ONSEMI 74VCX16373DT

74VCX16373
Low−Voltage 1.8/2.5/3.3V
16−Bit Transparent Latch
With 3.6 V−Tolerant Inputs and Outputs
(3−State, Non−Inverting)
http://onsemi.com
The 74VCX16373 is an advanced performance, non−inverting
16−bit transparent latch. It is designed for very high−speed, very
low−power operation in 1.8 V, 2.5 V or 3.3 V systems. The
VCX16373 is byte controlled, with each byte functioning identically,
but independently. Each byte has separate Output Enable and Latch
Enable inputs. These control pins can be tied together for full 16−bit
operation.
When operating at 2.5 V (or 1.8 V) the part is designed to tolerate
voltages it may encounter on either inputs or outputs when interfacing
to 3.3 V busses. It is guaranteed to be overvoltage tolerant to 3.6 V.
The 74VCX16373 contains 16 D−type latches with 3−state
3.6 V−tolerant outputs. When the Latch Enable (LEn) inputs are
HIGH, data on the Dn inputs enters the latches. In this condition, the
latches are transparent, (a latch output will change state each time its
D input changes). When LE is LOW, the latch stores the information
that was present on the D inputs a setup time preceding the
HIGH−to−LOW transition of LE. The 3−state outputs are controlled
by the Output Enable (OEn) inputs. When OE is LOW, the outputs are
enabled. When OE is HIGH, the standard outputs are in the high
impedance state, but this does not interfere with new data entering into
the latches.
Features
• Designed for Low Voltage Operation: VCC = 1.65 V − 3.6 V
• 3.6 V Tolerant Inputs and Outputs
• High Speed Operation: 3.0 ns max for 3.0 V to 3.6 V
•
•
•
•
•
•
•
3.9 ns max for 2.3 V to 2.7 V
6.8 ns max for 1.65 V to 1.95 V
Static Drive:
±24 mA Drive at 3.0 V
±18 mA Drive at 2.3 V
±6 mA Drive at 1.65 V
Supports Live Insertion and Withdrawal
IOFF Specification Guarantees High Impedance When VCC = 0 V
Near Zero Static Supply Current in All Three Logic States (20 A)
Substantially Reduces System Power Requirements
Latchup Performance Exceeds ±250 mA @ 125°C
ESD Performance: Human Body Model >2000 V;
Machine Model >200 V
All Devices in Package TSSOP are Inherently Pb−Free*
MARKING DIAGRAM
48
48
VCX16373
1
AWLYYWW
TSSOP−48
DT SUFFIX
CASE 1201
A
WL
YY
WW
1
= Assembly Location
= Wafer Lot
= Year
= Work Week
PIN NAMES
Pins
Function
OEn
LEn
D0−D15
O0−O15
Output Enable Inputs
Latch Enable Inputs
Inputs
Outputs
ORDERING INFORMATION
Package
Shipping†
74VCX16373DT
TSSOP
(Pb−Free)
39 / Rail
74VCX16373DTR
TSSOP
(Pb−Free)
2500 / Reel
Device
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
 Semiconductor Components Industries, LLC, 2004
November, 2004 − Rev. 5
1
Publication Order Number:
74VCX16373/D
74VCX16373
OE1 1
O0 2
48 LE1
47 D0
O1 3
GND 4
O2 5
46 D1
45 GND
O3 6
VCC 7
O4 8
O5 9
GND 10
O6 11
O7 12
O8 13
O9 14
GND 15
O10 16
OE1
LE1
D0
44 D2
43 D3
42 VCC
41 D4
40 D5
39 GND
D1
D2
38 D6
37 D7
36 D8
35 D9
34 GND
33 D10
O11 17
VCC 18
32 D11
31 VCC
O12 19
O13 20
30 D12
29 D13
GND 21
O14 22
28 GND
27 D14
O15 23
OE2 24
26 D15
25 LE2
D3
D4
D5
D6
D7
1
OE2
48
LE2
nLE
47
D
nLE
46
D
nLE
44
D
nLE
43
D
nLE
41
D
nLE
40
D
nLE
38
D
nLE
37
D
2
Q
3
Q
5
Q
6
Q
8
Q
9
Q
11
Q
12
Q
Figure 1. 48−Lead Pinout
(Top View)
O0
D8
O1
D9
O2
D10
O3
D11
O4
D12
O5
D13
O6
D14
O7
D15
24
25
36
35
33
32
30
29
27
26
Figure 2. Logic Diagram
1
OE1 48
LE1 25
LE2 24
OE2
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
47
46
44
43
41
40
38
37
36
35
33
32
30
29
27
26
EN1
EN2
EN3
EN4
1
1∇
1
2∇
1
3∇
1
4∇
2
3
5
6
8
9
11
12
13
14
16
17
19
20
22
23
Figure 3. IEC Logic Diagram
http://onsemi.com
2
O0
O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15
nLE
D
nLE
D
nLE
D
nLE
D
nLE
D
nLE
D
nLE
D
nLE
D
Q
Q
Q
Q
Q
Q
Q
Q
13
14
16
17
19
20
22
23
O8
O9
O10
O11
O12
O13
O14
O15
74VCX16373
TRUTH TABLE
Inputs
Outputs
Inputs
Outputs
LE1
OE1
D0:7
O0:7
LE2
OE2
D8:15
O8:15
X
H
X
Z
X
H
X
Z
H
L
L
L
H
L
L
L
H
L
H
H
H
L
H
H
L.
L
X
O0
L
L
X
O0
H = High Voltage Level
L = Low Voltage Level
Z = High Impedance State
X = High or Low Voltage Level and Transitions Are Acceptable, for ICC reasons, DO NOT FLOAT Inputs
O0 = No Change
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
VCC
DC Supply Voltage
VI
VO
Value
Condition
Unit
−0.5 to +4.6
V
DC Input Voltage
−0.5 ≤ VI ≤ +4.6
V
DC Output Voltage
−0.5 ≤ VO ≤ +4.6
Output in 3−State
−0.5 ≤ VO ≤ VCC + 0.5
Note 1; Outputs Active
−50
VI < GND
mA
−50
VO < GND
mA
+50
VO > VCC
IIK
DC Input Diode Current
IOK
DC Output Diode Current
V
IO
DC Output Source/Sink Current
±50
mA
ICC
DC Supply Current Per Supply Pin
±100
mA
IGND
DC Ground Current Per Ground Pin
±100
mA
TSTG
Storage Temperature Range
−65 to +150
°C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
1. IO absolute maximum rating must be observed.
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Typ
Max
Unit
1.65
1.2
3.3
3.3
3.6
3.6
V
−0.3
3.6
V
0
0
VCC
3.6
V
HIGH Level Output Current, VCC = 3.0 V − 3.6 V
−24
mA
IOL
LOW Level Output Current, VCC = 3.0 V − 3.6 V
24
mA
IOH
HIGH Level Output Current, VCC = 2.3 V − 2.7 V
−18
mA
IOL
LOW Level Output Current, VCC = 2.3 V − 2.7 V
18
mA
IOH
HIGH Level Output Current, VCC = 1.65 V − 1.95 V
−6
mA
IOL
LOW Level Output Current, VCC = 1.65 V − 1.95 V
6
mA
TA
Operating Free−Air Temperature
−40
+85
°C
t/V
Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V
0
10
ns/V
VCC
Supply Voltage
VI
Input Voltage
VO
Output Voltage
IOH
Operating
Data Retention Only
(Active State)
(3−State)
http://onsemi.com
3
74VCX16373
DC ELECTRICAL CHARACTERISTICS
TA = −40°C to +85°C
Symbol
VIH
VIL
VOH
VOL
Characteristic
HIGH Level Input Voltage
(Note 2)
LOW Level Input Voltage (Note 2)
HIGH Level Output Voltage
LOW Level Output Voltage
Condition
Min
1.65 V ≤ VCC < 2.3 V
0.65 x VCC
2.3 V ≤ VCC ≤ 2.7 V
1.6
2.7 V < VCC ≤ 3.6 V
2.0
Max
V
1.65 V ≤ VCC < 2.3 V
0.35 x VCC
2.3 V ≤ VCC ≤ 2.7 V
0.7
2.7 V < VCC ≤ 3.6 V
0.8
1.65 V ≤ VCC ≤ 3.6 V; IOH = −100 A
VCC − 0.2
VCC = 1.65 V; IOH = −6 mA
1.25
VCC = 2.3 V; IOH = −6 mA
2.0
VCC = 2.3 V; IOH = −12 mA
1.8
VCC = 2.3 V; IOH = −18 mA
1.7
VCC = 2.7 V; IOH = −12 mA
2.2
VCC = 3.0 V; IOH = −18 mA
2.4
VCC = 3.0 V; IOH = −24 mA
2.2
Unit
V
V
1.65 V ≤ VCC ≤ 3.6 V; IOL = 100 A
0.2
VCC = 1.65 V; IOL = 6 mA
0.3
VCC = 2.3 V; IOL = 12 mA
0.4
VCC = 2.3 V; IOL = 18 mA
0.6
VCC = 2.7 V; IOL = 12 mA
0.4
VCC = 3.0 V; IOL = 18 mA
0.4
VCC = 3.0 V; IOL = 24 mA
0.55
V
II
Input Leakage Current
1.65 V ≤ VCC ≤ 3.6 V; 0 V ≤ VI ≤ 3.6 V
±5.0
A
IOZ
3−State Output Current
1.65 V ≤ VCC ≤ 3.6 V; 0 V ≤ VO ≤ 3.6 V;
VI = VIH or VIL
±10
A
IOFF
Power−Off Leakage Current
VCC = 0 V; VI or VO = 3.6 V
10
A
ICC
Quiescent Supply Current
(Note 3)
1.65 V ≤ VCC ≤ 3.6 V; VI = GND or VCC
20
A
1.65 V ≤ VCC ≤ 3.6 V; 3.6 V ≤ VI, VO ≤ 3.6 V
±20
A
ICC
Increase in ICC per Input
2.7 V < VCC ≤ 3.6 V; VIH = VCC − 0.6 V
750
A
2. These values of VI are used to test DC electrical characteristics only.
3. Outputs disabled or 3−state only.
http://onsemi.com
4
74VCX16373
AC CHARACTERISTICS (Note 4; tR = tF = 2.0 ns; CL = 30 pF; RL = 500 )
TA = −40°C to +85°C
VCC = 3.0 V to 3.6 V
Symbol
Parameter
VCC = 2.3 V to 2.7 V
VCC = 1.65 V to 1.95 V
Waveform
Min
Max
Min
Max
Min
Max
Unit
tPLH
tPHL
Propagation Delay
Dn−to−On
1
0.8
0.8
3.0
3.0
1.0
1.0
3.4
3.4
1.5
1.5
6.8
6.8
ns
tPLH
tPHL
Propagation Delay
LE−to−On
1
0.8
0.8
3.0
3.0
1.0
1.0
3.9
3.9
1.5
1.5
7.8
7.8
ns
tPZH
tPZL
Output Enable Time to
High and Low Level
2
0.8
0.8
3.5
3.5
1.0
1.0
4.6
4.6
1.5
1.5
9.2
9.2
ns
tPHZ
tPLZ
Output Disable Time From
High and Low Level
2
0.8
0.8
3.5
3.5
1.0
1.0
3.8
3.8
1.5
1.5
6.8
6.8
ns
ts
Setup Time, High or Low
Dn−to−LE
3
1.5
1.5
2.5
ns
th
Hold Time, High or Low
Dn−to−LE
3
1.0
1.0
1.0
ns
tw
LE Pulse Width, High
3
1.5
1.5
4.0
ns
tOSHL
tOSLH
Output−to−Output Skew
(Note 5)
0.5
0.5
0.5
0.5
0.75
0.75
ns
4. For CL = 50 pF, add approximately 300 ps to the AC maximum specification.
5. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
AC CHARACTERISTICS (tR = tF = 2.0 ns; CL = 50 pF; RL = 500 )
TA = −40°C to +85°C
VCC = 3.0 V to 3.6 V
Symbol
Parameter
Waveform
Min
Max
VCC = 2.7 V
Min
Max
Unit
tPLH
tPHL
Propagation Delay
Dn−to−On
4
1.0
1.0
3.6
3.6
4.3
4.3
ns
tPLH
tPHL
Propagation Delay
LE−to−On
4
1.0
1.0
3.9
3.9
4.6
4.6
ns
tPZH
tPZL
Output Enable Time to
High and Low Level
5
1.0
1.0
4.7
4.7
5.7
5.7
ns
tPHZ
tPLZ
Output Disable Time From
High and Low Level
5
1.0
1.0
4.1
4.1
4.5
4.5
ns
tOSHL
tOSLH
Output−to−Output Skew
(Note 6)
0.5
0.5
0.5
0.5
ns
6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
http://onsemi.com
5
74VCX16373
DYNAMIC SWITCHING CHARACTERISTICS
TA = +25°C
Symbol
VOLP
VOLV
VOHV
Condition
Typ
Unit
VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V
0.25
V
VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V
0.6
VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V
0.8
VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V
−0.25
VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V
−0.6
VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V
−0.8
VCC = 1.8 V, CL = 30 pF, VIH = VCC, VIL = 0 V
1.5
VCC = 2.5 V, CL = 30 pF, VIH = VCC, VIL = 0 V
1.9
VCC = 3.3 V, CL = 30 pF, VIH = VCC, VIL = 0 V
2.2
Characteristic
Dynamic LOW Peak Voltage
(
(Note
7))
Dynamic LOW Valley Voltage
(N
(Note
7))
Dynamic HIGH Valley Voltage
(N
(Note
8))
V
V
7. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is
measured in the LOW state.
8. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is
measured in the HIGH state.
CAPACITIVE CHARACTERISTICS
Condition
Typical
Unit
CIN
Symbol
Input Capacitance
Parameter
Note 9
6
pF
COUT
Output Capacitance
Note 9
7
pF
CPD
Power Dissipation Capacitance
Note 9, 10 MHz
20
pF
9. VCC = 1.8 V, 2.5 V or 3.3 V; VI = 0 V or VCC.
VIH
Dn
Vm
Vm
0V
tPLH
tPHL
VOH
On
Vm
Vm
VOL
WAVEFORM 1 − PROPAGATION DELAYS
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
Figure 4. AC Waveforms
http://onsemi.com
6
74VCX16373
VIH
Vm
OEn
VIH
Dn
Vm
Vm
Vm
0V
tPZH
On
0V
ts
tPHZ
th
VIH
VOH
Vy
LEn
Vm
tw
Vm
Vm
≈ 0V
tPZL
On
0V
tPLH, tPHL
tPLZ
VOH
≈ VCC
On
Vm
Vm
VOL
Vx
VOL
WAVEFORM 3 − LE to On PROPAGATION DELAYS, LE MINIMUM
PULSE WIDTH, Dn to LE SETUP AND HOLD TIMES
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns except when noted
WAVEFORM 2 − OUTPUT ENABLE AND DISABLE TIMES
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
Figure 5. AC Waveforms
Table 1. AC WAVEFORMS
VCC
Symbol
3.3 V ± 0.3 V
2.5 V ± 0.2 V
1.8 V ± 0.15 V
VIH
2.7 V
VCC
VCC
Vm
1.5 V
VCC/2
VCC/2
Vx
VOL + 0.3 V
VOL + 0.15 V
VOL + 0.15 V
Vy
VOH − 0.3 V
VOH − 0.15 V
VOH − 0.15 V
VCC
PULSE
GENERATOR
RL
DUT
RT
CL
RL
Figure 6. Test Circuit
Table 2. TEST CIRCUIT
TEST
SWITCH
tPLH, tPHL
Open
tPZL, tPLZ
6 V at VCC = 3.3 ± 0.3 V;
VCC × 2 at VCC = 2.5 ± 0.2 V; 1.8 ± 0.15 V
tPZH, tPHZ
GND
CL = 30 pF or equivalent (Includes jig and probe capacitance)
RL = 500 or equivalent
RT = ZOUT of pulse generator (typically 50 )
http://onsemi.com
7
6V or VCC × 2
OPEN
GND
74VCX16373
VIH
Vm
Dn
Vm
0V
tPLH
tPHL
VOH
On
Vm
Vm
VOL
WAVEFORM 4 − PROPAGATION DELAYS
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
Figure 7. AC Waveforms
VIH
Dn
Vm
Vm
OEn
VIH
Vm
Vm
0V
On
0V
ts
tPHZ
tPZH
th
VIH
VOH
Vy
LEn
Vm
tw
Vm
≈ 0V
Vm
0V
tPLH, tPHL
tPZL
On
tPLZ
≈ VCC
VOH
On
Vm
Vm
VOL
Vx
VOL
WAVEFORM 5 − OUTPUT ENABLE AND DISABLE TIMES
tR = tF = 2.0 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
WAVEFORM 6 − LE to On PROPAGATION DELAYS, LE MINIMUM
PULSE WIDTH, Dn to LE SETUP AND HOLD TIMES
tR = tF = 2.0n s, 10% to 90%; f = 1 MHz; tW = 500 ns
except when noted
Figure 8. AC Waveforms
Table 3. AC WAVEFORMS
VCC
Symbol
3.3 V ± 0.3 V
2.7 V
VIH
2.7 V
2.7 V
Vm
1.5 V
1.5 V
Vx
VOL + 0.3 V
VOL + 0.3 V
Vy
VOH − 0.3 V
VOH − 0.3 V
http://onsemi.com
8
74VCX16373
VCC
PULSE
GENERATOR
RL
DUT
RT
CL
RL
Figure 9. Test Circuit
Table 4. TEST CIRCUIT
TEST
SWITCH
tPLH, tPHL
Open
tPZL, tPLZ
6 V at VCC = 3.3 ± 0.3 V;
VCC × 2 at VCC = 2.5 ± 0.2 V; 1.8 ± 0.15 V
tPZH, tPHZ
GND
CL = 50 pF or equivalent (Includes jig and probe capacitance)
RL = 500 or equivalent
RT = ZOUT of pulse generator (typically 50)
http://onsemi.com
9
6V or VCC × 2
OPEN
GND
74VCX16373
PACKAGE DIMENSIONS
TSSOP
DT SUFFIX
CASE 1201−01
ISSUE A
48X
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K REF
0.12 (0.005)
M
T U
S
V
S
T U
S
J J1
48
25
0.254 (0.010)
M
SECTION N−N
B
−U−
L
N
1
24
A
−V−
PIN 1
IDENT.
N
F
DETAIL E
D
0.076 (0.003)
−T− SEATING
PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH OR GATE BURRS
SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSIONS A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
K
K1
C
M
0.25 (0.010)
−W−
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
12.40
12.60
6.00
6.20
−−−
1.10
0.05
0.15
0.50
0.75
0.50 BSC
0.37
−−−
0.09
0.20
0.09
0.16
0.17
0.27
0.17
0.23
7.95
8.25
0
8
INCHES
MIN
MAX
0.488
0.496
0.236
0.244
−−−
0.043
0.002
0.006
0.020
0.030
0.0197 BSC
0.015
−−−
0.004
0.008
0.004
0.006
0.007
0.011
0.007
0.009
0.313
0.325
0
8
DETAIL E
G
H
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Phone: 81−3−5773−3850
http://onsemi.com
10
For additional information, please contact your
local Sales Representative.
74VCX16373/D