NB100LVEP56 2.5V / 3.3V / 5VECL Dual Differential 2:1 Multiplexer The NB100LVEP56 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or differential data signals. The device features both individual and common select inputs to address both data path and random logic applications. Common and individual selects can accept both ECL and CMOS input voltage levels. Multiple VBB pins are provided. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input operation, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. http://onsemi.com MARKING DIAGRAMS* 20 20 1 N100 LP56 ALYW TSSOP-20 DT SUFFIX CASE 948E 1 • Maximum Input Clock Frequency > 2.5 GHz Typical • Maximum Input Data Rate > 2.5 Gb/s Typical 24 • 525 ps Typical Propagation Delays • Low Profile QFN Package • PECL Mode Operating Range: VCC = 2.375 V to 5.5 V 1 24 N100 LP56 ALYW 1 24 PIN QFN MN SUFFIX CASE 485L with VEE = 0 V • NECL Mode Operating Range: VCC = 0 V A L Y W with VEE = -2.375 V to -5.5 V • Separate, Common Select, and Individual Select (Compatible with ECL and CMOS Input Voltage Levels) • Q Output Will Default LOW with Inputs Open or at VEE • Multiple VBB Outputs = Assembly Location = Wafer Lot = Year = Work Week *For additional information, see Application Note AND8002/D ORDERING INFORMATION Device NB100LVEP56DT Package Shipping TSSOP-20 75 Units/Rail NB100LVEP56DTR2 TSSOP-20 2500 Tape & Reel NB100LVEP56MN QFN-24 NB100LVEP56MNR2 QFN-24 Semiconductor Components Industries, LLC, 2003 April, 2003 - Rev. 3 1 92 Units/Rail 3000 Tape & Reel Publication Order Number: NB100LVEP56/D NB100LVEP56 Table 1. PIN DESCRIPTION ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ Pin No. TSSOP QFN Name I/O Default State 14,20 3,9,18,19, 20 VCC - - Positive Supply Voltage. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. 11 15,24 VEE - - Negative Supply Voltage. All VEE Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. 3,8 6,12 VBB0, VBB1 - - ECL Reference Voltage Output 1 4 D0a ECL Input Low Noninverted Differential Data a Input to MUX 0. Internal 75 k to VEE. 2 5 D0a ECL Input High Inverted Differential Data a Input to MUX 0. Internal 75 k to VEE and 37 k to VCC. 4 7 D0b ECL Input Low Noninverted Differential Data b Input to MUX 0. Internal 75 k to VEE. 5 8 D0b ECL Input High Inverted Differential Data b Input to MUX 0. Internal 75 k to VEE and 37 k to VCC. 6 10 D1a ECL Input Low Noninverted Differential Data a Input to MUX 1. Internal 75 k to VEE. 7 11 D1a ECL Input High Inverted Differential Data a Input to MUX 1. Internal 75 k to VEE and 37 k to VCC. 9 13 D1b ECL Input Low Noninverted Differential Data b Input to MUX 1. Internal 75 k to VEE. 10 14 D1b ECL Input High Inverted Differential Data b Input to MUX 1. Internal 75 k to VEE and 37 k to VCC. 19 2 Q0 ECL Output - Noninverted Differential Output MUX 0. Typically Terminated with 50 to VTT = VCC - 2 V. 18 1 Q0 ECL Output - Inverted Differential Output MUX 0. Typically Terminated with 50 to VTT = VCC - 2 V. 13 17 Q1 ECL Output - Noninverted Differential Output MUX 1. Typically Terminated with 50 to VTT = VCC - 2 V. 12 16 Q1 ECL Output - Inverted Differential Output MUX 1. Typically Terminated with 50 to VTT = VCC - 2 V. 17 23 SEL0 ECL, CMOS Input Low Noninverted Differential Select Input to MUX 0. Internal 75 to VEE. 16 22 COM_SEL ECL, CMOS Input Low Noninverted Differential Common Select Input to Both MUX. Internal 75 to VEE. 15 21 SEL1 ECL, CMOS Input Low Noninverted Differential Select Input to MUX 1. Internal 75 to VEE. N/A - EP - Description Exposed Pad. (Note 1) 1. The thermally conductive exposed pad on the package bottom (see case drawing) must be attached to a heat sinking conduit. http://onsemi.com 2 NB100LVEP56 D0a R1 D0a R1 1 R2 Q0 Q0 D0b R1 0 Table 2. TRUTH TABLE SEL0 R2 R1 D0b R1 SEL0 SEL1 COM_SEL Q0, Q0 Q1, Q1 X L L H H X L H H L H L L L L a b b a a a b a a b COM_SEL R1 D1a R1 D1a R1 SEL1 R1 1 R2 Q1 Q1 D1b R1 0 VCC VEE R2 D1b R1 COM VEE SEL0 SEL SEL1 VCC VCC VCC Q0 Q0 SEL0 COM_SEL SEL1 VCC Q1 Q1 VEE Figure 1. Logic Diagram 20 19 18 17 16 15 14 13 12 11 24 23 22 21 20 Exposed Pad (EP) 19 Q0 1 18 VCC Q0 2 17 Q1 VCC 3 16 Q1 NB100LVEP56 1 2 3 4 5 6 7 8 9 10 D0a D0a VBBO D0b D0b D1a D1a VBB1 D1b D1b NB100LVEP56 D0a 4 15 VEE D0a 5 14 D1b VBB0 6 13 D1b 7 8 9 10 11 12 D0b D0b VCC D1a D1a VBB1 Figure 1. TSSOP-20 Lead Pinout (Top View) Figure 2. QFN-24 Lead Pinout (Top View) Table 3. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor (R1) 75 k Internal Input Pullup Resistor (R2) 37 k ESD Protection Human Body Model Machine Model Charged Device Model Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Oxygen Index: 28 to 34 Transistor Count > 2 kV > 150 V > 2 kV Level 1 UL 94 V-0 @ 0.125 in 354 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. http://onsemi.com 3 NB100LVEP56 Table 4. MAXIMUM RATINGS (Note 2) Symbol Parameter Condition 1 Condition 2 Rating Unit VCC Positive Mode Power Supply VEE = 0 V 6 V VEE Negative Mode Power Supply VCC = 0 V -6 V VI Positive Mode Input Voltage Negative Mode Input Voltage VEE = 0 V VCC = 0 V 6 -6 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source 0.5 mA TA Operating Temperature Range -40 to +85 °C Tstg Storage Temperature Range -65 to +150 °C JA Thermal Resistance (Junction-to-Ambient) JEDEC 51-3 (1S - Single Layer Test Board) 0 LFPM 500 LFPM 20 TSSOP 20 TSSOP 140 50 °C/W °C/W JA Thermal Resistance (Junction-to-Ambient) JEDEC 51-6 (2S2P-Multi Layer Test Board) with Filled Thermal Vias 0 LFPM 500 LFPM 24 QFN 24 QFN 37 32 °C/W °C/W JC Thermal Resistance (Junction-to-Case) Standard Board 20 TSSOP 24 QFN 23 to 41 11 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C 265 °C VI VCC VI VEE 2. Maximum Ratings are those values beyond which device damage may occur. Table 5. DC CHARACTERISTICS, PECL VCC = 2.5 V, VEE = 0 V (Note 3) -40 °C Symbol Min Characteristic Typ 25°C Max Min Typ 85°C Max Min Typ Max Unit IEE Negative Power Supply Current 35 45 55 35 45 55 35 48 58 mA VOH Output HIGH Voltage (Note 4) 1355 1480 1605 1355 1480 1605 1355 1480 1605 mV VOL Output LOW Voltage (Note 4) 555 775 900 555 775 900 555 775 900 mV VIH Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) (Note 5) 1335 1335 VCC 1620 1335 1335 VCC 1620 1275 1275 VCC 1620 mV VIL Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) (Note 5) VEE 555 875 875 VEE 555 875 875 VEE 555 875 875 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 6) 1.2 2.5 1.2 2.5 1.2 2.5 V IIH Input HIGH Current (@VIH) 150 A IIL Input LOW Current (@VIL) 150 D D SEL 0.5 -150 -150 150 0.5 -150 -150 0.5 -150 -150 A NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 3. Input and output parameters vary 1:1 with VCC. VEE can vary +0.125 V to -1.3 V. 4. All loading with 50 to VCC-2.0 V. 5. Do not use VBB at VCC < 3.0 V. 6. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 4 NB100LVEP56 Table 6. DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 7) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 35 45 55 35 45 55 35 48 58 mA IEE Negative Power Supply Current VOH Output HIGH Voltage (Note 8) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 8) 1355 1575 1700 1355 1575 1700 1355 1575 1700 mV VIH Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) 2135 2135 VCC 2420 2135 2135 VCC 2420 2135 2135 VCC 2420 mV VIL Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) VEE 1355 1675 1675 VEE 1355 1675 1675 VEE 1355 1675 1675 mV VBB Output Reference Voltage (Note 9) 1775 1975 1775 1975 1775 1975 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10) 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current (@VIH) 150 A IIL Input LOW Current (@VIL) 1875 1.2 1875 150 D D SEL 0.5 -150 -150 1875 150 0.5 -150 -150 A 0.5 -150 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 7. Input and output parameters vary 1:1 with VCC. VEE can vary +0.925 V to -0.5 V. 8. All loading with 50 to VCC-2.0 V. 9. Single-Ended input operation is limited to VCC 3.0 V in PECL mode. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 7. DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 11) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 40 50 60 40 50 60 45 55 65 mA VOH Output HIGH Voltage (Note 12) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 12) 3055 3275 3400 3055 3275 3400 3055 3275 3400 mV VIH Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) 3775 3775 VCC 4120 3775 3775 VCC 4120 3775 3775 VCC 4120 mV VIL Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) VEE 3055 3375 3375 VEE 3055 3375 3375 VEE 3055 3375 3375 mV VBB Output Voltage Reference 3475 3675 3475 3675 3475 3675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13) 5.0 1.2 5.0 1.2 5.0 V IIH Input HIGH Current (@VIH) 150 A IIL Input LOW Current (@VIL) Symbol Characteristic 3575 1.2 150 D D SEL 0.5 -150 -150 3575 150 0.5 -150 -150 0.5 -150 -150 3575 A NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 11. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to -0.5 V. 12. All loading with 50 ohms to VCC-2.0 V. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 5 NB100LVEP56 Table 8. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.8 V to -2.375 V (Note 14) -40 °C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 35 45 55 35 45 55 35 48 58 mA VOH Output HIGH Voltage (Note 15) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 15) -1945 -1725 -1600 -1945 -1725 -1600 -1945 -1725 -1600 mV VIH Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) -1 165 VCC -1 165 VCC -1 165 VCC -1 165 -880 -1 165 -880 -1 165 -880 Symbol VIL Characteristic mV Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) VEE -1600 VEE -1600 VEE -1600 mV -1945 -1600 -1945 -1600 -1945 -1600 VBB Output Reference Voltage (Note 16) -1525 -1325 -1525 -1325 -1525 VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 17) IIH Input HIGH Current (@VIH) IIL Input LOW Current (@VIL) -1425 VEE+1.2 0.0 -1425 VEE+1.2 150 D D SEL 0.5 -150 -150 0.0 -1425 VEE+1.2 150 0.5 -150 -150 -1325 mV 0.0 V 150 A A 0.5 -150 -150 NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 14. Input and output parameters vary 1:1 with VCC. 15. All loading with 50 to VCC-2.0 V. 16. Single-Ended input operation is limited to VEE from -3.0 V to -5.5 V in NECL mode. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 9. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = -3.8 V to -5.5 V (Note 18) -40 °C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 40 50 60 40 50 60 45 55 65 mA IEE Negative Power Supply Current VOH Output HIGH Voltage (Note 19) -1 145 -1020 -895 -1 145 -1020 -895 -1 145 -1020 -895 mV VOL Output LOW Voltage (Note 19) -1945 -1725 -1600 -1945 -1725 -1600 -1945 -1725 -1600 mV VIH Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) -1 165 VCC -1 165 VCC -1 165 VCC -1 165 -880 -1 165 -880 -1 165 -880 VIL mV Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) VEE -1600 VEE -1600 VEE -1600 mV -1945 -1625 -1945 -1625 -1945 -1625 VBB Output Reference Voltage (Note 20) -1525 -1325 -1525 -1325 -1525 VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 21) IIH Input HIGH Current (@VIH) IIL Input LOW Current (@VIL) -1425 VEE+1.2 0.0 150 D D SEL 0.5 -150 -150 -1425 VEE+1.2 0.0 150 0.5 -150 -150 -1425 VEE+1.2 0.5 -150 -150 -1325 mV 0.0 V 150 A A NOTE: LVEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. 18. Input and output parameters vary 1:1 with VCC. 19. All loading with 50 to VCC-2.0 V. 20. Single-Ended input operation is limited to VEE from -3.0 V to -5.5 V in NECL mode. 21. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 6 NB100LVEP56 Table 10. AC CHARACTERISTICS VCC = 0 V; VEE = -2.375 V to -3.8 V or VCC = 2.375 V to 3.8 V; VEE = 0 V (Note 22) -40 °C Symbol 25°C Min Typ fin 1 GHz fin = 2 GHz fin = 2.5 GHz 525 500 400 700 600 500 D to Q, Q SEL to Q, Q COM_SEL to Q, Q 375 575 550 500 775 750 625 975 950 10 5 15 50 50 30 50 200 Characteristic VOUTPP Output Voltage Amplitude (See Figure 2) tPLH, tPHL Propagation Delay to Output Differential tSkew Pulse Skew (Note 23) Within Device Input Skew (Note 24) Within Device Output Skew (Note 25) Device-to-Device Skew (Note 26) tJITTER RMS Random Clock Jitter (Note 27) Peak-to-Peak Data Dependent Jitter (Note 28) Max Min Typ 550 500 350 700 600 450 400 625 600 525 825 800 85°C Max Min Typ Max 500 400 200 700 500 300 450 700 700 575 900 900 700 1100 1100 10 5 15 50 50 30 50 200 ps 1 ps mV Unit mV ps fin = 2.5 GHz VINPP Input Voltage Swing (Differential Configuration) (Note 29) tr tf Output Rise/Fall Times @ 50 MHz (20% - 80%) 10 5 15 50 1 fin =1.5 Gb/s fin = 2.5 Gb/s 650 1025 1000 1 5 15 10 25 10 25 150 800 1200 150 800 1200 150 800 1200 60 110 150 60 120 170 90 140 230 Q, Q ps 22. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. Input edge rates 150 ps (20% - 80%). 23. Pulse Skew |tPLH - tPHL| 24. Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input. 25. Worst case difference between Q0 and Q1 outputs. 26. Skew is measured between outputs under identical transitions. 27. Additive RMS jitter with 50% Duty Cycle Clock Signal at fin = 2.5 GHz. 28. Additive Peak-to-Peak jitter with input NRZ data at PRBS 231-1 at fin = 2.5 Gb/s. 29. Input voltage swing is a single-ended measurement operating in differential mode. Table 11. AC CHARACTERISTICS VCC = 0 V; VEE = -4.2 V to -5.5 V or VCC = 4.2 V to 5.5 V; VEE = 0 V (Note 30) -40 °C Symbol 25°C Min Typ fin 1 GHz fin = 2 GHz fin = 2.5 GHz 600 550 400 750 650 550 D to Q, Q SEL to Q, Q COM_SEL to Q, Q 375 575 550 500 775 750 625 975 950 5 15 20 50 50 30 50 200 Characteristic VOUTPP Output Voltage Amplitude (See Figure 3) tPLH, tPHL Propagation Delay to Output Differential tSkew Pulse Skew (Note 31) Within Device Input Skew (Note 32) Within Device Output Skew (Note 33) Device-to-Device Skew (Note 34) tJITTER RMS Random Clock Jitter (Note 35) Peak-to-Peak Data Dependent Jitter (Note 36) Max 85°C Min Typ Max 600 500 350 750 600 450 400 625 600 525 825 800 650 1025 1000 5 15 20 50 50 30 50 200 Min Typ Max 600 400 200 750 500 300 450 700 700 575 900 900 700 1100 1100 5 15 20 50 50 30 50 200 ps 1 ps mV Unit mV ps fin = 2.5 GHz 1 fin =1.5 Gb/s fin = 2.5 Gb/s VINPP Input Voltage Swing (Differential Configuration) (Note 37) tr tf Output Rise/Fall Times @ 50 MHz (20% - 80%) 1 5 15 10 25 10 20 150 800 1200 150 800 1200 150 800 1200 60 110 150 60 120 170 90 140 230 Q, Q ps 30. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 to VCC-2.0 V. Input edge rates 150 ps (20% - 80%). 31. Pulse Skew |tPLH - tPHL| 32. Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input. 33. Worst case difference between Q0 and Q1 outputs. 34. Skew is measured between outputs under identical transitions. 35. Additive RMS jitter with 50% Duty Cycle Clock Signal at fin = 2.5 GHz. 36. Additive Peak-to-Peak jitter with input NRZ data at PRBS 231-1 at fin = 2.5 Gb/s. 37. Input voltage swing is a single-ended measurement operating in differential mode. http://onsemi.com 7 NB100LVEP56 10.0 9.0 Q AMP (mV) 750 7.0 6.0 550 5.0 4.0 450 3.0 RMS JITTER (ps) 8.0 650 2.0 350 JITTER (ps) 1.0 0.0 250 0.5 1.0 1.5 2.0 2.5 INPUT FREQUENCY (GHz) Figure 2. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) at VCC = 2.5 V, 25C 850 10.0 9.0 Q AMP (mV) 750 8.0 7.0 650 6.0 550 5.0 4.0 450 3.0 2.0 350 1.0 JITTER (ps) 250 0.5 0.0 1.0 1.5 2.0 2.5 INPUT FREQUENCY (GHz) Figure 3. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) at VCC = 5.0 V, 25C D VINPP = VIH(D) - VIL(D) D Q VOUTPP = VOH(Q) - VOL(Q) Q tPHL tPLH Figure 4. AC Reference Measurement http://onsemi.com 8 RMS JITTER (ps) OUTPUT VOLTAGE AMPLITUDE (mV) OUTPUT VOLTAGE AMPLITUDE (mV) 850 NB100LVEP56 Q D Receiver Device Driver Device Q D 50 50 V TT V TT = V CC - 2.0 V Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.) Resource Reference of Application Notes AN1404 - ECLinPS Circuit Performance at Non-Standard VIH Levels AN1405 - ECL Clock Distribution Techniques AN1406 - Designing with PECL (ECL at +5.0 V) AN1504 - Metastability and the ECLinPS Family AN1568 - Interfacing Between LVDS and ECL AN1672 - The ECL Translator Guide AND8002 - Marking and Date Codes AND8009 - ECLinPS Plus Spice I/O Model Kit AND8020 - Termination of ECL Logic Devices For an updated list of Application Notes, please see our website at http://onsemi.com. http://onsemi.com 9 NB100LVEP56 PACKAGE DIMENSIONS 20X 0.15 (0.006) T U 2X TSSOP-20 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948E-02 ISSUE A K REF 0.10 (0.004) S 20 L/2 M T U S V ÍÍÍÍ ÍÍÍÍ ÍÍÍÍ K K1 11 B L J J1 -U- PIN 1 IDENT SECTION N-N 1 10 0.25 (0.010) N 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. ICONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S S M A -VN F DETAIL E -W- C D G H DETAIL E 0.100 (0.004) -T- SEATING PLANE http://onsemi.com 10 DIM A B C D F G H J J1 K K1 L M MILLIMETERS MIN MAX 6.40 6.60 4.30 4.50 −−− 1.20 0.05 0.15 0.50 0.75 0.65 BSC 0.27 0.37 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0 8 INCHES MIN MAX 0.252 0.260 0.169 0.177 −−− 0.047 0.002 0.006 0.020 0.030 0.026 BSC 0.011 0.015 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0 8 NB100LVEP56 PACKAGE DIMENSIONS D QFN 24 MN SUFFIX 24 PIN QFN, 4x4 CASE 485L-01 ISSUE O A B PIN 1 IDENTIFICATION NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. E DIM A A1 A2 A3 b D D2 E E2 e L 2X 0.15 C 0.15 C 2X A2 0.10 C A 0.08 C A3 A1 SEATING PLANE REF C D2 e L 7 12 6 13 E2 24X b 1 0.10 C A B 18 24 19 e 0.05 C http://onsemi.com 11 MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.60 0.80 0.20 REF 0.23 0.28 4.00 BSC 2.70 2.90 4.00 BSC 2.70 2.90 0.50 BSC 0.35 0.45 NB100LVEP56 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800-282-9855 Toll Free USA/Canada http://onsemi.com 12 NB100LVEP56/D