ONSEMI TLV431BLPRE

TLV431A, TLV431B
Low Voltage Precision
Adjustable Shunt Regulator
The TLV431A and B series are precision low voltage shunt
regulators that are programmable over a wide voltage range of 1.24 V
to 16 V. The TLV431A series features a guaranteed reference accuracy
of ±1.0% at 25°C and ±2.0% over the entire industrial temperature
range of −40°C to 85°C. For TLV431B series, the accuracy is even
higher, it’s ±0.5% and ±1.0% respectively. These devices exhibit a
sharp low current turn−on characteristic with a low dynamic
impedance of 0.20 W over an operating current range of 100 mA to
20 mA. This combination of features makes this series an excellent
replacement for zener diodes in numerous applications circuits that
require a precise reference voltage. When combined with an
optocoupler, the TLV431A/B can be used as an error amplifier for
controlling the feedback loop in isolated low output voltage (3.0 V to
3.3 V) switching power supplies. These devices are available in
e c o n o m i c a l T O −9 2 −3 a n d m i c r o s i z e T S O P −5 a n d
SOT−23−3 packages.
http://onsemi.com
TO−92−3−3
LP SUFFIX
CASE 29
1
2
3
4
5
Features
1
• Programmable Output Voltage Range of 1.24 V to 16 V
• Voltage Reference Tolerance "1.0% for A Series and
•
•
•
•
•
"0.5% for B Series
Sharp Low Current Turn−On Characteristic
Low Dynamic Output Impedance of 0.20 W from 100 mA to 20 mA
Wide Operating Current Range of 50 mA to 20 mA
Micro Miniature TSOP−5, SOT−23−3 and TO−92−3 Packages
Pb−Free Packages are Available
Applications
• Low Output Voltage (3.0 V to 3.3 V) Switching Power Supply
•
•
•
•
•
Error Amplifier
Adjustable Voltage or Current Linear and Switching Power Supplies
Voltage Monitoring
Current Source and Sink Circuits
Analog and Digital Circuits Requiring Precision References
Low Voltage Zener Diode Replacements
2
3
3
1
TSOP−5
SN SUFFIX
CASE 483
SOT−23−3
SN1 SUFFIX
CASE 318
2
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
DEVICE MARKING INFORMATION
AND PIN CONNECTIONS
See general marking information in the device marking
section on page 11 of this data sheet.
Cathode (K)
Reference (R)
+
−
1.24 Vref
Anode (A)
Figure 1. Representative Block Diagram
 Semiconductor Components Industries, LLC, 2005
January, 2005 − Rev. 7
1
Publication Order Number:
TLV431A/D
TLV431A, TLV431B
Cathode (K)
Reference (R)
Cathode (K)
Reference (R)
Anode (A)
Device Symbol
Anode (A)
The device contains 13 active transistors.
Figure 2. Representative Device Symbol and Schematic Diagram
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted)
Rating
Symbol
Value
Unit
VKA
18
V
Cathode Current Range, Continuous
IK
−20 to 25
mA
Reference Input Current Range, Continuous
Iref
*0.05 to 10
Cathode to Anode Voltage
Thermal Characteristics
LP Suffix Package, TO−92−3 Package
Thermal Resistance, Junction−to−Ambient
Thermal Resistance, Junction−to−Case
SN Suffix Package, TSOP−5 Package
Thermal Resistance, Junction−to−Ambient
SN1 Suffix Package, SOT−23−3 Package
Thermal Resistance, Junction−to−Ambient
mA
°C/W
RqJA
RqJC
178
83
RqJA
226
RqJA
491
Operating Junction Temperature
TJ
150
°C
Operating Ambient Temperature Range
TA
*40 to 85
°C
Storage Temperature Range
Tstg
*65 to 150
°C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
NOTE: This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL−STD−883,
Method 3015. Machine Model Method 200 V.
P
D
+
T J(max) * T A
RqJA
RECOMMENDED OPERATING CONDITIONS
Condition
Cathode to Anode Voltage
Cathode Current
http://onsemi.com
2
Symbol
Min
Max
Unit
VKA
Vref
16
V
IK
0.1
20
mA
TLV431A, TLV431B
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
TLV431A
Characteristic
Symbol
Reference Voltage (Figure 3)
(VKA = Vref, IK = 10 mA, TA = 25°C)
(TA = Tlow to Thigh, Note 1)
Vref
Reference Input Voltage Deviation Over Temperature (Figure 3)
(VKA = Vref, IK= 10 mA, TA = Tlow to Thigh, Note 1)
Typ
Max
Min
Typ
Max
1.228
1.215
1.240
−
1.252
1.265
1.234
1.228
1.240
−
1.246
1.252
−
7.2
20
−
7.2
20
−
−0.6
−1.5
−
−0.6
−1.5
−
0.15
0.3
−
0.15
0.3
−
0.04
0.08
−
0.04
0.08
−
55
80
−
55
80
−
−
0.01
0.012
0.04
0.05
−
−
0.01
0.012
0.04
0.05
−
0.25
0.4
−
0.25
0.4
DVref
Ration of Reference Input Voltage Change to Cathode Voltage
Change (Figure 4)
(VKA = Vref to 16 V, IK= 10 mA)
DV ref
DV KA
Reference Terminal Current (Figure 4)
(IK = 10 mA, R1 = 10 kW, R2 = open)
Iref
Reference Input Current Deviation Over Temperature (Figure 4)
(IK = 10 mA, R1 = 10 kW, R2 = open, Notes 1, 2)
DIref
Minimum Cathode Current for Regulation (Figure 3)
IK(min)
Off−State Cathode Current (Figure 5)
(VKA = 6.0 V, Vref = 0)
(VKA = 16 V, Vref = 0)
IK(off)
Dynamic Impedance (Figure 3)
(VKA = Vref, IK =0.1 mA to 20 mA, f ≤ 1.0 kHz, Note 3)
|ZKA|
TLV431B
Min
Unit
V
mV
mV
V
mA
mA
mA
mA
W
1. Ambient temperature range: Tlow = *40°C, Thigh = 85°C.
2. The deviation parameters DVref and DIref are defined as the difference between the maximum value and minimum value obtained over the
full operating ambient temperature range that applied.
Vref Max
DVref = Vref Max − Vref Min
DTA = T2 − T1
Vref Min
T1
Ambient Temperature
T2
The average temperature coefficient of the reference input voltage, aVref is defined as:
Ǔ
αV ref ǒ
ppm
+
°C
ǒ
(DV )
ref
V
(T + 25°C)
ref A
DT
A
106
Ǔ
aVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature, refer to Figure 8.
Example:
Example:
Example:
DVref = 7.2 mV and the slope is positive,
Vref @ 25°C = 1.241 V
DTA = 125°C
0.0072
αVref
ǒppm
Ǔ + 1.241
°C
125
10 6
+ 46 ppmń°C
3. The dynamic impedance ZKA is defined as:
Z
DVKA
+
KA
DI K
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:
ZKA′ + ZKA
ǒ1 ) R1
Ǔ
R2
http://onsemi.com
3
TLV431A, TLV431B
Input
VKA
IK
Input
Vref
Figure 3. Test Circuit
for VKA = Vref
R1
Iref
R2
Vref
V
KA
+V
ǒ
Input
VKA
IK(off)
Ǔ
1 ) R1 ) I SR1
ref
R2
ref
Figure 4. Test Circuit
for VKA u Vref
Figure 5. Test Circuit
for IK(off)
110
30
90
20
Input
IK
I K , CATHODE CURRENT (m A)
I K , CATHODE CURRENT (mA)
VKA
IK
VKA
VKA = Vref
TA = 25°C
10
0
Input
IK
VKA
70
IK(min)
VKA = Vref
TA = 25°C
50
30
10
−10
−10
−1.0
−0.5
0
0.5
1.0
1.5
VKA, CATHODE VOLTAGE (V)
−30
2.0
0
Figure 6. Cathode Current vs. Cathode Voltage
Vref(max)
Vref(typ)
1.24
1.23
Input
VKA = Vref
IK = 10 mA
1.22
−40
VKA
IK
Vref(min)
TLV431A Typ.
−15
10
35
60
TA, AMBIENT TEMPERATURE (°C)
0.4
0.6
0.8
1.0
VKA, CATHODE VOLTAGE (V)
1.2
1.4
Figure 7. Cathode Current vs. Cathode Voltage
0.15
I ref , REFERENCE INPUT CURRENT (m A)
Vref , REFERENCE INPUT VOLTAGE (V)
1.25
0.2
Input
IK
10 k
0.14
Iref
IK = 10 mA
0.13
0.12
−40
85
VKA
Figure 8. Reference Input Voltage versus
Ambient Temperature
−15
10
35
60
TA, AMBIENT TEMPERATURE (°C)
Figure 9. Reference Input Current versus
Ambient Temperature
http://onsemi.com
4
85
4.0
0
IK = 10 mA
TA = 25°C
−2.0
I K(off) , CATHODE CURRENT (m A)
DVref , REFERENCE INPUT VOLTAGE CHANGE (mV)
TLV431A, TLV431B
−4.0
Input
VKA
−6.0
IK
R1
R2
−8.0
−10
Vref
0
4.0
8.0
12
VKA, CATHODE VOLTAGE (V)
Input
3.0
1.0
TA = 25°C
0
4.0
8.0
12
16
VKA, CATHODE VOLTAGE (V)
20
Figure 11. Off−State Cathode Current
versus Cathode Voltage
0.4
10
Output
Input
0.3
VKA = 16 V
Vref = 0 V
Ioff
|Za|, DYNAMIC IMPEDANCE (OHM)
Ioff , OFF−STATE CATHODE CURRENT (m A)
Figure 10. Reference Input Voltage Change
versus Cathode Voltage
VKA
0.2
0.1
0
−40
60
−15
10
35
TA, AMBIENT TEMPERATURE (°C)
IK
50
−
+
1.0
IK = 0.1 mA to 20 mA
TA = 25°C
0.1
85
1.0 k
Figure 12. Off−State Cathode Current versus
Ambient Temperature
Output
0.23
IK
−
+
0.21
0.20
0.19
−40
−15
10
35
60
TA, AMBIENT TEMPERATURE (°C)
100 k
1.0 M
f, FREQUENCY (Hz)
10 M
60
IK = 0.1 mA to 20 mA
f = 1.0 kHz
50
0.22
10 k
Figure 13. Dynamic Impedance versus
Frequency
A vol , OPEN LOOP VOLTAGE GAIN (dB)
0.24
|Za|, DYNAMIC IMPEDANCE (OHM)
VKA
2.0
0
16
Ioff
VKA = 16 V
Vref = 0 V
50
IK
9 mF
40
−
+
30
IK = 10 mA
TA = 25°C
20
10
100
Figure 14. Dynamic Impedance versus
Ambient Temperature
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
Figure 15. Open−Loop Voltage Gain
versus Frequency
http://onsemi.com
5
230
8.25 k
0
85
Output
15 k
1.0 M
TLV431A, TLV431B
350
Pulse
Generator
f = 100 kHz
Output
1.5
VKA = Vref
IK = 10 mA
TA = 25°C
(VOLTS)
NOISE VOLTAGE (nV/ √ Hz)
IK
Iref
325
1.8 k W Output
Input
Input
300
1.0
50
Output
TA = 25°C
0.5
Input
0
2.0
275
0
250
10
100
100 k
1.0 k
10 k
f, FREQUENCY (Hz)
0
1.0
Figure 16. Spectral Noise Density
I K, CATHODE CURRENT (mA)
4.0 5.0 6.0
t, TIME (ms)
7.0
8.0
9.0
10.0
Figure 17. Pulse Response
TA = 25°C
A
20
IK
R1
Stable
V+
15
R2
Stable
10
Stable
D
100
pF
CL
C
B
0
10
pF
3.0
1.0 k
25
5.0
2.0
1.0
nF
0.01
mF
0.1
mF
1.0
mF
10
mF
100
mF
CL, LOAD CAPACITANCE
Figure 18. Stability Boundary Conditions
Unstable
Regions
VKA
(V)
R1
(kW)
R2
(kW)
A, C
Vref
0
∞
B, D
5.0
30.4
10
Figure 19. Test Circuit for Figure 18
Stability
Figures 18 and 19 show the stability boundaries and
circuit configurations for the worst case conditions with the
load capacitance mounted as close as possible to the device.
The required load capacitance for stable operation can vary
depending on the operating temperature and capacitor
equivalent series resistance (ESR). Ceramic or tantalum
surface mount capacitors are recommended for both
temperature and ESR. The application circuit stability
should be verified over the anticipated operating current and
temperature ranges.
http://onsemi.com
6
TLV431A, TLV431B
TYPICAL APPLICATIONS
Vin
Vin
Vout
Vout
R1
R1
R2
ǒ
Vin
R2
Ǔ
ǒ
Ǔ
Vout + 1 ) R1 V
R2 ref
Vout + 1 ) R1 V
R2 ref
Figure 20. Shunt Regulator
Figure 21. High Current Shunt Regulator
Vin
MC7805
Out
In
Common
Vout
Vout
R1
R1
R2
R2
ǒ
ǒ
Ǔ
Ǔ
Vout + 1 ) R1 V
R2 ref
Vout + 1 ) R1 V
R2 ref
Vout(min) + Vref ) V be [ 2.0 V
Vout(min) + Vref ) 5.0 V
Figure 22. Output Control for a Three Terminal
Fixed Regulator
Figure 23. Series Pass Regulator
http://onsemi.com
7
TLV431A, TLV431B
Isink
Vin
I
Iout
RCL
Vin
V
+ ref
R
S
Vout
RS
V
I out + ref
R
CL
Figure 24. Constant Current Source
Vin
Figure 25. Constant Current Sink
Vin
Vout
ǒ
sink
Vout
R1
R1
R2
R2
Ǔ
ǒ
Ǔ
V
+ 1 ) R1 V
out(trip)
R2 ref
V
+ 1 ) R1 V
out(trip)
R2 ref
Figure 26. TRIAC Crowbar
Figure 27. SCR Crowbar
http://onsemi.com
8
TLV431A, TLV431B
V+
Vin
R3
R1
LED
Vout
Vin
R2
R4
L.E.D. indicator is ‘ON’ when Vin is
between the upper and lower limits,
ǒ
Ǔ
Upper limit + ǒ1 ) R3Ǔ V
R4 ref
Lower limit + 1 ) R1 V
R2 ref
Figure 28. Voltage Monitor
5k
1%
50 k
1%
10 kW
V
tVref
V+
uVref
≈ 0.74 V
38 V
2.0 mA
T1 = 330 W to 8.0 W
330
T1
1.0 M
1%
500 k
1%
Vout
Figure 29. Single−Supply Comparator with
Temperature−Compensated Threshold
25 V
1N5305
Vin
10 k
Calibrate
8.0 W
+
360 k
470 mF
100 kW
V
1.0 kW
V
1.0 mF
1.0 MW
V
25 V
−
Range
Volume
47 k
*
0.05 mF
* Thermalloy
* THM 6024
* Heatsink on
* LP Package.
Vout
+
56 k
10 k
25 k
Tone
−5.0 V
Rx
R x + V outD W Range
V
Figure 30. Linear Ohmmeter
Figure 31. Simple 400 mW Phono Amplifier
http://onsemi.com
9
TLV431A, TLV431B
AC Input
DC Output
3.3 V
Gate Drive
100
VCC
Controller
R1
3.0 k
VFB
C1
0.1 mF
Current
Sense
R2
1.8 k
GND
Figure 32. Isolated Output Line Powered Switching Power Supply
The above circuit shows the TLV431A/B as a compensated amplifier controlling the feedback loop of an isolated output line
powered switching regulator. The output voltage is programmed to 3.3 V by the resistors values selected for R1 and R2. The
minimum output voltage that can be programmed with this circuit is 2.64 V, and is limited by the sum of the reference voltage
(1.24 V) and the forward drop of the optocoupler light emitting diode (1.4 V). Capacitor C1 provides loop compensation.
http://onsemi.com
10
TLV431A, TLV431B
PIN CONNECTIONS AND DEVICE MARKING
TO−92
TSOP−5
1
2 3
1
NC
2
Cathode
3
5
Anode
4
Reference
Reference 1
XXX
1. Reference
2. Anode
3. Cathode
NC
XXXYW
TLV43
1XXX
ALYWW
SOT−23−3
Anode
Cathode 2
(Top View)
XXX
A
L
Y
WW, W
3
(Top View)
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
ORDERING INFORMATION
Device Code
Package
Shipping †
TLV431ALP
ALP
TO−92−3
6000/Box
TLV431ALPG
ALP
TO−92−3
(Pb−Free)
6000/Box
TLV431ALPRA
ALP
TO−92−3
2000/Tape & Reel
TLV431ALPRAG
ALP
TO−92−3
(Pb−Free)
2000/Tape & Reel
TLV431ALPRE
ALP
TO−92−3
2000/Tape & Reel
TLV431ALPREG
ALP
TO−92−3
(Pb−Free)
2000/Tape & Reel
TLV431ALPRM
ALP
TO−92−3
2000/Ammo Pack
TLV431ALPRP
ALP
TO−92−3
2000/Ammo Pack
TLV431ALPRPG
ALP
TO−92−3
(Pb−Free)
2000/Ammo Pack
TLV431ASNT1
RAA
TSOP−5
3000/Tape & Reel
TLV431ASNT1G
RAA
TSOP−5
(Pb−Free)
3000/Tape & Reel
TLV431ASN1T1
RAF
SOT−23−3
3000/Tape & Reel
TLV431ASN1T1G
RAF
SOT−23−3
(Pb−Free)
3000/Tape & Reel
TLV431BLP
BLP
TO−92−3
6000/Box
TLV431BLPRA
BLP
TO−92−3
2000/Tape & Reel
TLV431BLPRAG
BLP
TO−92−3
(Pb−Free)
2000/Tape & Reel
TLV431BLPRE
BLP
TO−92−3
2000/Tape & Reel
TLV431BLPRM
BLP
TO−92−3
2000/Ammo Pack
TLV431BLPRP
BLP
TO−92−3
2000/Ammo Pack
TLV431BSNT1
RAH
TSOP−5
3000/Tape & Reel
TLV431BSNT1G
RAH
TSOP−5
(Pb−Free)
3000/Tape & Reel
TLV431BSN1T1
RAG
SOT−23−3
3000/Tape & Reel
TLV431BSN1T1G
RAG
SOT−23−3
(Pb−Free)
3000/Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
11
TLV431A, TLV431B
PACKAGE DIMENSIONS
TO−92−3
LP SUFFIX
CASE 29−11
ISSUE AL
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND
BEYOND DIMENSION K MINIMUM.
B
R
P
L
SEATING
PLANE
K
DIM
A
B
C
D
G
H
J
K
L
N
P
R
V
D
X X
G
J
H
V
C
1
N
SECTION X−X
N
http://onsemi.com
12
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.021
0.045
0.055
0.095
0.105
0.015
0.020
0.500
−−−
0.250
−−−
0.080
0.105
−−− 0.100
0.115
−−−
0.135
−−−
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.407
0.533
1.15
1.39
2.42
2.66
0.39
0.50
12.70
−−−
6.35
−−−
2.04
2.66
−−−
2.54
2.93
−−−
3.43
−−−
TLV431A, TLV431B
PACKAGE DIMENSIONS
TSOP−5
SN SUFFIX
CASE 483−02
ISSUE C
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. MAXIMUM LEAD THICKNESS INCLUDES
LEAD FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS
OF BASE MATERIAL.
4. A AND B DIMENSIONS DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
D
S
5
4
1
2
L
A
3
B
J
C
0.05 (0.002)
MILLIMETERS
INCHES
DIM MIN
MAX
MIN
MAX
A
2.90
3.10 0.1142 0.1220
B
1.30
1.70 0.0512 0.0669
C
0.90
1.10 0.0354 0.0433
D
0.25
0.50 0.0098 0.0197
G
0.85
1.05 0.0335 0.0413
H 0.013 0.100 0.0005 0.0040
J
0.10
0.26 0.0040 0.0102
K
0.20
0.60 0.0079 0.0236
L
1.25
1.55 0.0493 0.0610
M
0_
10 _
0_
10 _
S
2.50
3.00 0.0985 0.1181
G
H
M
K
SOLDERING FOOTPRINT*
0.95
0.037
1.9
0.074
2.4
0.094
1.0
0.039
0.7
0.028
TSOP−5
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
13
TLV431A, TLV431B
PACKAGE DIMENSIONS
SOT−23−3
SN1 SUFFIX
CASE 318−09
ISSUE AK
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD
THICKNESS IS THE MINIMUM THICKNESS OF
BASE MATERIAL.
4. 318−01 THRU −07 AND −09 OBSOLETE, NEW
STANDARD 318−08.
A
L
3
1
V
B S
2
DIM
A
B
C
D
G
H
J
K
L
S
V
G
C
D
H
J
K
INCHES
MIN
MAX
0.1102
0.1197
0.0472
0.0551
0.0350
0.0440
0.0150
0.0200
0.0701
0.0807
0.0005
0.0040
0.0034
0.0070
0.0140
0.0285
0.0350
0.0401
0.0830
0.1039
0.0177
0.0236
MILLIMETERS
MIN
MAX
2.80
3.04
1.20
1.40
0.89
1.11
0.37
0.50
1.78
2.04
0.013
0.100
0.085
0.177
0.35
0.69
0.89
1.02
2.10
2.64
0.45
0.60
SOLDERING FOOTPRINT*
0.95
0.037
0.95
0.037
2.0
0.079
0.9
0.035
0.8
0.031
SCALE 10:1
mm Ǔ
ǒinches
SOT−23−3
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
14
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
TLV431A/D