TLV431A, TLV431B Low Voltage Precision Adjustable Shunt Regulator The TLV431A and B series are precision low voltage shunt regulators that are programmable over a wide voltage range of 1.24 V to 16 V. The TLV431A series features a guaranteed reference accuracy of ±1.0% at 25°C and ±2.0% over the entire industrial temperature range of −40°C to 85°C. For TLV431B series, the accuracy is even higher, it’s ±0.5% and ±1.0% respectively. These devices exhibit a sharp low current turn−on characteristic with a low dynamic impedance of 0.20 W over an operating current range of 100 mA to 20 mA. This combination of features makes this series an excellent replacement for zener diodes in numerous applications circuits that require a precise reference voltage. When combined with an optocoupler, the TLV431A/B can be used as an error amplifier for controlling the feedback loop in isolated low output voltage (3.0 V to 3.3 V) switching power supplies. These devices are available in e c o n o m i c a l T O −9 2 −3 a n d m i c r o s i z e T S O P −5 a n d SOT−23−3 packages. http://onsemi.com TO−92−3−3 LP SUFFIX CASE 29 1 2 3 4 5 Features 1 • Programmable Output Voltage Range of 1.24 V to 16 V • Voltage Reference Tolerance "1.0% for A Series and • • • • • "0.5% for B Series Sharp Low Current Turn−On Characteristic Low Dynamic Output Impedance of 0.20 W from 100 mA to 20 mA Wide Operating Current Range of 50 mA to 20 mA Micro Miniature TSOP−5, SOT−23−3 and TO−92−3 Packages Pb−Free Packages are Available Applications • Low Output Voltage (3.0 V to 3.3 V) Switching Power Supply • • • • • Error Amplifier Adjustable Voltage or Current Linear and Switching Power Supplies Voltage Monitoring Current Source and Sink Circuits Analog and Digital Circuits Requiring Precision References Low Voltage Zener Diode Replacements 2 3 3 1 TSOP−5 SN SUFFIX CASE 483 SOT−23−3 SN1 SUFFIX CASE 318 2 ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. DEVICE MARKING INFORMATION AND PIN CONNECTIONS See general marking information in the device marking section on page 11 of this data sheet. Cathode (K) Reference (R) + − 1.24 Vref Anode (A) Figure 1. Representative Block Diagram Semiconductor Components Industries, LLC, 2005 January, 2005 − Rev. 7 1 Publication Order Number: TLV431A/D TLV431A, TLV431B Cathode (K) Reference (R) Cathode (K) Reference (R) Anode (A) Device Symbol Anode (A) The device contains 13 active transistors. Figure 2. Representative Device Symbol and Schematic Diagram MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted) Rating Symbol Value Unit VKA 18 V Cathode Current Range, Continuous IK −20 to 25 mA Reference Input Current Range, Continuous Iref *0.05 to 10 Cathode to Anode Voltage Thermal Characteristics LP Suffix Package, TO−92−3 Package Thermal Resistance, Junction−to−Ambient Thermal Resistance, Junction−to−Case SN Suffix Package, TSOP−5 Package Thermal Resistance, Junction−to−Ambient SN1 Suffix Package, SOT−23−3 Package Thermal Resistance, Junction−to−Ambient mA °C/W RqJA RqJC 178 83 RqJA 226 RqJA 491 Operating Junction Temperature TJ 150 °C Operating Ambient Temperature Range TA *40 to 85 °C Storage Temperature Range Tstg *65 to 150 °C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. NOTE: This device series contains ESD protection and exceeds the following tests: Human Body Model 2000 V per MIL−STD−883, Method 3015. Machine Model Method 200 V. P D + T J(max) * T A RqJA RECOMMENDED OPERATING CONDITIONS Condition Cathode to Anode Voltage Cathode Current http://onsemi.com 2 Symbol Min Max Unit VKA Vref 16 V IK 0.1 20 mA TLV431A, TLV431B ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) TLV431A Characteristic Symbol Reference Voltage (Figure 3) (VKA = Vref, IK = 10 mA, TA = 25°C) (TA = Tlow to Thigh, Note 1) Vref Reference Input Voltage Deviation Over Temperature (Figure 3) (VKA = Vref, IK= 10 mA, TA = Tlow to Thigh, Note 1) Typ Max Min Typ Max 1.228 1.215 1.240 − 1.252 1.265 1.234 1.228 1.240 − 1.246 1.252 − 7.2 20 − 7.2 20 − −0.6 −1.5 − −0.6 −1.5 − 0.15 0.3 − 0.15 0.3 − 0.04 0.08 − 0.04 0.08 − 55 80 − 55 80 − − 0.01 0.012 0.04 0.05 − − 0.01 0.012 0.04 0.05 − 0.25 0.4 − 0.25 0.4 DVref Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4) (VKA = Vref to 16 V, IK= 10 mA) DV ref DV KA Reference Terminal Current (Figure 4) (IK = 10 mA, R1 = 10 kW, R2 = open) Iref Reference Input Current Deviation Over Temperature (Figure 4) (IK = 10 mA, R1 = 10 kW, R2 = open, Notes 1, 2) DIref Minimum Cathode Current for Regulation (Figure 3) IK(min) Off−State Cathode Current (Figure 5) (VKA = 6.0 V, Vref = 0) (VKA = 16 V, Vref = 0) IK(off) Dynamic Impedance (Figure 3) (VKA = Vref, IK =0.1 mA to 20 mA, f ≤ 1.0 kHz, Note 3) |ZKA| TLV431B Min Unit V mV mV V mA mA mA mA W 1. Ambient temperature range: Tlow = *40°C, Thigh = 85°C. 2. The deviation parameters DVref and DIref are defined as the difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied. Vref Max DVref = Vref Max − Vref Min DTA = T2 − T1 Vref Min T1 Ambient Temperature T2 The average temperature coefficient of the reference input voltage, aVref is defined as: Ǔ αV ref ǒ ppm + °C ǒ (DV ) ref V (T + 25°C) ref A DT A 106 Ǔ aVref can be positive or negative depending on whether Vref Min or Vref Max occurs at the lower ambient temperature, refer to Figure 8. Example: Example: Example: DVref = 7.2 mV and the slope is positive, Vref @ 25°C = 1.241 V DTA = 125°C 0.0072 αVref ǒppm Ǔ + 1.241 °C 125 10 6 + 46 ppmń°C 3. The dynamic impedance ZKA is defined as: Z DVKA + KA DI K When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by: ZKA′ + ZKA ǒ1 ) R1 Ǔ R2 http://onsemi.com 3 TLV431A, TLV431B Input VKA IK Input Vref Figure 3. Test Circuit for VKA = Vref R1 Iref R2 Vref V KA +V ǒ Input VKA IK(off) Ǔ 1 ) R1 ) I SR1 ref R2 ref Figure 4. Test Circuit for VKA u Vref Figure 5. Test Circuit for IK(off) 110 30 90 20 Input IK I K , CATHODE CURRENT (m A) I K , CATHODE CURRENT (mA) VKA IK VKA VKA = Vref TA = 25°C 10 0 Input IK VKA 70 IK(min) VKA = Vref TA = 25°C 50 30 10 −10 −10 −1.0 −0.5 0 0.5 1.0 1.5 VKA, CATHODE VOLTAGE (V) −30 2.0 0 Figure 6. Cathode Current vs. Cathode Voltage Vref(max) Vref(typ) 1.24 1.23 Input VKA = Vref IK = 10 mA 1.22 −40 VKA IK Vref(min) TLV431A Typ. −15 10 35 60 TA, AMBIENT TEMPERATURE (°C) 0.4 0.6 0.8 1.0 VKA, CATHODE VOLTAGE (V) 1.2 1.4 Figure 7. Cathode Current vs. Cathode Voltage 0.15 I ref , REFERENCE INPUT CURRENT (m A) Vref , REFERENCE INPUT VOLTAGE (V) 1.25 0.2 Input IK 10 k 0.14 Iref IK = 10 mA 0.13 0.12 −40 85 VKA Figure 8. Reference Input Voltage versus Ambient Temperature −15 10 35 60 TA, AMBIENT TEMPERATURE (°C) Figure 9. Reference Input Current versus Ambient Temperature http://onsemi.com 4 85 4.0 0 IK = 10 mA TA = 25°C −2.0 I K(off) , CATHODE CURRENT (m A) DVref , REFERENCE INPUT VOLTAGE CHANGE (mV) TLV431A, TLV431B −4.0 Input VKA −6.0 IK R1 R2 −8.0 −10 Vref 0 4.0 8.0 12 VKA, CATHODE VOLTAGE (V) Input 3.0 1.0 TA = 25°C 0 4.0 8.0 12 16 VKA, CATHODE VOLTAGE (V) 20 Figure 11. Off−State Cathode Current versus Cathode Voltage 0.4 10 Output Input 0.3 VKA = 16 V Vref = 0 V Ioff |Za|, DYNAMIC IMPEDANCE (OHM) Ioff , OFF−STATE CATHODE CURRENT (m A) Figure 10. Reference Input Voltage Change versus Cathode Voltage VKA 0.2 0.1 0 −40 60 −15 10 35 TA, AMBIENT TEMPERATURE (°C) IK 50 − + 1.0 IK = 0.1 mA to 20 mA TA = 25°C 0.1 85 1.0 k Figure 12. Off−State Cathode Current versus Ambient Temperature Output 0.23 IK − + 0.21 0.20 0.19 −40 −15 10 35 60 TA, AMBIENT TEMPERATURE (°C) 100 k 1.0 M f, FREQUENCY (Hz) 10 M 60 IK = 0.1 mA to 20 mA f = 1.0 kHz 50 0.22 10 k Figure 13. Dynamic Impedance versus Frequency A vol , OPEN LOOP VOLTAGE GAIN (dB) 0.24 |Za|, DYNAMIC IMPEDANCE (OHM) VKA 2.0 0 16 Ioff VKA = 16 V Vref = 0 V 50 IK 9 mF 40 − + 30 IK = 10 mA TA = 25°C 20 10 100 Figure 14. Dynamic Impedance versus Ambient Temperature 1.0 k 10 k 100 k f, FREQUENCY (Hz) Figure 15. Open−Loop Voltage Gain versus Frequency http://onsemi.com 5 230 8.25 k 0 85 Output 15 k 1.0 M TLV431A, TLV431B 350 Pulse Generator f = 100 kHz Output 1.5 VKA = Vref IK = 10 mA TA = 25°C (VOLTS) NOISE VOLTAGE (nV/ √ Hz) IK Iref 325 1.8 k W Output Input Input 300 1.0 50 Output TA = 25°C 0.5 Input 0 2.0 275 0 250 10 100 100 k 1.0 k 10 k f, FREQUENCY (Hz) 0 1.0 Figure 16. Spectral Noise Density I K, CATHODE CURRENT (mA) 4.0 5.0 6.0 t, TIME (ms) 7.0 8.0 9.0 10.0 Figure 17. Pulse Response TA = 25°C A 20 IK R1 Stable V+ 15 R2 Stable 10 Stable D 100 pF CL C B 0 10 pF 3.0 1.0 k 25 5.0 2.0 1.0 nF 0.01 mF 0.1 mF 1.0 mF 10 mF 100 mF CL, LOAD CAPACITANCE Figure 18. Stability Boundary Conditions Unstable Regions VKA (V) R1 (kW) R2 (kW) A, C Vref 0 ∞ B, D 5.0 30.4 10 Figure 19. Test Circuit for Figure 18 Stability Figures 18 and 19 show the stability boundaries and circuit configurations for the worst case conditions with the load capacitance mounted as close as possible to the device. The required load capacitance for stable operation can vary depending on the operating temperature and capacitor equivalent series resistance (ESR). Ceramic or tantalum surface mount capacitors are recommended for both temperature and ESR. The application circuit stability should be verified over the anticipated operating current and temperature ranges. http://onsemi.com 6 TLV431A, TLV431B TYPICAL APPLICATIONS Vin Vin Vout Vout R1 R1 R2 ǒ Vin R2 Ǔ ǒ Ǔ Vout + 1 ) R1 V R2 ref Vout + 1 ) R1 V R2 ref Figure 20. Shunt Regulator Figure 21. High Current Shunt Regulator Vin MC7805 Out In Common Vout Vout R1 R1 R2 R2 ǒ ǒ Ǔ Ǔ Vout + 1 ) R1 V R2 ref Vout + 1 ) R1 V R2 ref Vout(min) + Vref ) V be [ 2.0 V Vout(min) + Vref ) 5.0 V Figure 22. Output Control for a Three Terminal Fixed Regulator Figure 23. Series Pass Regulator http://onsemi.com 7 TLV431A, TLV431B Isink Vin I Iout RCL Vin V + ref R S Vout RS V I out + ref R CL Figure 24. Constant Current Source Vin Figure 25. Constant Current Sink Vin Vout ǒ sink Vout R1 R1 R2 R2 Ǔ ǒ Ǔ V + 1 ) R1 V out(trip) R2 ref V + 1 ) R1 V out(trip) R2 ref Figure 26. TRIAC Crowbar Figure 27. SCR Crowbar http://onsemi.com 8 TLV431A, TLV431B V+ Vin R3 R1 LED Vout Vin R2 R4 L.E.D. indicator is ‘ON’ when Vin is between the upper and lower limits, ǒ Ǔ Upper limit + ǒ1 ) R3Ǔ V R4 ref Lower limit + 1 ) R1 V R2 ref Figure 28. Voltage Monitor 5k 1% 50 k 1% 10 kW V tVref V+ uVref ≈ 0.74 V 38 V 2.0 mA T1 = 330 W to 8.0 W 330 T1 1.0 M 1% 500 k 1% Vout Figure 29. Single−Supply Comparator with Temperature−Compensated Threshold 25 V 1N5305 Vin 10 k Calibrate 8.0 W + 360 k 470 mF 100 kW V 1.0 kW V 1.0 mF 1.0 MW V 25 V − Range Volume 47 k * 0.05 mF * Thermalloy * THM 6024 * Heatsink on * LP Package. Vout + 56 k 10 k 25 k Tone −5.0 V Rx R x + V outD W Range V Figure 30. Linear Ohmmeter Figure 31. Simple 400 mW Phono Amplifier http://onsemi.com 9 TLV431A, TLV431B AC Input DC Output 3.3 V Gate Drive 100 VCC Controller R1 3.0 k VFB C1 0.1 mF Current Sense R2 1.8 k GND Figure 32. Isolated Output Line Powered Switching Power Supply The above circuit shows the TLV431A/B as a compensated amplifier controlling the feedback loop of an isolated output line powered switching regulator. The output voltage is programmed to 3.3 V by the resistors values selected for R1 and R2. The minimum output voltage that can be programmed with this circuit is 2.64 V, and is limited by the sum of the reference voltage (1.24 V) and the forward drop of the optocoupler light emitting diode (1.4 V). Capacitor C1 provides loop compensation. http://onsemi.com 10 TLV431A, TLV431B PIN CONNECTIONS AND DEVICE MARKING TO−92 TSOP−5 1 2 3 1 NC 2 Cathode 3 5 Anode 4 Reference Reference 1 XXX 1. Reference 2. Anode 3. Cathode NC XXXYW TLV43 1XXX ALYWW SOT−23−3 Anode Cathode 2 (Top View) XXX A L Y WW, W 3 (Top View) = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week ORDERING INFORMATION Device Code Package Shipping † TLV431ALP ALP TO−92−3 6000/Box TLV431ALPG ALP TO−92−3 (Pb−Free) 6000/Box TLV431ALPRA ALP TO−92−3 2000/Tape & Reel TLV431ALPRAG ALP TO−92−3 (Pb−Free) 2000/Tape & Reel TLV431ALPRE ALP TO−92−3 2000/Tape & Reel TLV431ALPREG ALP TO−92−3 (Pb−Free) 2000/Tape & Reel TLV431ALPRM ALP TO−92−3 2000/Ammo Pack TLV431ALPRP ALP TO−92−3 2000/Ammo Pack TLV431ALPRPG ALP TO−92−3 (Pb−Free) 2000/Ammo Pack TLV431ASNT1 RAA TSOP−5 3000/Tape & Reel TLV431ASNT1G RAA TSOP−5 (Pb−Free) 3000/Tape & Reel TLV431ASN1T1 RAF SOT−23−3 3000/Tape & Reel TLV431ASN1T1G RAF SOT−23−3 (Pb−Free) 3000/Tape & Reel TLV431BLP BLP TO−92−3 6000/Box TLV431BLPRA BLP TO−92−3 2000/Tape & Reel TLV431BLPRAG BLP TO−92−3 (Pb−Free) 2000/Tape & Reel TLV431BLPRE BLP TO−92−3 2000/Tape & Reel TLV431BLPRM BLP TO−92−3 2000/Ammo Pack TLV431BLPRP BLP TO−92−3 2000/Ammo Pack TLV431BSNT1 RAH TSOP−5 3000/Tape & Reel TLV431BSNT1G RAH TSOP−5 (Pb−Free) 3000/Tape & Reel TLV431BSN1T1 RAG SOT−23−3 3000/Tape & Reel TLV431BSN1T1G RAG SOT−23−3 (Pb−Free) 3000/Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 11 TLV431A, TLV431B PACKAGE DIMENSIONS TO−92−3 LP SUFFIX CASE 29−11 ISSUE AL A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. B R P L SEATING PLANE K DIM A B C D G H J K L N P R V D X X G J H V C 1 N SECTION X−X N http://onsemi.com 12 INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.021 0.045 0.055 0.095 0.105 0.015 0.020 0.500 −−− 0.250 −−− 0.080 0.105 −−− 0.100 0.115 −−− 0.135 −−− MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.407 0.533 1.15 1.39 2.42 2.66 0.39 0.50 12.70 −−− 6.35 −−− 2.04 2.66 −−− 2.54 2.93 −−− 3.43 −−− TLV431A, TLV431B PACKAGE DIMENSIONS TSOP−5 SN SUFFIX CASE 483−02 ISSUE C NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. A AND B DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. D S 5 4 1 2 L A 3 B J C 0.05 (0.002) MILLIMETERS INCHES DIM MIN MAX MIN MAX A 2.90 3.10 0.1142 0.1220 B 1.30 1.70 0.0512 0.0669 C 0.90 1.10 0.0354 0.0433 D 0.25 0.50 0.0098 0.0197 G 0.85 1.05 0.0335 0.0413 H 0.013 0.100 0.0005 0.0040 J 0.10 0.26 0.0040 0.0102 K 0.20 0.60 0.0079 0.0236 L 1.25 1.55 0.0493 0.0610 M 0_ 10 _ 0_ 10 _ S 2.50 3.00 0.0985 0.1181 G H M K SOLDERING FOOTPRINT* 0.95 0.037 1.9 0.074 2.4 0.094 1.0 0.039 0.7 0.028 TSOP−5 *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 13 TLV431A, TLV431B PACKAGE DIMENSIONS SOT−23−3 SN1 SUFFIX CASE 318−09 ISSUE AK NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318−01 THRU −07 AND −09 OBSOLETE, NEW STANDARD 318−08. A L 3 1 V B S 2 DIM A B C D G H J K L S V G C D H J K INCHES MIN MAX 0.1102 0.1197 0.0472 0.0551 0.0350 0.0440 0.0150 0.0200 0.0701 0.0807 0.0005 0.0040 0.0034 0.0070 0.0140 0.0285 0.0350 0.0401 0.0830 0.1039 0.0177 0.0236 MILLIMETERS MIN MAX 2.80 3.04 1.20 1.40 0.89 1.11 0.37 0.50 1.78 2.04 0.013 0.100 0.085 0.177 0.35 0.69 0.89 1.02 2.10 2.64 0.45 0.60 SOLDERING FOOTPRINT* 0.95 0.037 0.95 0.037 2.0 0.079 0.9 0.035 0.8 0.031 SCALE 10:1 mm Ǔ ǒinches SOT−23−3 *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 14 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. TLV431A/D