www.fairchildsemi.com FAN8100N/FAN8100MTC Low Voltage/Low Saturation 2-CH DC Motor Driver Features Description • Two channel H-bridge drivers with built-in NPN and vertical-PNP power transistors • Four functions for each channel - Forward/Reserve/Stop/ Brake functions • Special output pin for an RC car application - for a Turbo function for Ch.A (five-function RF receiver chip RX-2 interface) • Low stand-by current (typ. 0.1uA) • Wide supply voltage range (PVCC=1.8V ~ 9.0V) suitable for battery operated applications • 3.3V and 5V micro-controller interface • Low output saturation voltage (upper and lower total : typ. 0.15V@ 0.2A) • High current outputs (max. 1.5A/Ch.) • Parallel connection (Max Current : 3A) • High thermal capability for high continuous output currents • Built-in spark killing diodes • Built-in a thermal shutdown(TSD) function with hysteresis • Short circuit protected • Temperature independent internal voltage reference The FAN8100N/FAN8100MTC is a monolithic two channel dc motor drive IC designed for low voltage operated systems. It has dual H-bridge drivers, using NPN and verticalPNP power transistors with a low saturation voltage. Power packages with heat sinks endure high continuous output current. The high current and low saturation voltage feature make this device suitable for dc motor applications such as toy cars. It has also a built-in thermal shutdown protection circuit with hysteresis. Typical Application Ordering Information • • • • • General purpose dc motor driver Electronic toys - robots, RC cars Digital still camera(DSC) and film camera Home appliances and office equipment Precision instruments 12-DIPH-300 14-TSSOP 1 1 1 Device Package Operating Temp. FAN8100N 12-DIPH-300 −20 ~ +75°C FAN8100MTC 14-TSSOP −20 ~ +75°C FAN8100MTCX 14-TSSOP −20 ~ +75°C Rev. 1.0.0 ©2005 Fairchild Semiconductor Corporation FAN8100N/FAN8100MTC FORWARDB REVERSEB REVERSEA FORWARDA OUT2A GND 9 8 7 14 13 12 11 10 9 8 PVCCB VCC GND 2 3 4 5 6 7 OUT1A 1 PVCCA 6 D1A 5 VCC 4 PVCCB FIN OUT1B FORWARDB 3 GND 2 FAN8100MTC OUT2B 1 REVERSEB FAN8100N OUT1B FIN OUT2B GND 10 D1A OUT2A 11 PVCCA FORWARDA 12 OUT1A REVERSEA Pin Assignments Pin Definitions Pin Number Pin Name I/O 1(12) REVERSEB I Reverse logic input for channel B 2(13) FORWARDB I Forward logic input for channel B 3(14) OUT2B O Output2 of channel B FIN(1) GND - Ground 4(2) OUT1B O Output1 of channel B 5(3) PVCCB - Supply voltage for channel B output 6(4) VCC - Logic and control circuit supply voltage 7(5) D1A O Cathode of OUT1A upper diode 8(6) PVCCA - Supply voltage for channel A output 9(7) OUT1A O Output1 of channel A FIN(8) GND - Ground 10(9) OUT2A I Output2 of channel A 11(10) FORWARDA I Forward logic input for channel A 12(11) REVERSEA I Reverse logic input for channel A Note: ( ) FAN8100MTC 2 Pin Function Description FAN8100N/FAN8100MTC Internal Block Diagram VCC 6 FORWARDA REVERSEA 11 12 7 D1A 8 PVCCA 9 OUT1A 10 OUT2A 5 PVCCB 4 OUT1B 3 OUT2B Ch. A Control Circuit Bias & TSD Circuit FORWARDB REVERSEB 2 1 Ch. B Control Circuit Fin GND Note: FAN8100N pin number 3 FAN8100N/FAN8100MTC Absolute Maximum Ratings (Ta = 25°C) Parameter Symbol Value Unit VCC(MAX) 10.5 V Maximum output supply voltage PVCC(MAX) 10.5 V Maximum output applied voltage VOUT(MAX) PVCC + VD V VIN(MAX) 10.0 V Maximum D1A Voltage VD1A(MAX) PVCCA + 4.5 V Peak output current per channel IOUT(PEAK) 1.5(1.2) A Maximum logic and control supply voltage Maximum applied input voltage Note: ( ) FAN8100MTC Recommended Operating Conditions (Ta = 25°C) Parameter Logic and control circuit supply voltage Output supply voltage D1A Voltage Note: See the characteristics graphs. 4 Symbol Min. Typ. Max Unit VCC 2.2 - 9.0 V PVCC 1.8 - 9.0 V - PVCCA +3.0 V VD1A PVCCA FAN8100N/FAN8100MTC Typical Thermal Characteristics Parameter Symbol Power dissipation PDnote1 Value FAN8100N: 2.0 FAN8100MTC: 1.0 Unit W TA −20 ~ 75 °C Storage temperature TSTG −40 ~ 125 °C Junction temperature TJ 150 °C 150 °C 50 °C Operating temperature note2 Thermal shutdown temperature TSD ∆TSDnote2 Thermal shutdown hysteresis temperature Notes: 1. When mounted on JEDEC 76.2mm × 114mm × 1.57mm PCB (FR-4 glass epoxy material). 2. On the junction. These values are design specifications. Power Dissipation Curve Power Dissipation : PD[W] FAN8100N 2.0 1.0 0 SOA 0 25 50 75 100 125 150 175 150 175 Ambient temperature, Ta [°C] Power Dissipation : PD[W] FAN8100MTC 1.0 0.5 0 SOA 0 25 50 75 100 125 Ambient temperature, Ta [°C] Notes: 1. When mounted on JEDEC 76.2mm × 114mm × 1.57mm PCB (FR-4 glass epoxy material). 2. Power dissipation reduces 16mW/°C (FAN8100N) and 32mW/°C (FAN8100MTC) for using above Ta=25°C. 3. Do not exceed PD and SOA(Safe Operating Area). 5 FAN8100N/FAN8100MTC Electrical Characteristics (Ta=25°C, VCC=3V, PVCCA=PVCCB=3V, unless otherwise specified) Parameter Symbol Conditions Min. Typ. Max. Unit Stand-by current (IVCC+IPVCCA+IPVCCB) ICC0 All input pins=0V, with output pins open - 0.1 10 uA VCC supply current 1 (IVCC) ICC1 Forward or Reverse (single channel) - 4 6 mA VCC supply current 2 (IVCC) ICC2 Brake (single channel) - 5.5 8 mA Total supply current 1 (IVCC+IPVCCA+IPVCCB) ICC3 Forward or Reverse (single channel) with output pins open - 30(20) 40(27) mA Total supply current 2 (IVCC+IPVCCA+IPVCCB) ICC4 Brake (single channel) with output pins open - 55(35) 65(45) mA Saturation voltage 1 (upper + lower output transistors total) VSAT1 FORWARDA=3V, other input pins=0V, IOUT=0.2A - 0.15 0.25 V Saturation voltage 2 (upper + lower output transistors total) VSAT2 FORWARDA=3V, other input pins=0V, IOUT=0.4A - 0.35 0.55 V Input high level voltage VINH - 1.8 - VCC V Input low level voltage VINL - −0.3 - 0.7 V VIN=3V, per each input pin - 100 200 uA VCC=9V, PVCC=9V - - 30 uA IOUT=0.4A - - 1.7 V Input current Spark-killing diode leakage current Spark-killing diode voltage drop IIN ILEAK VD Note: ( ) FAN8100MTC Timing Characteristics (Ta=25°C, VCC=3V, PVCCA=PVCCB=3V, unless otherwise specified) Parameter Symbol Conditions Min. Typ. Max. Unit Output rising time tR input rising time = 20ns output voltage 10% to 90% - 0.3 - us Output falling time tF input falling time = 20ns output voltage 90% to 10% - 0.3 - us tPLH input rising time = 20ns input 50% to output 50% - 1 - us tPHL input falling time = 20ns input 50% to output 50% - 1 - us Input to output propagation delay Note: with 1nF Capacitor Loads 6 FAN8100N/FAN8100MTC Function Descriptions Logical Truth Table Channel A FORWARDA REVERSEA OUT1A OUT2A Function L L Z Z Stand-by (Stop) H L H L Forward L H L H Reverse H H L L Brake FORWARDB REVERSEB OUT1B OUT2B Function L L Z Z Stand-by (Stop) H L H L Forward L H L H Reverse H H L L Brake Channel B Z: high-impedance Time Domain Waveforms Input Signals FORWARD L REV ERSE L TURBO* L H L H H H **Should be 'L' **Should be 'L' *Only for channel A H **when an external turbo circuit is used VS PV CC Output Voltage (V OUT1 -V OUT 2) time 0 -PV CC : High impedance Notes: **See typical application circuits. 7 FAN8100N/FAN8100MTC Application Information 1. Thermal Shutdown (TSD) Thermal Shutdown Circuit turns OFF all outputs when the junction temperature typically reaches 150°C. It is intended to protect the device from failures due to excessive junction temperature. The Thermal Shutdown has the hysteresis of 40°C approximately. 2. Printed Circuit Board (PCB) Layout If high current flows on the power supply(PVCC) and GND line, it can be misoperated due to the line oscillation. The following points should be kept in mind regarding as the pattern layout to prevent it. • Making the wiring lines thick and short, especially between power supply (PVCC) and GND. • Putting a passthrough capacitor near the IC The Rth-ja of the FAN8100N/MTC can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board as shown in following figure. It is recommended the copper area is as large as possible. Example of PCB copper area which is used as heatsink 8 FAN8100N/FAN8100MTC Typical Application Circuits 1. RF Remote Controlled Car RF Signal FORWARD PVCCA D1A GND 9 8 7 FIN NC 1 2 3 4 5 6 VCC 8 OUT2B 7 REVERSEB 6 FORWARDB 5 LEFTWARD SI 4 RIGHTWARD 3 OSCI 2 10 FAN8100N/FAN8100MTC OSCO 1 VO2 Receiver Controller RX-2 11 OUT1A 12 OUT2A REVERSEA 9 FORWARDA NC BACKWARD 10 OUT1B 11 PVCCB 12 FORWARD TURBO VDD 13 FIN GND 14 GND RF Circuits (Discrete Parts) 15 VI1 VI2 16 VO1 BACKWARD RIGHT LEFT 2. RF Remote Controlled Car with a Turbo Function Q1 R2 Q2 RF Signal R1 Q3 FORWARD Receiver Controller RX-2 10 FIN D1A 11 PVCCA FORWARDA REVERSEA 12 OUT1A 9 9 8 7 3 4 5 6 7 8 1 2 3 SI OSCI OSCO RIGHTWARD LEFTWARD NC REVERSEB FORWARDB OUT2B FIN 4 5 6 VCC 2 PVCCB 1 GND FAN8100N/FAN8100MTC OUT1B 10 NC BACKWARD FORWARD 11 GND 12 GND 13 TURBO VDD VI1 14 VO2 RF Circuits (Discrete Parts) 15 OUT2A 16 VO1 VI2 BACKWARD RIGHT LEFT 9 FAN8100N/FAN8100MTC Typical Performance Characteristics (FAN8100N) VCC = PVCC = 3V 6 5 4 0.8 Output Saturation Voltage [V] VCC Current Drain ICC [mA] Brake Forward / Reverse 3 2 1 0 0.6 0.5 0.4 0.3 0.2 0.1 0 -50 0 50 100 Ambient Temperature Ta [℃] 150 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 VCC = PVCC = 9V 180 160 50 Input Current IIN [uA] Brake 40 Forward / Reverse 30 20 140 120 100 80 60 40 10 20 0 0 -50 0 50 100 Ambient Temperature Ta [℃] 150 0 VCC = PVCC = VIN = 3V 42 41 40 39 2 4 6 Input Voltage VIN [V] 8 10 VCC = PVCC = 3V 8 Supply Current ICC [mA] 43 Input Current IIN [uA] 0.1 Output Current IO [℃] VCC = PVCC = 3V 60 PVCC Current Drain IPVCC [mA 0.7 7 Brake 6 5 Forward / Reverse 4 3 2 1 38 0 -40 -20 0 20 40 60 80 Ambient Temperature Ta [℃] 100 120 0 2 4 6 Supply Voltage VCC [V] 10 VCC = PVCC = 3V 60 Supply Current IPVCC [mA] 8 Brake 50 40 Forward / Reverse 30 20 10 0 0 10 2 4 6 Supply Voltage PVCC [V] 8 10 FAN8100N/FAN8100MTC Typical Performance Characteristics(Continued) (FAN8100MTC) VCC = PVCC = 3V Brake 5 4 1.2 Output Saturation Voltage [V] VCC Current Drain ICC [mA 6 Forward / Reverse 3 2 1 0 0.8 0.6 0.4 0.2 0 -50 0 50 100 Ambient Temperature Ta [℃] 150 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 VCC = PVCC = 9V 180 160 30 Input Current IIN [uA] Brake 25 20 Forward / Reverse 15 10 140 120 100 80 60 40 5 20 0 0 -50 0 50 100 Ambient Temperature Ta [℃] 0 150 VCC = PVCC = VIN = 3V 42 41 40 39 38 2 4 6 Input Voltage VIN [V] 8 10 VCC = PVCC = 3V 8 Supply Current ICC [mA] 43 7 Brake 6 5 Forward / Reverse 4 3 2 1 37 0 -40 -20 0 20 40 60 80 Ambient Temperature Ta [℃] 100 120 0 2 4 6 Supply Voltage VCC [V] 8 10 VCC = PVCC = 3V 35 Supply Current IPVCC [mA] Input Current IIN [uA] 0.1 Output Current IO [℃] VCC = PVCC = 3V 35 PVCC Current Drain IPVCC [mA 1 30 Brake 25 20 Forward / Reverse 15 10 5 0 0 2 4 6 Supply Voltage PVCC [V] 8 10 11 FAN8100N/FAN8100MTC Mechanical Dimensions (Unit: mm) Package Dimension 12-DIPH-300 12 FAN8100N/FAN8100MTC Mechanical Dimensions (Unit: mm) (Continued) Package dimensions 14-TSSOP 13 FAN8100N/FAN8100MTC DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com 6/9/05 0.0m 001 Stock#DSxxxxxxxx 2005 Fairchild Semiconductor Corporation