FAIRCHILD FAN8100MTC

www.fairchildsemi.com
FAN8100N/FAN8100MTC
Low Voltage/Low Saturation 2-CH DC Motor Driver
Features
Description
• Two channel H-bridge drivers with built-in NPN and
vertical-PNP power transistors
• Four functions for each channel - Forward/Reserve/Stop/
Brake functions
• Special output pin for an RC car application - for a Turbo
function for Ch.A (five-function RF receiver chip RX-2
interface)
• Low stand-by current (typ. 0.1uA)
• Wide supply voltage range (PVCC=1.8V ~ 9.0V) suitable
for battery operated applications
• 3.3V and 5V micro-controller interface
• Low output saturation voltage (upper and lower total : typ.
0.15V@ 0.2A)
• High current outputs (max. 1.5A/Ch.)
• Parallel connection (Max Current : 3A)
• High thermal capability for high continuous output
currents
• Built-in spark killing diodes
• Built-in a thermal shutdown(TSD) function with
hysteresis
• Short circuit protected
• Temperature independent internal voltage reference
The FAN8100N/FAN8100MTC is a monolithic two channel
dc motor drive IC designed for low voltage operated systems. It has dual H-bridge drivers, using NPN and verticalPNP power transistors with a low saturation voltage. Power
packages with heat sinks endure high continuous output current. The high current and low saturation voltage feature
make this device suitable for dc motor applications such as
toy cars. It has also a built-in thermal shutdown protection
circuit with hysteresis.
Typical Application
Ordering Information
•
•
•
•
•
General purpose dc motor driver
Electronic toys - robots, RC cars
Digital still camera(DSC) and film camera
Home appliances and office equipment
Precision instruments
12-DIPH-300
14-TSSOP
1
1
1
Device
Package
Operating Temp.
FAN8100N
12-DIPH-300
−20 ~ +75°C
FAN8100MTC
14-TSSOP
−20 ~ +75°C
FAN8100MTCX
14-TSSOP
−20 ~ +75°C
Rev. 1.0.0
©2005 Fairchild Semiconductor Corporation
FAN8100N/FAN8100MTC
FORWARDB
REVERSEB
REVERSEA
FORWARDA
OUT2A
GND
9
8
7
14
13
12
11
10
9
8
PVCCB
VCC
GND
2
3
4
5
6
7
OUT1A
1
PVCCA
6
D1A
5
VCC
4
PVCCB
FIN
OUT1B
FORWARDB
3
GND
2
FAN8100MTC
OUT2B
1
REVERSEB
FAN8100N
OUT1B
FIN
OUT2B
GND
10
D1A
OUT2A
11
PVCCA
FORWARDA
12
OUT1A
REVERSEA
Pin Assignments
Pin Definitions
Pin Number
Pin Name
I/O
1(12)
REVERSEB
I
Reverse logic input for channel B
2(13)
FORWARDB
I
Forward logic input for channel B
3(14)
OUT2B
O
Output2 of channel B
FIN(1)
GND
-
Ground
4(2)
OUT1B
O
Output1 of channel B
5(3)
PVCCB
-
Supply voltage for channel B output
6(4)
VCC
-
Logic and control circuit supply voltage
7(5)
D1A
O
Cathode of OUT1A upper diode
8(6)
PVCCA
-
Supply voltage for channel A output
9(7)
OUT1A
O
Output1 of channel A
FIN(8)
GND
-
Ground
10(9)
OUT2A
I
Output2 of channel A
11(10)
FORWARDA
I
Forward logic input for channel A
12(11)
REVERSEA
I
Reverse logic input for channel A
Note: ( ) FAN8100MTC
2
Pin Function Description
FAN8100N/FAN8100MTC
Internal Block Diagram
VCC
6
FORWARDA
REVERSEA
11
12
7
D1A
8
PVCCA
9
OUT1A
10
OUT2A
5
PVCCB
4
OUT1B
3
OUT2B
Ch. A
Control
Circuit
Bias & TSD
Circuit
FORWARDB
REVERSEB
2
1
Ch. B
Control
Circuit
Fin
GND
Note: FAN8100N pin number
3
FAN8100N/FAN8100MTC
Absolute Maximum Ratings (Ta = 25°C)
Parameter
Symbol
Value
Unit
VCC(MAX)
10.5
V
Maximum output supply voltage
PVCC(MAX)
10.5
V
Maximum output applied voltage
VOUT(MAX)
PVCC + VD
V
VIN(MAX)
10.0
V
Maximum D1A Voltage
VD1A(MAX)
PVCCA + 4.5
V
Peak output current per channel
IOUT(PEAK)
1.5(1.2)
A
Maximum logic and control supply voltage
Maximum applied input voltage
Note: ( ) FAN8100MTC
Recommended Operating Conditions (Ta = 25°C)
Parameter
Logic and control circuit supply voltage
Output supply voltage
D1A Voltage
Note: See the characteristics graphs.
4
Symbol
Min.
Typ.
Max
Unit
VCC
2.2
-
9.0
V
PVCC
1.8
-
9.0
V
-
PVCCA
+3.0
V
VD1A
PVCCA
FAN8100N/FAN8100MTC
Typical Thermal Characteristics
Parameter
Symbol
Power dissipation
PDnote1
Value
FAN8100N:
2.0
FAN8100MTC: 1.0
Unit
W
TA
−20 ~ 75
°C
Storage temperature
TSTG
−40 ~ 125
°C
Junction temperature
TJ
150
°C
150
°C
50
°C
Operating temperature
note2
Thermal shutdown temperature
TSD
∆TSDnote2
Thermal shutdown hysteresis temperature
Notes:
1. When mounted on JEDEC 76.2mm × 114mm × 1.57mm PCB (FR-4 glass epoxy material).
2. On the junction. These values are design specifications.
Power Dissipation Curve
Power
Dissipation
: PD[W]
FAN8100N
2.0
1.0
0
SOA
0
25
50
75
100
125
150
175
150
175
Ambient temperature, Ta [°C]
Power
Dissipation
: PD[W]
FAN8100MTC
1.0
0.5
0
SOA
0
25
50
75
100
125
Ambient temperature, Ta [°C]
Notes:
1. When mounted on JEDEC 76.2mm × 114mm × 1.57mm PCB (FR-4 glass epoxy material).
2. Power dissipation reduces 16mW/°C (FAN8100N) and 32mW/°C (FAN8100MTC) for using above Ta=25°C.
3. Do not exceed PD and SOA(Safe Operating Area).
5
FAN8100N/FAN8100MTC
Electrical Characteristics
(Ta=25°C, VCC=3V, PVCCA=PVCCB=3V, unless otherwise specified)
Parameter
Symbol
Conditions
Min.
Typ.
Max.
Unit
Stand-by current
(IVCC+IPVCCA+IPVCCB)
ICC0
All input pins=0V,
with output pins open
-
0.1
10
uA
VCC supply current 1 (IVCC)
ICC1
Forward or Reverse
(single channel)
-
4
6
mA
VCC supply current 2 (IVCC)
ICC2
Brake (single channel)
-
5.5
8
mA
Total supply current 1
(IVCC+IPVCCA+IPVCCB)
ICC3
Forward or Reverse
(single channel)
with output pins open
-
30(20) 40(27)
mA
Total supply current 2
(IVCC+IPVCCA+IPVCCB)
ICC4
Brake (single channel)
with output pins open
-
55(35) 65(45)
mA
Saturation voltage 1
(upper + lower output transistors total)
VSAT1
FORWARDA=3V, other
input pins=0V,
IOUT=0.2A
-
0.15
0.25
V
Saturation voltage 2
(upper + lower output transistors total)
VSAT2
FORWARDA=3V, other
input pins=0V,
IOUT=0.4A
-
0.35
0.55
V
Input high level voltage
VINH
-
1.8
-
VCC
V
Input low level voltage
VINL
-
−0.3
-
0.7
V
VIN=3V,
per each input pin
-
100
200
uA
VCC=9V, PVCC=9V
-
-
30
uA
IOUT=0.4A
-
-
1.7
V
Input current
Spark-killing diode leakage current
Spark-killing diode voltage drop
IIN
ILEAK
VD
Note: ( ) FAN8100MTC
Timing Characteristics
(Ta=25°C, VCC=3V, PVCCA=PVCCB=3V, unless otherwise specified)
Parameter
Symbol
Conditions
Min.
Typ.
Max.
Unit
Output rising time
tR
input rising time = 20ns
output voltage 10% to 90%
-
0.3
-
us
Output falling time
tF
input falling time = 20ns
output voltage 90% to 10%
-
0.3
-
us
tPLH
input rising time = 20ns
input 50% to output 50%
-
1
-
us
tPHL
input falling time = 20ns
input 50% to output 50%
-
1
-
us
Input to output propagation delay
Note: with 1nF Capacitor Loads
6
FAN8100N/FAN8100MTC
Function Descriptions
Logical Truth Table
Channel A
FORWARDA
REVERSEA
OUT1A
OUT2A
Function
L
L
Z
Z
Stand-by (Stop)
H
L
H
L
Forward
L
H
L
H
Reverse
H
H
L
L
Brake
FORWARDB
REVERSEB
OUT1B
OUT2B
Function
L
L
Z
Z
Stand-by (Stop)
H
L
H
L
Forward
L
H
L
H
Reverse
H
H
L
L
Brake
Channel B
Z: high-impedance
Time Domain Waveforms
Input
Signals
FORWARD
L
REV ERSE
L
TURBO*
L
H
L
H
H
H
**Should be 'L'
**Should be 'L'
*Only for channel A
H
**when an external turbo circuit is used
VS
PV CC
Output Voltage
(V OUT1 -V OUT 2)
time
0
-PV CC
: High impedance
Notes: **See typical application circuits.
7
FAN8100N/FAN8100MTC
Application Information
1. Thermal Shutdown (TSD)
Thermal Shutdown Circuit turns OFF all outputs when the junction temperature typically reaches 150°C. It is intended to protect the device from failures due to excessive junction temperature.
The Thermal Shutdown has the hysteresis of 40°C approximately.
2. Printed Circuit Board (PCB) Layout
If high current flows on the power supply(PVCC) and GND line, it can be misoperated due to the line oscillation.
The following points should be kept in mind regarding as the pattern layout to prevent it.
• Making the wiring lines thick and short, especially between power supply (PVCC) and GND.
• Putting a passthrough capacitor near the IC
The Rth-ja of the FAN8100N/MTC can be reduced by soldering the GND pins to a suitable copper area of the printed circuit
board as shown in following figure. It is recommended the copper area is as large as possible.
Example of PCB copper area which is used as heatsink
8
FAN8100N/FAN8100MTC
Typical Application Circuits
1. RF Remote Controlled Car
RF Signal
FORWARD
PVCCA
D1A
GND
9
8
7
FIN
NC
1
2
3
4
5
6
VCC
8
OUT2B
7
REVERSEB
6
FORWARDB
5
LEFTWARD
SI
4
RIGHTWARD
3
OSCI
2
10
FAN8100N/FAN8100MTC
OSCO
1
VO2
Receiver Controller
RX-2
11
OUT1A
12
OUT2A
REVERSEA
9
FORWARDA
NC
BACKWARD
10
OUT1B
11
PVCCB
12
FORWARD
TURBO
VDD
13
FIN
GND
14
GND
RF Circuits
(Discrete Parts)
15
VI1
VI2
16
VO1
BACKWARD
RIGHT
LEFT
2. RF Remote Controlled Car with a Turbo Function
Q1
R2
Q2
RF Signal
R1
Q3
FORWARD
Receiver Controller
RX-2
10
FIN
D1A
11
PVCCA
FORWARDA
REVERSEA
12
OUT1A
9
9
8
7
3
4
5
6
7
8
1
2
3
SI
OSCI
OSCO
RIGHTWARD
LEFTWARD
NC
REVERSEB
FORWARDB
OUT2B
FIN
4
5
6
VCC
2
PVCCB
1
GND
FAN8100N/FAN8100MTC
OUT1B
10
NC
BACKWARD
FORWARD
11
GND
12
GND
13
TURBO
VDD
VI1
14
VO2
RF Circuits
(Discrete Parts)
15
OUT2A
16
VO1
VI2
BACKWARD
RIGHT
LEFT
9
FAN8100N/FAN8100MTC
Typical Performance Characteristics (FAN8100N)
VCC = PVCC = 3V
6
5
4
0.8
Output Saturation Voltage [V]
VCC Current Drain ICC [mA]
Brake
Forward / Reverse
3
2
1
0
0.6
0.5
0.4
0.3
0.2
0.1
0
-50
0
50
100
Ambient Temperature Ta [℃]
150
0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
VCC = PVCC = 9V
180
160
50
Input Current IIN [uA]
Brake
40
Forward / Reverse
30
20
140
120
100
80
60
40
10
20
0
0
-50
0
50
100
Ambient Temperature Ta [℃]
150
0
VCC = PVCC = VIN = 3V
42
41
40
39
2
4
6
Input Voltage VIN [V]
8
10
VCC = PVCC = 3V
8
Supply Current ICC [mA]
43
Input Current IIN [uA]
0.1
Output Current IO [℃]
VCC = PVCC = 3V
60
PVCC Current Drain IPVCC [mA
0.7
7
Brake
6
5
Forward / Reverse
4
3
2
1
38
0
-40
-20
0
20
40
60
80
Ambient Temperature Ta [℃]
100
120
0
2
4
6
Supply Voltage VCC [V]
10
VCC = PVCC = 3V
60
Supply Current IPVCC [mA]
8
Brake
50
40
Forward / Reverse
30
20
10
0
0
10
2
4
6
Supply Voltage PVCC [V]
8
10
FAN8100N/FAN8100MTC
Typical Performance Characteristics(Continued) (FAN8100MTC)
VCC = PVCC = 3V
Brake
5
4
1.2
Output Saturation Voltage [V]
VCC Current Drain ICC [mA
6
Forward / Reverse
3
2
1
0
0.8
0.6
0.4
0.2
0
-50
0
50
100
Ambient Temperature Ta [℃]
150
0
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
VCC = PVCC = 9V
180
160
30
Input Current IIN [uA]
Brake
25
20
Forward / Reverse
15
10
140
120
100
80
60
40
5
20
0
0
-50
0
50
100
Ambient Temperature Ta [℃]
0
150
VCC = PVCC = VIN = 3V
42
41
40
39
38
2
4
6
Input Voltage VIN [V]
8
10
VCC = PVCC = 3V
8
Supply Current ICC [mA]
43
7
Brake
6
5
Forward / Reverse
4
3
2
1
37
0
-40
-20
0
20
40
60
80
Ambient Temperature Ta [℃]
100
120
0
2
4
6
Supply Voltage VCC [V]
8
10
VCC = PVCC = 3V
35
Supply Current IPVCC [mA]
Input Current IIN [uA]
0.1
Output Current IO [℃]
VCC = PVCC = 3V
35
PVCC Current Drain IPVCC [mA
1
30
Brake
25
20
Forward / Reverse
15
10
5
0
0
2
4
6
Supply Voltage PVCC [V]
8
10
11
FAN8100N/FAN8100MTC
Mechanical Dimensions (Unit: mm)
Package Dimension
12-DIPH-300
12
FAN8100N/FAN8100MTC
Mechanical Dimensions (Unit: mm) (Continued)
Package dimensions
14-TSSOP
13
FAN8100N/FAN8100MTC
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
6/9/05 0.0m 001
Stock#DSxxxxxxxx
 2005 Fairchild Semiconductor Corporation