ETC NB100LVEP17/D

NB100LVEP17
2.5V / 3.3V / 5VECL Quad
Differential Driver/Receiver
The NB100LVEP17 is a 4-bit differential line receiver. The design
incorporates two stages of gain, internal to the device, making it an
excellent choice for use in high bandwidth amplifier applications.
The VBB pin, an internally generated voltage supply, is available to
this device only. For single-ended input conditions, the unused
differential input is connected to VBB as a switching reference voltage.
VBB may also rebias AC coupled inputs. When used, decouple VBB
and VCC via a 0.01 F capacitor and limit current sourcing or sinking
to 0.5 mA. When not used, VBB should be left open.
Inputs of unused gates can be left open and will not affect the
operation of the rest of the device.
•
•
•
•
•
•
Maximum Input Clock Frequency > 2.5 GHz Typical
Maximum Input Data Rate > 2.5 Gb/s Typical
http://onsemi.com
MARKING
DIAGRAMS*
20
20
1
N100
LP17
ALYW
TSSOP-20
DT SUFFIX
CASE 948E
1
250 ps Typical Propagation Delay
24
1
Low Profile QFN Package
24
PECL Mode Operating Range: VCC = 2.375 V to 5.5 V
with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V
with VEE = -2.375 V to -5.5 V
Q Output Will Default LOW with Inputs Open or at VEE
N100
LP17
ALYW
1
24 PIN QFN
MN SUFFIX
CASE 485L
•
• VBB Output
A
L
Y
W
= Assembly Location
= Wafer Lot
= Year
= Work Week
*For additional information, see Application Note
AND8002/D
ORDERING INFORMATION
Device
NB100LVEP17DT
Package
Shipping
TSSOP-20
75 Units/Rail
NB100LVEP17DTR2 TSSOP-20 2500/Tape & Reel
 Semiconductor Components Industries, LLC, 2003
April, 2003 - Rev. 4
1
NB100LVEP17MN
QFN-24
92 Units/Rail
NB100LVEP17MNR2
QFN-24
3000/Tape & Reel
Publication Order Number:
NB100LVEP17/D
NB100LVEP17
D0
R1
Q0
R2
D0
R1
Q0
D1
R1
Q1
R2
D1
R1
Q1
D2
R1
Q2
R2
Q2
D2
R1
VCC
VEE
D3
R1
Q3
R2
D3
R1
Q3
VBB
Figure 1. Logic Diagram
PIN DESCRIPTION
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
Pin
TSSOP
QFN
Name
I/O
Default
State
1,20
13,18,21,
22,23
VCC
-
-
Positive Supply Voltage. All VCC Pins Must be Externally Connected
to Power Supply to Guarantee Proper Operation.
11
10
VEE
-
-
Negative Supply Voltage. All VEE Pins Must be Externally Connected to Power Supply to Guarantee Proper Operation.
10
9
VBB
-
-
ECL Reference Voltage Output.
2,4,6,8
1,3,5,7
D[0:3]
ECL Input
Low
Noninverted Differential Inputs [0:3]. Internal 75 k to VEE.
3,5,7,9
2,4,6,8
D[0:3]
ECL Input
High
Inverted Differential Inputs [0:3]. Internal 75 k to VEE and 37 k to
VCC.
19,17,15,13
12,15,17,2
0
Q[0:3]
ECL Output
-
Noninverted Differential Outputs [0:3]. Typically Terminated with
50 to VTT = VCC - 2 V.
18,16,14,12
11,14,16,1
9
Q[0:3]
ECL Output
-
Inverted Differential Outputs [0:3]. Typically Terminated with 50 to
VTT = VCC - 2 V.
N/A
24
NC
-
-
No Connect. The NC Pin is Electrically Connected to the Die and
“MUST BE” Left Open.
N/A
-
EP
-
Description
Exposed Pad. (Note 1)
1. All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. The thermally conductive expose pad
on the package bottom (see case drawing) must be attached to a heat-sinking conduit.
http://onsemi.com
2
NB100LVEP17
NC VCC VCC VCC Q0
24
VCC Q0
Q0
Q1 Q1
Q2
Q2
Q3
Q3 VEE
20
18
17
15
14
13
12
19
16
11
23
22
21
20
1
2
3
4
5
6
7
8
9
VCC
D0
D0
D1
D1
D2
D2
D3
D3 VBB
10
19
D0
1
18
VCC
D0
2
17
Q1
D1
3
16
Q1
D1
4
15
Q2
D2
5
14
Q2
D2
6
13
VCC
7
8
D3
D3
9
10
VBB VEE
11
12
Q3
Q3
Figure 3. QFN-24 Lead Pinout (Top View)
Figure 2. TSSOP-20 Lead Pinout (Top View)
Table 1. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor
(R1)
75 k
Internal Input Pullup Resistor
(R2)
37 k
Human Body Model
Machine Model
Charged Device Model
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)
Flammability Rating
Exposed Pad
(EP)
NB100LVEP17
NB100LVEP17
ESD Protection
Q0
Oxygen Index: 28 to 34
Transistor Count
> 2 kV
> 150 V
> 2 kV
Level 1
UL 94 V-0 @ 0.125 in
274 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
http://onsemi.com
3
NB100LVEP17
Table 2. MAXIMUM RATINGS (Note 2)
Symbol
Parameter
Condition 1
Condition 2
Rating
Units
VCC
Positive Mode Power Supply
VEE = 0 V
6
V
VEE
Negative Mode Power Supply
VCC = 0 V
-6
V
VI
Positive Mode Input Voltage
Negative Mode Input Voltage
VEE = 0 V
VCC = 0 V
6
-6
V
V
Iout
Output Current
Continuous
Surge
50
100
mA
mA
IBB
VBB Sink/Source
0.5
mA
TA
Operating Temperature Range
-40 to +85
°C
Tstg
Storage Temperature Range
-65 to +150
°C
JA
Thermal Resistance (Junction-to-Ambient)
JEDEC 51-3 (1S - Single Layer Test Board)
0 LFPM
500 LFPM
20 TSSOP
20 TSSOP
140
50
°C/W
°C/W
JA
Thermal Resistance (Junction-to-Ambient)
JEDEC 51-6 (2S2P Multilayer Test Board) with Filled Thermal
Vias
0 LFPM
500 LFPM
24 QFN
24 QFN
37
32
°C/W
°C/W
JC
Thermal Resistance (Junction-to-Case)
Standard Board
20 TSSOP
24 QFN
23 to 41
11
°C/W
°C/W
Tsol
Wave Solder
<2 to 3 sec @ 248°C
265
°C
VI VCC
VI VEE
2. Maximum Ratings are those values beyond which device damage may occur.
Table 3. DC CHARACTERISTICS, PECL VCC = 2.5 V; VEE = 0 V (Note 3)
-40 °C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
30
40
50
30
40
50
30
40
55
mA
1355
1480
1605
1355
1480
1605
1355
1480
1605
mV
775
775
775
IEE
Negative Power Supply Current
VOH
Output HIGH Voltage (Note 4)
VOL
Output LOW Voltage (Note 4)
555
900
555
900
555
900
mV
VIH
Input HIGH Voltage (Single-Ended) (Note 5)
1335
1620
1335
1620
1275
1620
mV
VIL
Input LOW Voltage (Single-Ended) (Note 5)
555
875
555
875
555
875
mV
VIHCMR
Input HIGH Voltage Common Mode Range
(Differential Configuration) (Note 6)
1.2
2.5
1.2
2.5
1.2
2.5
V
IIH
Input HIGH Current (@ VIH)
150
A
IIL
Input LOW Current (@ VIL)
150
D
D
0.5
-150
NOTE:
3.
4.
5.
6.
150
0.5
-150
0.5
-150
A
100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established.
The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
Input and output parameters vary 1:1 with VCC. VEE can vary + 0.125 V to -1.3 V.
All loading with 50 to VEE = VCC - 2.0 V.
Do not use VBB at VCC < 3.0 V.
VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
4
NB100LVEP17
Table 4. DC CHARACTERISTICS, PECL VCC = 3.3 V; VEE = 0 V (Note 7)
-40 °C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
30
40
50
30
40
50
30
40
55
mA
IEE
Negative Power Supply Current
VOH
Output HIGH Voltage (Note 8)
2155
2280
2405
2155
2280
2405
2155
2280
2405
mV
VOL
Output LOW Voltage (Note 8)
1355
1575
1700
1355
1575
1700
1355
1575
1700
mV
VIH
Input HIGH Voltage (Single-Ended)
2135
2420
2135
2420
2135
2420
mV
VIL
Input LOW Voltage (Single-Ended)
1355
1675
1355
1675
1355
1675
mV
VBB
ECL Output Reference Voltage (Note 9)
1775
1975
1775
1975
1775
1975
mV
VIHCMR
Input HIGH Voltage Common Mode Range
(Differential Configuration) (Note 10)
3.3
1.2
3.3
1.2
3.3
V
IIH
Input HIGH Current (@ VIH)
150
A
IIL
Input LOW Current (@ VIL)
1875
1.2
1875
150
D
D
0.5
-150
1875
150
0.5
-150
A
0.5
-150
NOTE:
100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established.
The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
7. Input and output parameters vary 1:1 with VCC. VEE can vary + 0.925 V to -0.5 V.
8. All loading with 50 to VCC - 2.0 V.
9. Single ended input operation is limited VCC ≥ 3.0 V in PECL mode.
10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 5. DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 11)
-40 °C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
30
40
50
30
40
55
30
40
55
mA
VOH
Output HIGH Voltage (Note 12)
3855
3980
4105
3855
3980
4105
3855
3980
4105
mV
VOL
Output LOW Voltage (Note 12)
3055
3275
3400
3055
3275
3400
3055
3275
3400
mV
VIH
Input HIGH Voltage
3775
4120
3775
4120
3775
4120
mV
VIL
Input LOW Voltage
3055
3375
3055
3375
3055
3375
mV
VBB
ECL Output Voltage Reference
3475
3675
3475
3675
3475
3675
mV
VIHCMR
Input HIGH Voltage Common Mode Range
(Differential Configuration) (Note 13)
5.0
1.2
5.0
1.2
5.0
V
IIH
Input HIGH Current (@ VIH)
150
A
IIL
Input LOW Current (@ VIL)
3575
1.2
150
D
D
0.5
-150
3575
150
0.5
-150
0.5
-150
3575
A
NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
11. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V.
12. All loading with 50 ohms to VCC-2.0 V.
13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
5
NB100LVEP17
Table 6. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -2.375 V to -3.8 V (Note 14)
-40 °C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
30
40
50
30
40
50
30
40
55
mA
VOH
Output HIGH Voltage (Note 15)
-1 145
-1020
-895
-1 145
-1020
-895
-1 145
-1020
-895
mV
VOL
Output LOW Voltage (Note 15)
-1945
-1725
-1600
-1945
-1725
-1600
-1945
-1725
-1600
mV
VIH
Input HIGH Voltage (Single-Ended)
-1 165
-880
-1 165
-880
-1 165
-880
mV
VIL
Input LOW Voltage (Single-Ended)
-1945
-1600
-1945
-1600
-1945
-1600
mV
VBB
ECL Output Reference Voltage
(Note 16)
-1525
-1325
-1525
-1325
-1525
-1325
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 17)
0.0
V
IIH
Input HIGH Current (@ VIH)
150
A
IIL
Input LOW Current (@ VIL)
-1425
VEE + 1.2
0.0
-1425
VEE + 1.2
150
D
D
0.5
-150
0.0
-1425
VEE + 1.2
150
0.5
-150
A
0.5
-150
NOTE:
100LVEP circuits are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established.
The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
14. Input and output parameters vary 1:1 with VCC.
15. All loading with 50 to VCC - 2.0 V.
16. Single ended input operation is limited VEE ≤ -3.0V in NECL mode.
17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
Table 7. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.8 V to -5.5 V (Note 18)
-40 °C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
IEE
Negative Power Supply Current
30
40
50
30
40
55
30
40
55
mA
VOH
Output HIGH Voltage (Note 19)
-1 145
-1020
-895
-1 145
-1020
-895
-1 145
-1020
-895
mV
VOL
Output LOW Voltage (Note 19)
-1945
-1725
-1600
-1945
-1725
-1600
-1945
-1725
-1600
mV
VIH
Input HIGH Voltage
-1 165
-880
-1 165
-880
-1 165
-880
mV
VIL
Input LOW Voltage
-1945
-1625
-1945
-1625
-1945
-1625
mV
VBB
ECL Output Reference Voltage
(Note 20)
-1525
-1325
-1525
-1325
-1525
-1325
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 21)
0.0
V
IIH
Input HIGH Current (@ VIH)
150
A
IIL
Input LOW Current (@ VIL)
-1425
VEE+1.2
0.0
VEE+1.2
150
D
D
0.5
-150
-1425
0.0
VEE+1.2
150
0.5
-150
-1425
0.5
-150
A
NOTE: 100LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.
18. Input and output parameters vary 1:1 with VCC.
19. All loading with 50 to VCC-2.0 V.
20. Single-Ended input operation is limited to VEE from -3.0 V to -5.5 V in NECL mode.
21. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
6
NB100LVEP17
Table 8. AC CHARACTERISTICS VCC = 0 V; VEE = -2.375 V to -3.8 V or VCC = 2.375 V to 3.8 V; VEE = 0 V (Note 22)
-40 °C
Symbol
25°C
Min
Typ
fin < 1 GHz
fin = 2 GHz
fin = 2.5 GHz
600
400
300
700
500
400
D to Q, Q
200
250
325
5
5
25
Characteristic
VOUTPP
Output Voltage Amplitude
(See Figures 4, 5)
tPLH,
tPHL
Propagation Delay to Output Differential
tSkew
Pulse Skew (Note 23)
Within Device Skew (Note 25)
Device-to-Device Skew (Note 25)
tJITTER
RMS Random Clock Jitter (Note 26)
Peak-to Peak Data Dependent Jitter
(Note 27)
VINPP
Input Voltage Swing (Differential Configuration)
(Note 28)
tr
tf
Output Rise/Fall Times @ 50 MHz
(20% - 80%)
Max
85°C
Min
Typ
Max
Min
Typ
600
325
250
700
500
400
200
250
325
25
25
100
5
5
25
0.5
5
5
1
15
15
150
800
1200
125
175
225
Max
550
300
200
700
500
400
225
300
350
25
25
100
5
5
25
25
25
100
ps
0.5
5
5
1
15
15
0.5
5
5
1
15
15
ps
150
800
1200
150
800
1200
mV
140
190
240
150
200
250
Unit
mV
ps
fin = 2.5 GHz
fin = 1.5 Gb/s
fin = 2.5 Gb/s
Q, Q
ps
22. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. Input edge rates 150 ps (20% - 80%).
23. Pulse Skew = |tPLH - tPHL|
24. Worst case difference between Q0 and Q1 outputs.
25. Skew is measured between outputs under identical transitions.
26. Additive RMS jitter with 50% Duty Cycle Clock Signal at 2.5 GHz.
27. Peak-to-Peak jitter with input NRZ data at PRBS 231-1 at 2.5 Gb/s with all inputs active.
28. Input voltage swing is a single-ended measurement operating in differential mode, with minimum propagation change of 50 ps.
Table 9. AC CHARACTERISTICS VCC = 0 V; VEE = -4.2 V to -5.5 V or VCC = 4.2 V to 5.5 V; VEE = 0 V (Note 29)
-40 °C
Symbol
Typ
fin < 1 GHz
fin = 2 GHz
fin = 2.5 GHz
650
450
350
750
550
450
D to Q, Q
200
250
325
5
5
25
fin = 2.5 GHz
fin =1.5 Gb/s
fin = 2.5 Gb/s
Characteristic
VOUTPP
Output Voltage Amplitude
(See Figure 6)
tPLH,
tPHL
Propagation Delay to Output Differential
tSkew
Pulse Skew (Note 30)
Within Device Skew (Note 31)
Device-to-Device Skew (Note 32)
tJITTER
RMS Random Clock Jitter
(Note 33)
Peak-to-Peak Data Dependent Jitter
(Note 34)
25°C
Min
Max
85°C
Min
Typ
Max
Min
Typ
650
425
300
750
525
400
200
250
325
25
25
100
5
5
25
0.5
1
5
10
15
20
150
800
1200
125
175
225
Max
650
350
250
750
450
350
225
300
350
25
25
100
5
5
25
25
25
100
ps
0.5
1
0.5
1
ps
5
10
15
20
5
15
15
50
150
800
1200
150
800
1200
140
190
240
150
200
250
Unit
mV
ps
VINPP
Input Voltage Swing (Differential Configuration)
(Note 35)
tr
tf
Output Rise/Fall Times @ 50 MHz
(20% - 80%)
Q, Q
mV
ps
29. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. Input edge rates 150 ps (20% - 80%).
30. Pulse Skew |tPLH - tPHL|
31. Worst case difference between Q0 and Q1 outputs.
32. Skew is measured between outputs under identical transitions.
33. Additive RMS jitter with 50% Duty Cycle Clock Signal at 2.5 GHz.
34. Peak-to-Peak jitter with input NRZ data at PRBS 231-1 at 2.5 Gb/s.
35. Input voltage swing is a single-ended measurement operating in differential mode, with minimum propagation change of 50 ps.
http://onsemi.com
7
NB100LVEP17
10
9.0
750
8.0
Q AMP (mV)
7.0
650
6.0
5.0
550
4.0
450
3.0
RMS JITTER (ps)
OUTPUT VOLTAGE AMPLITUDE
(mV)
850
2.0
350
RMS JITTER (ps)
1.0
0
250
0.5
1.0
1.5
2.0
2.5
INPUT FREQUENCY (GHz)
850
10
9.0
750
8.0
Q AMP (mV)
7.0
650
6.0
5.0
550
4.0
450
3.0
RMS JITTER (ps)
OUTPUT VOLTAGE AMPLITUDE (mV)
Figure 4. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.
Input Frequency (fin) at VCC = 2.5 V, Ambient Temperature
2.0
350
RMS JITTER (ps)
1.0
0
250
0.5
1.0
1.5
2.0
2.5
INPUT FREQUENCY (GHz)
Figure 5. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.
Input Frequency (fin) at VCC = 3.3 V, Ambient Temperature
9.0
Q AMP (mV)
8.0
750
7.0
650
6.0
5.0
550
4.0
450
3.0
RMS JITTER (ps)
OUTPUT VOLTAGE AMPLITUDE (mV)
850
2.0
350
RMS JITTER (ps)
1.0
250
0.5
1.0
1.5
2.0
0
2.5
INPUT FREQUENCY (GHz)
Figure 6. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs.
Input Frequency (fin) at VCC = 5.0 V, Ambient Temperature
http://onsemi.com
8
NB100LVEP17
D
VINPP = VIH(D) - VIL(D)
D
Q
VOUTPP = VOH(Q) - VOL(Q)
Q
tPHL
tPLH
Figure 7. AC Reference Measurement
Q
D
Receiver
Device
Driver
Device
Q
D
50 50 V TT
V TT = V CC - 2.0 V
Figure 8. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020 - Termination of ECL Logic Devices.)
Resource Reference of Application Notes
AN1404
-
ECLinPS Circuit Performance at Non-Standard VIH Levels
AN1405
-
ECL Clock Distribution Techniques
AN1406
-
Designing with PECL (ECL at +5.0 V)
AN1504
-
Metastability and the ECLinPS Family
AN1568
-
Interfacing Between LVDS and ECL
AN1650
-
Using Wire-OR Ties in ECLinPS Designs
AN1672
-
The ECL Translator Guide
AND8001
-
Odd Number Counters Design
AND8002
-
Marking and Date Codes
AND8009
-
ECLinPS Plus Spice I/O Model Kit
AND8020
-
Termination of ECL Logic Devices
For an updated list of Application Notes, please see our website at http://onsemi.com.
http://onsemi.com
9
NB100LVEP17
PACKAGE DIMENSIONS
TSSOP-20
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948E-02
ISSUE A
20X
0.15 (0.006) T U
2X
S
20
L/2
M
T U
S
V
S
K
K1
11
B
L
J J1
-U-
PIN 1
IDENT
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
SECTION N-N
1
10
0.25 (0.010)
N
0.15 (0.006) T U
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. ICONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE −W−.
K REF
0.10 (0.004)
S
M
A
-VN
F
DETAIL E
-W-
C
D
G
H
DETAIL E
0.100 (0.004)
-T-
SEATING
PLANE
http://onsemi.com
10
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
6.40
6.60
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.27
0.37
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0
8
INCHES
MIN
MAX
0.252
0.260
0.169
0.177
−−−
0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.011
0.015
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0
8
NB100LVEP17
PACKAGE DIMENSIONS
QFN 24
MN SUFFIX
24 PIN QFN, 4x4
CASE 485L-01
ISSUE O
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.25 AND 0.30 MM
FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD
AS WELL AS THE TERMINALS.
A
B
PIN 1
IDENTIFICATION
E
DIM
A
A1
A2
A3
b
D
D2
E
E2
e
L
2X
0.15 C
0.15 C
2X
A2
0.10 C
A
0.08 C
A3
A1
SEATING
PLANE
REF
C
D2
e
L
7
12
6
13
E2
24X
b
1
0.10 C A B
18
24
19
e
0.05 C
http://onsemi.com
11
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.60
0.80
0.20 REF
0.23
0.28
4.00 BSC
2.70
2.90
4.00 BSC
2.70
2.90
0.50 BSC
0.35
0.45
NB100LVEP17
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051
Phone: 81-3-5773-3850
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
http://onsemi.com
12
NB100LVEP17/D