MC10EP16VA, MC100EP16VA 3.3V / 5VECL Differential Receiver/Driver with High Gain The EP16VA is a world–class differential receiver/driver. The device is functionally equivalent to the EP16 and LVEP16 devices but with high gain output. QHG and QHG outputs have a DC gain several times larger than the DC gain of an EP16. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. Under open input conditions (pulled to VEE) internal input clamps will force the QHG output LOW. Special considerations are required for differential inputs under No Signal conditions to prevent instability. The 100 Series contains temperature compensation. • • • • • • http://onsemi.com MARKING DIAGRAMS* 1 SO–8 D SUFFIX CASE 751 Gain > 200 20 mV Minimum Input Voltage Swing HEP64 ALYW 8 PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = –3.0 V to –5.5 V Open Input Default State KP64 ALYW HP64 ALYW 1 1 1 H = MC10 K = MC100 A = Assembly Location Maximum Frequency > 3 GHz Typical KEP64 ALYW 1 1 8 8 TSSOP–8 DT SUFFIX CASE 948R 270 ps Typical Propagation Delay 8 8 8 L = Wafer Lot Y = Year W = Work Week *For additional information, see Application Note AND8002/D • • VBB Output ORDERING INFORMATION Package Shipping MC10EP16VAD Device SO–8 98 Units/Rail MC10EP16VADR2 SO–8 2500 Tape & Reel MC100EP16VAD SO–8 98 Units/Rail MC100EP16VADR2 SO–8 2500 Tape & Reel MC10EP16VADT TSSOP–8 100 Units/Rail MC10EP16VADTR2 TSSOP–8 2500 Tape & Reel MC100EP16VADT TSSOP–8 100 Units/Rail MC100EP16VADTR2 TSSOP–8 2500 Tape & Reel Semiconductor Components Industries, LLC, 2002 September, 2002 – Rev. 4 1 Publication Order Number: MC10EP16VA/D MC10EP16VA, MC100EP16VA NC 1 8 VCC PIN DESCRIPTION D D VBB 2 7 QHG QHG 6 3 4 FUNCTION D*, D* ECL Data Inputs QHG, QHG ECL High Gain Data Outputs VBB Reference Voltage Output VCC Positive Supply VEE Negative Supply NC No Connect * Pins will default LOW when left open. VEE 5 PIN Figure 1. 8–Lead Pinout (Top View) and Logic Diagram ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor 75 k Internal Input Pullup Resistor ESD Protection N/A Human Body Model Machine Model Charged Device Model > 4 kV > 200 V > 2 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL–94 V–0 @ 0.125 in Transistor Count 167 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS (Note 2) Parameter Symbol Condition 1 Condition 2 Rating Units VCC PECL Mode Power Supply VEE = 0 V 6 V VEE NECL Mode Power Supply VCC = 0 V –6 V VI PECL C Mode ode Input u Voltage o age VEE = 0 V VI VCC 6 V NECL Mode Input Voltage VCC = 0 V VI VEE –6 V Output Current Continuous 50 mA Surge 100 mA ± 0.5 mA –40 to +85 °C Iout IBB VBB Sink/Source TA Operating Temperature Range Tstg Storage Temperature Range θJA Thermal Resistance (Junction–to–Ambient) θJC Thermal Resistance (Junction–to–Case) θJA Thermal Resistance (Junction–to–Ambient) –65 to +150 °C 190 °C/W 8 SOIC 130 °C/W 8 SOIC 41 to 44 °C/W 8 TSSOP 185 °C/W 8 TSSOP 140 °C/W 8 TSSOP 41 to 44 °C/W 265 °C 0 LFPM 8 SOIC 500 LFPM std bd 0 LFPM 500 LFPM θJC Thermal Resistance (Junction–to–Case) std bd Tsol Wave Solder <2 to 3 sec @ 248°C 2. Maximum Ratings are those values beyond which device damage may occur. http://onsemi.com 2 MC10EP16VA, MC100EP16VA 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 3) –40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 31 22 30 38 24 32 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 4) 2165 2240 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 4) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single–Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single–Ended) 1365 1690 1460 1755 1490 1815 mV VBB Output Voltage Reference 1750 1950 1825 2025 1850 2050 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 5) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 1850 2.0 1925 150 1950 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to –2.2 V. 4. All loading with 50 to VCC–2.0 volts. 5. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 6) –40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 31 22 30 38 24 32 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 7) 3865 3940 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 7) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single–Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single–Ended) 3065 3390 3130 3455 3190 3515 mV VBB Output Voltage Reference 3450 3650 3525 3725 3550 3750 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 8) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current 3550 2.0 3625 150 3650 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 6. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to –0.5 V. 7. All loading with 50 to VCC–2.0 volts. 8. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 10EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = –5.5 V to –3.0 V (Note 9) –40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 31 22 30 38 24 32 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 10) –1135 –1060 –885 –1070 –945 –820 –1010 –885 –760 mV VOL Output LOW Voltage (Note 10) –1935 –1810 –1685 –1870 –1745 –1620 –1810 –1685 –1560 mV VIH Input HIGH Voltage (Single–Ended) –1210 –885 –1145 –820 –1085 –760 mV VIL Input LOW Voltage (Single–Ended) –1935 –1610 –1870 –1545 –1810 –1485 mV VBB Output Voltage Reference –1550 –1350 –1475 –1275 –1450 –1250 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 11) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current –1450 VEE+2.0 0.0 VEE+2.0 150 0.5 –1375 0.0 VEE+2.0 150 0.5 –1350 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 9. Input and output parameters vary 1:1 with VCC. 10. All loading with 50 to VCC–2.0 volts. 11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 3 MC10EP16VA, MC100EP16VA 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 12) –40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 22 30 38 24 32 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 13) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 13) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VIH Input HIGH Voltage (Single–Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single–Ended) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1550 1950 1725 1925 1700 1900 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 14) 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current 150 µA IIL Input LOW Current 1850 2.0 1825 150 1800 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 12. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to –2.2 V. 13. All loading with 50 to VCC–2.0 volts. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 15) –40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 22 30 38 24 32 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 16) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 16) 3055 3180 3305 3055 3180 3305 3055 3180 3305 mV VIH Input HIGH Voltage (Single–Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single–Ended) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3450 3650 3425 3625 3400 3600 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 17) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current 3550 2.0 3525 150 3500 150 0.5 0.5 µA 0.5 NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to –0.5 V. 16. All loading with 50 to VCC–2.0 volts. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. 100EP DC CHARACTERISTICS, NECL VCC = 0 V; VEE = –5.5 V to –3.0 V (Note 18) –40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 20 28 36 22 30 38 24 32 40 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 19) –1145 –1020 –895 –1145 –1020 –895 –1145 –1020 –895 mV VOL Output LOW Voltage (Note 19) –1945 –1820 –1695 –1945 –1820 –1695 –1945 –1820 –1695 mV VIH Input HIGH Voltage (Single–Ended) –1225 –880 –1225 –880 –1225 –880 mV VIL Input LOW Voltage (Single–Ended) –1945 –1625 –1945 –1625 –1945 –1625 mV VBB Output Voltage Reference –1550 –1350 –1575 –1375 –1600 –1400 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 20) 0.0 V IIH Input HIGH Current 150 µA IIL Input LOW Current –1450 VEE+2.0 0.0 VEE+2.0 150 0.5 –1475 0.0 VEE+2.0 150 0.5 –1500 0.5 µA NOTE: EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC–2.0 volts. 20. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 4 MC10EP16VA, MC100EP16VA AC CHARACTERISTICS VCC = 0 V; VEE = –3.0 V to –5.5 V or VCC = 3.0 V to 5.5 V; VEE = 0 V (Note 21) –40°C Symbol Characteristic fmax Maximum Frequency (See Figure 2 Fmax/JITTER) tPLH, tPHL Propagation Delay to Output Differential tSKEW Min Typ 25°C Max Min Typ >3 200 Max Min >3 260 320 Duty Cycle Skew (Note 22) 5.0 tJITTER Cycle–to–Cycle Jitter (See Figure 2 Fmax/JITTER) VPP Input Voltage Swing (Differential) (See Figure 3) tr tf Output Rise/Fall Times (20% – 80%) Q, Q 85°C 220 Typ Max >3 270 340 20 5.0 0.2 <1 20 800 1200 70 110 170 250 Unit GHz 320 390 ps 20 5.0 20 ps 0.2 <1 0.2 <1 ps 20 800 1200 20 800 1200 mV 80 110 180 80 120 200 ps 900 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉÉÉÉÉ ÉÉ ÉÉ (JITTER) 1 100 0 0 1000 2000 3000 4000 5000 FREQUENCY (MHz) Figure 2. Fmax/Jitter 800 700 VOUTpp (mV) 600 500 400 300 200 100 0 20 15 10 5 VINpp (mV) Figure 3. Gain vs. Input Voltage (50 MHz) http://onsemi.com 5 JITTEROUT ps (RMS) VOUTpp (mV) 21. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC–2.0 V. 22. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. 0 MC10EP16VA, MC100EP16VA Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC – 2.0 V Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.) Resource Reference of Application Notes AN1404 – ECLinPS Circuit Performance at Non–Standard VIH Levels AN1405 – ECL Clock Distribution Techniques AN1406 – Designing with PECL (ECL at +5.0 V) AN1504 – Metastability and the ECLinPS Family AN1568 – Interfacing Between LVDS and ECL AN1650 – Using Wire–OR Ties in ECLinPS Designs AN1672 – The ECL Translator Guide AND8001 – Odd Number Counters Design AND8002 – Marking and Date Codes AND8009 – ECLinPS Plus Spice I/O Model Kit AND8020 – Termination of ECL Logic Devices For an updated list of Application Notes, please see our website at http://onsemi.com. http://onsemi.com 6 MC10EP16VA, MC100EP16VA PACKAGE DIMENSIONS SO–8 D SUFFIX PLASTIC SOIC PACKAGE CASE 751–07 ISSUE AA –X– NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDAARD IS 751-07 A 8 5 0.25 (0.010) S B 1 Y M M 4 K –Y– G C N DIM A B C D G H J K M N S X 45 SEATING PLANE –Z– 0.10 (0.004) H M D 0.25 (0.010) M Z Y X S J S MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0 8 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 8 0.010 0.020 0.228 0.244 TSSOP–8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R–02 ISSUE A 8x 0.15 (0.006) T U K REF 0.10 (0.004) S 2X L/2 8 1 PIN 1 IDENT S T U V S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S 5 0.25 (0.010) B –U– L 0.15 (0.006) T U M M 4 A –V– F DETAIL E C 0.10 (0.004) –T– SEATING PLANE D –W– G DETAIL E http://onsemi.com 7 DIM A B C D F G K L M MILLIMETERS MIN MAX 2.90 3.10 2.90 3.10 0.80 1.10 0.05 0.15 0.40 0.70 0.65 BSC 0.25 0.40 4.90 BSC 0 6 INCHES MIN MAX 0.114 0.122 0.114 0.122 0.031 0.043 0.002 0.006 0.016 0.028 0.026 BSC 0.010 0.016 0.193 BSC 0 6 MC10EP16VA, MC100EP16VA ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 Email: [email protected] ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800–282–9855 Toll Free USA/Canada http://onsemi.com 8 MC10EP16VA/D