (dB)
8.0
10
IC = 1.0 mA, RS = 150 W
IC = 500 mA, RS = 200 W
IC = 100 mA, RS = 2.0 kW
IC = 50 mA, RS = 4.0 kW
6.0
4.0
2.0
IC = 50 mA
IC = 100 mA
IC = 500 mA
IC = 1.0 mA
6.0
4.0
2.0
0
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0
f, FREQUENCY (kHz)
0
10
20
50
100
50
Figure 9. Frequency Effects
100 200
500 1.0k 2.0k 5.0k 10k 20k
RS, SOURCE RESISTANCE (OHMS)
50k 100k
Figure 10. Source Resistance Effects
http://onsemi.com
4
2N4401
h PARAMETERS
VCE = 10 Vdc, f = 1.0 kHz, TA = 25°C
This group of graphs illustrates the relationship between
hfe and other “h” parameters for this series of transistors. To
obtain these curves, a high−gain and a low−gain unit were
selected from the 2N4401 lines, and the same units were
used to develop the correspondingly numbered curves on
each graph.
50k
hfe , CURRENT GAIN
200
100
70
2N4401 UNIT 1
2N4401 UNIT 2
50
30
0.1
0.2
0.3
0.5 0.7 1.0
2.0
3.0
20k
10k
5.0k
2.0k
1.0k
0.1
0.2
0.3
0.5 0.7
1.0
2.0
3.0
IC, COLLECTOR CURRENT (mA)
IC, COLLECTOR CURRENT (mA)
Figure 11. Current Gain
Figure 12. Input Impedance
10
5.0 7.0 10
100
7.0
5.0
2N4401 UNIT 1
2N4401 UNIT 2
3.0
2.0
1.0
0.7
0.5
0.3
0.2
2N4401 UNIT 1
2N4401 UNIT 2
500
5.0 7.0 10
hoe , OUTPUT ADMITTANCE (m mhos)
h re , VOLTAGE FEEDBACK RATIO (X 10-4 )
20
hie , INPUT IMPEDANCE (OHMS)
300
0.1
0.2
0.3
0.5 0.7 1.0
2.0
3.0
50
20
10
5.0
2N4401 UNIT 1
2N4401 UNIT 2
2.0
1.0
5.0 7.0 10
0.1
0.2
0.3
0.5 0.7 1.0
2.0 3.0
IC, COLLECTOR CURRENT (mA)
IC, COLLECTOR CURRENT (mA)
Figure 13. Voltage Feedback Ratio
Figure 14. Output Admittance
http://onsemi.com
5
5.0 7.0 10
2N4401
STATIC CHARACTERISTICS
h FE , NORMALIZED CURRENT GAIN
3.0
VCE = 1.0 V
VCE = 10 V
2.0
TJ = 125°C
1.0
25°C
0.7
0.5
-55°C
0.3
0.2
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (mA)
30
50
70
100
200
300
500
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 15. DC Current Gain
1.0
TJ = 25°C
0.8
0.6
IC = 1.0 mA
10 mA
100 mA
500 mA
0.4
0.2
0
0.01
0.02 0.03
0.05 0.07 0.1
0.2
0.3
0.5 0.7 1.0
IB, BASE CURRENT (mA)
2.0
3.0
5.0 7.0
10
20
30
50
Figure 16. Collector Saturation Region
1.0
+0.5
TJ = 25°C
VBE(sat) @ IC/IB = 10
0.6
0
COEFFICIENT (mV/ °C)
VOLTAGE (VOLTS)
0.8
VBE @ VCE = 10 V
0.4
0.2
VCE(sat) @ IC/IB = 10
0.5
50
1.0 2.0 5.0 10 20
IC, COLLECTOR CURRENT (mA)
-0.5
-1.0
-1.5
-2.0
0
0.1 0.2
qVC for VCE(sat)
100 200
-2.5
0.1 0.2
500
Figure 17. “On” Voltages
qVB for VBE
0.5
50
1.0 2.0
5.0 10 20
IC, COLLECTOR CURRENT (mA)
100 200
Figure 18. Temperature Coefficients
http://onsemi.com
6
500
2N4401
PACKAGE DIMENSIONS
TO−92 (TO−226)
CASE 29−11
ISSUE AM
A
B
STRAIGHT LEAD
BULK PACK
R
P
L
SEATING
PLANE
K
D
X X
G
J
H
V
C
SECTION X−X
N
1
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND
BEYOND DIMENSION K MINIMUM.
DIM
A
B
C
D
G
H
J
K
L
N
P
R
V
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.021
0.045
0.055
0.095
0.105
0.015
0.020
0.500
--0.250
--0.080
0.105
--0.100
0.115
--0.135
---
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.407
0.533
1.15
1.39
2.42
2.66
0.39
0.50
12.70
--6.35
--2.04
2.66
--2.54
2.93
--3.43
---
N
A
R
BENT LEAD
TAPE & REEL
AMMO PACK
B
P
T
SEATING
PLANE
G
K
D
X X
J
V
1
C
N
SECTION X−X
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION:
MILLIMETERS.
3. CONTOUR OF PACKAGE BEYOND
DIMENSION R IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN
P AND BEYOND DIMENSION K MINIMUM.
DIM
A
B
C
D
G
J
K
N
P
R
V
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.40
0.54
2.40
2.80
0.39
0.50
12.70
--2.04
2.66
1.50
4.00
2.93
--3.43
--STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca
Sales Representative
2N4401/D