FAIRCHILD FAN8040G3

www.fairchildsemi.com
FAN8040
4-Channel Motor Driver
Features
Description
• 4-channel Balanced Transformerless (BTL) Driver
• 3-channels PWM input direct-coupled type include
internal filters.
• Separated power supply voltages
(PVCC1: CH1 and CH2, PVCC2: CH3 and CH4)
• Built-in input pin selection function of channel 4
• Built-in OP-amplifier
• Built-in Power Save function
• Built-in Thermal Shutdown Circuit (TSD)
• Operating ranges: 4.5~ 13.2V
The FAN8040G3 is a monolithic integrated circuit, suitable
for 4-channel motor driver which drives tracking actuator,
focus actuator, sled motor and spindle motor of compack
disk player system.
Typical Applications
Ordering Information
• Compact Disk Player (CDP)
• Video Compact Disk Player (VCD)
• Other Compact Disk Media
28-SSOPH-375-SG2
Package
Operating
Temp.
FAN8040G3
28-SSOPH-375SG2
-40°C ~ +85°C
FAN8040G3X
28-SSOPH-375SG2
-40°C ~ +85°C
Device
Rev. 1.0.0
©2004 Fairchild Semiconductor Corporation
2
1
2
3
4
5
6
7
OPINOPIN+
SW
CH1FIN
CH1RIN
CH2FIN
CH2RIN
22
FIN
GND
PS
PVCC2
CH3OUTR
CH3OUTF
CH4OUTF
CH4OUTR
FIN
8
9
10
11
12
13
14
CH1OUTF
CH3RIN
23
CH1OUTR
CH3FIN
24
CH2OUTF
CH4IN
25
CH2OUTR
CH4CAPA
26
PVCC1
OUTVREF
27
VREFIN
OPOUT
28
GND
VDD
FAN8040
Pin Assignments
21
20
19
18
17
16
15
FAN8040G3
FAN8040
Pin Definitions
Pin Number
Pin Name
I/O
Pin Function Description
1
OPIN-
I
OP-amplifier negative input
2
OPIN+
I
OP-amplifier positive input
3
SW
I
channel 4 input change switch input
4
CH1FIN
I
Channel 1 PWM forward input
5
CH1RIN
I
Channel 1 PWM reverse input
6
CH2FIN
I
Channel 2 PWM forward input
7
CH2RIN
I
Channel 2 PWM reverse input
8
GND
-
Ground 1
9
VREFIN
I
Internal reference voltage input terminal
10
PVCC1
-
Power supply voltage for channel 1 and channel 2
11
CH2OUTR
O
Channel 2 reverse output
12
CH2OUTF
O
Channel 2 forward output
13
CH1OUTR
O
Channel 1 reverse output
14
CH1OUTF
O
Channel 1 forward output
15
CH4OUTR
O
Channel 4 reverse output
16
CH4OUTF
O
Channel 4 forward output
17
CH3OUTF
O
Channel 3 forward output
18
CH3OUTR
O
Channel 3 reverse output
19
PVCC2
-
Power supply voltage for channel 3 and channel 4
20
PS
I
Power save signal input
21
GND
-
Ground 2
22
CH3RIN
I
Channel 3 PWM reverse input
23
CH3FIN
I
Channel3 PWM forward input
24
CH4IN
I
Channel 4 input
25
CH4CAPA
I
Channel 4 external capacitor connection terminal
26
OUTVREF
I
Channel 4 external reference voltage input terminal
27
OPOUT
O
Op-amplifier output
28
VDD
-
Predriver power supply voltage
3
FAN8040
22
50K
10K
F
100K
FIN
R
VDD
VDD
PS CNTL
F
INTERFACE
21
20
19
18
17
16
15
Bias
Circuit
50K
D
D
D
D
PVCC2
(CH3,4)
50K
R
100K
CH4OUTR
CH3RIN
23
CH4OUTF
CH3FIN
24
CH3OUTF
CH4IN
25
CH3OUTR
CH4CAPA
26
PVCC2
OUTVREF
27
PS
OPOUT
28
GND
VDD
Internal Block Diagram
100K
25pF
19K
10K
PVCC1
TSD
PVCC2
VDD
F
INTERFACE
100K
5.3K
25pF
50K
50K
50K
PS CNTL 50K
R
VDD
R
F
INTERFACE
F
100K
25pF
PVCC1
(CH1,2)
R
7
OPIN+
SW
CH1FIN
CH1RIN
CH2FIN
CH2RIN
FIN
8
9
10
11
12
13
14
CH1OUTF
6
CH1OUTR
5
D
CH2OUTF
4
D
CH2OUTR
3
D
PVCC1
2
D
VREFIN
1
OPIN-
R
GND
F
D : Drive Buffer
SW : H--> ON, L --> OFF
4
FAN8040
Equivalent Circuits
Driver Forward Input
Driver Reverse Input
CH1, CH2 and CH3
4
6
CH1, CH2 and CH3
23
5
7
22
17K
17K
Driver Output
Internal Reference Voltage
30K
50K
11
15
12
16
13
17
14
18
9
50K
30K
PS Input
CH4 SW Input
3
20
50K
2K
50K
50K
5
FAN8040
Equivalent Circuits (Continued)
OP- Amplifier Input
2K
OP- Amplifier Output
2K
27
1
2
2K
2K
External Reference Voltage Input
100K
100K
100K
24
50K
26
50K
25
10K
100K
6
FAN8040
Absolute Maximum Ratings (Ta = 25°C)
Parameter
Symbol
Value
Unit
PVCC1, 2
15
V
VDD
15
V
PD
2.5note
W
Operating Temperature
TOPR
-40 ~ +85
°C
Storage Temperature
TSTG
-55 ~ +150
°C
Supply Voltage
Predriver Supply Voltage
Power Dissipation
Note:
1. When mounted on a 76.2mm × 114mm × 1.57mm PCB (Phenolic resin material).
2. Power dissipation reduces 16.6mW/°C for using above Ta = 25°C
3. Do not exceed PD and SOA (Safe operating area)
Power Dissipation Curve
PD [mW]
3000
2500
2000
1500
SOA
1000
500
0
0
25
50
75
100
125
150
175
200
Ambient temperature, Ta[°C]
Recommended Operating Condition (Ta = 25°C)
Parameter
Symbol
Value
Unit
Operating Supply Voltage
PVCC1, 2
4.5 ~ 13.2
V
Predriver Supply Voltage
VDD
4.5 ~ 13.2
V
7
FAN8040
Electrical Characteristics (Ta = 25°C)
(Ta=25°C, VDD=PVCC1=PVCC2=8V, RL=8Ω, f=1kHz, unless otherwise specified)
Parameter
Symbol
Quiescent Circuit Current1
IQ
Internal Reference Input Voltage
Quiescent Circuit Current2
Conditions
Under no-load
VREF
(Note1)
IPS
At Power Save On
Min.
Typ.
Max.
Unit
-
17.0
25.0
mA
3.40
3.70
4.0
V
-
10
100
uA
Power Save Off Voltage
VPSOFF
2.0
-
-
V
Power Save On Voltage
VPSON
-
-
0.5
V
BTL DRIVER PART (CH1, CH2 and CH3)
Input High Level Voltage
VIH
2.4
-
VCC
V
Input Low Level Voltage
VIL
-0.3
-
0.5
V
Input High Level Current
IIH
VF=VR=5V
170
310
450
uA
Input Low Level Current (Forward)
IILF
VF=0V
-10
-
0
uA
Input Low Level Current (Reverse)
IILR
VR=0V
-50
-
0
uA
Output Offset Voltage
VOO
-30
-
30
mV
4.4
5.0
5.6
V
-
70
-
dB
-
10
300
nA
Maximum Output Voltage
Ripple Rejection Ratio
(Note2)
VOM
RR
VF=5V,VR=0V
VRR=100mVrms, 100Hz
SPINDLE MOTOR DRIVER (CH4)
Input Bias Current
IB
Output Offset Voltage
VOO4
CH4IN=OUTVREF
-50
-
50
mV
Maximum Output Voltage
VOM
CH4IN=4V
4.8
5.4
-
V
Closed-loop Voltage Gain
GVC
9.3
11.3
13.3
dB
-
70
-
dB
Ripple Rejection Ratio
(Note2)
RR
VRR=100mVrms, 100Hz
ANALOG SWITCH INPUT
Input High Level Voltage
VIHSW
2.0
-
VCC
V
Input Low Level Voltage
VILSW
-0.3
-
0.5
V
Input High Level Current
IIHSW
VSW=3.5V
-
60
90
uA
Input Low Level Current
IILSW
VSW=0V
-10
0
10
uA
VOFOP
-5
-
+5
mA
IBOP
-
10
300
nA
Output High Level Volatage
VOHOP
7.0
-
-
V
Output Low Level Volatage
VOLOP
-
-
0.2
V
ISINK
7.0
13.0
-
mA
ISOURCE
2.0
9.0
-
mA
VIN=60dBV, 1KHz
-
65
-
dB
f=50KHz,2VPP(Squre)
-
0.5
-
V/us
OP-AMPLIFIER
Offset Voltage
Input Bias Current
Output Sink Current
Output Source Current
Open-loop Voltage
Slew Rate
(Note2)
Gain(Note2)
GVO
SR
Note :
1. when the PS(pin20) is low level (under 0.5V) the bias circuit is disabled, so that the whole circuits are disabled.
2. Guranteed Design Value
8
FAN8040
Application Information
1. Power Save Function
• Power save function is also performed at PS (pin20). The truth table is as follows:
VDD
SW (pin3)
PS (pin20)
Input
Function
Input
Function
L
CAPA(pin25) OFF
L
Power Save ON
H
CAPA(pin25) ON
H
Power Save OFF
PS CNTL
Bias Circuit
20
Figure 1. Truth table of Gain selection and Mute Function
• When the PS (pin 20) is hige level (above 2V), the bias circuit is enable. On the other hand, when the PS(pin20) is low level
(under 0.5V), the bias circuit is disabled.
• When the CAPA(pin3) is low level, the CAPA (pin25) is opened in Figure. 4.
2. TSD (Thermal Shutdown) Function
• When the chip temperature rises above 175°C, then the 4-channels BTL driver output circuit will be muted.
The TSD circuit has the hysteresis temperature of 25°C.
4. Balanced Transformerless(BTL) Driver (CH1, CH2 and CH3)
• CH1, CH2 and CH3 drive parts are composed of internal filter, V-I converter and output power amplifiers.
PVCC
I1
F
FWD
S1
Buffer1
OUT1
R1=100KΩ
INTERFACE
R
REV
S2
Buffer2
C1=25㎊
OUT2
A
I2
VREF
Figure 2. Schematic of BTL Driver (CH1, CH2 and CH3)
F
R
S1
S2
L
L
OFF
OFF
L
H
OFF
ON
H
L
ON
OFF
H
H
ON
ON
H : above 2.4 [V]
L : under 0.5 [V]
Table 1. Truth table of internal switches operation
9
FAN8040
• Internal primary filter is composed of sourcing/sinking current source of 25uA and forward/reverse controlled switches.
• It converts "FWD/REV" digital signals to analog signal as shown Figure. 2.
1V/usec
FWD
Input
5V
0V
REV
VREF
Output
OUTF
OUTR
0V
0V
5V
OUTF
FWD
0V
Input
Output
VREF
OUTR
REV
0V
0V
Figure 3. Operartion waveforms of BTL Driver (CH1, CH2 and CH3)
• If the forward input signal is high level (avobe 2.4V) and reverse input signal is low level (under 0.5V), then the forward
current source switch S1and reverse current source switch S2 become turn-on and turn-off, respectively.
• This causes the internal capacitor, C1, to be charged with sourcing current source of 25uA and consequently the voltage of
the filter output, VA, increases with the internal time constant of 2.5usec.
•
VA = I1 × R1 ≈ 2.5[V ],
(Or reverse input : −2.5[V ] )
• The time constant is
R × C = 2.5[u sec]
Where, R is 100 [㏀] and C is 25[pF].
• The output voltages of power amplifers, VOUTF and VOUTR, are given as:
•
10
VOUTF = VREF + VA
[V ]
VOUTR = VREF − VA
[V ]
FAN8040
5. Channel 4 Driver (Spindle Motor Driver)
• The channel 4 driver is composed of input amplifer with input selection switch, V-I converter and output power amplifiers.
• The voltage, VREF, is the external reference voltage given by the bias voltage of the pin 26 in Figure. 4.
• The input signal, VIN, through the CH4IN (pin24) is amplified by 100K/100K times and then fed to the next amplifier. And
the amplified voltage is amplified by R2/R1 times and then the fed to the level shift circuit.
• Level shifit produces the current due to the difference between the input signal and the internal power reference (PVCC/2).
The current produced as + ∆I and - ∆I is fed into the driver buffer.
• If it is desired to change the gain, then the CH4CAPA (pin25) can be used. It is controlld by the SW (pin3) input signal.
• When the SW (pin3) is high level, then the input voltage,VIN, applied to the CH4CAPA (pin25).
100K
100K
24
R1
R2
C2
Servo Output
+ ∆I
26
- ∆I
PVCC
50K
VREF
16
D
15
Level
Shift
10K
C1
D
R1
25
50K
VREF
VREF
50K
3
Figure 4. Channel 4 Spindle Driver
11
FAN8040
Typical Performance Characteristics
PVCC1 vs IPVCC1
VDD vs IQ1
12
0.6
11.5
0.55
0.5
IPVCC1[mA]
IQ1[mA]
11
10.5
10
9.5
0.45
0.4
0.35
9
0.3
8.5
0.25
0.2
8
5
6
7
8
9
10
11
12
13
5
14
6
7
8
PVCC2 vs IPVCC2
0.6
13
0.55
12.5
GCV[dB]
0.4
0.35
13
14
11
12
13
14
11
10.5
0.25
10
9.5
5
6
7
8
9
10
11
12
13
14
5
6
7
8
9
PVCC2[V]
Temperature vs IPVCC1
15
14
13
IPVCC1[mA]
12
11
10
9
8
7
6
-20
0
20
40
Temp [°C]
10
V DD[V ]
Temperature vs IQ1
IQ1[mA]
12
11.5
0.3
0.2
12
11
12
0.45
5
-40
10
VDD vs GCV
0.5
IPVCC1[mA]
9
PVCC1[V]
VDD[V]
60
80
100
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-40
-20
0
20
40
Temp [°C]
60
80
100
FAN8040
Temperature vs VOM1AB
IPVC2[mA]
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-40
VOM1AB[V]
Temperatur vs IPVCC2
-20
0
20
40
60
80
100
6
5.8
5.6
5.4
5.2
5
4.8
4.6
4.4
4.2
4
-40
-20
0
20
Temp [°C]
VOM2AB[V
VOM3AB[V]
-20
0
20
40
60
80
100
6
5.8
5.6
5.4
5.2
5
4.8
4.6
4.4
4.2
4
-40
-20
0
20
Temperature vs VOM4AB
100
40
60
80
100
60
80
100
Temperature vs GCV1
13
12.5
12
GCV1[dB]
VOM4AB[V]
80
Temp[°C]
Temp[°C]
6
5.8
5.6
5.4
5.2
5
4.8
4.6
4.4
4.2
4
-40
60
Temperature vs VOM3AB
Temperature vs VOM2AB
6
5.8
5.6
5.4
5.2
5
4.8
4.6
4.4
4.2
4
-40
40
Temp [°C]
11.5
11
10.5
10
9.5
-20
0
20
40
Temp[°C]
60
80
100
9
-40
-20
0
20
40
Temp[°C]
13
FAN8040
10
9
8
7
6
5
4
3
2
1
0
-40
-20
0
20
40
Temp[°C]
14
Temperature vs ISINK
ISINK[mA]
ISOURCE[mA]
Temperature vs ISOURCE
60
80
100
40
38
36
34
32
30
28
26
24
22
20
-40
-20
0
20
40
Temp[°C]
60
80
100
REVERSE
FORWARD
Power
Save
2
3
F
REVERSE
TRACKING
FORWARD
REVERSE
FORWARD
SLED
BIAS SPINDLE
1.75V
4
5
INTERFACE
10K
0.47uF
50K
R
R
F
100K
100K
F
6
7
R
100K
INTERFACE
PVCC
R
F
R
F
PVCC
25pF
PVCC
TSD
R
F
INTERFACE
22
FIN
100K
100K
FIN
25pF
VREF
25pF
Bias
Circuit
8
21
9
20
PVCC2
(CH3,4)
19
10
PVCC1
(CH1,2)
50K
50K
PVCC
50K
50K
0.1uF
1
VDD
23
11
D
5.3K
10K
D
13
12
PVCC
D
50K
50K
D
D
D
19K
16
17
18
PVCC
VDD
24
14
D
D
15
M
25
SLED
MOTOR
26
M
27
SPINDLE
MOTOR
28
FAN8040
Typical Application Circuits
TRACKING
COIL
FOCUS
COIL
PVCC
0.1uF
0.1uF
H = ON
L = OFF
300pF
0.1uF
82㏀
15㏀
FOCUS
Digital Servo
15
FAN8040
Mechanical Dimensions(Unit : mm)
Package Dimensions
28-SSOPH-375SG2
16
FAN8040
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
7/27/04 0.0m 001
Stock#DSxxxxxxxx
 2004 Fairchild Semiconductor Corporation