Freescale Semiconductor Technical Data DSP56371 Rev. 3, 1/2005 Table of Contents 1 Section Introduction Page 1 Introduction ................................... 1 The DSP56371 is a high density CMOS device with 5.0-volt compatible inputs and outputs. 2 DSP56371 Overview..................... 1 3 Signal/Connection Descriptions .... 8 NOTE This document contains information on a new product. Specifications and information herein are subject to change without notice. 4 Maximum Ratings ....................... 30 5 Power Requirements................... 32 6 Thermal Characteristics.............. 32 7 DC Electrical Characteristics ...... 33 Finalized specifications may be published after further characterization and device qualifications are completed. 8 AC Electrical Characteristics....... 34 9 Internal Clocks ............................ 34 10 External Clock Operation .......... 35 2 DSP56371 Overview 2.1 Introduction 11 Reset, Stop, Mode Select, and Interrupt Timing ........................... 36 12 Serial Host Interface SPI Protocol Timing.......................................... 39 This manual describes the DSP56371 24-bit digital signal processor (DSP), its memory, operating modes and peripheral modules. The DSP56371 is a member of the DSP56300 family of programmable CMOS DSPs. The DSP56371 is targeted to applications that require digital audio compression/decompression, sound field processing, acoustic equalization and other digital audio algorithms. Changes in core functionality specific to the DSP56371 are also described in this manual. See Figure 1. for the block diagram of the DSP56371. 13 Serial Host Interface (SHI) I2C Protocol Timing ........................... 44 14 Enhanced Serial Audio Interface Timing.......................................... 46 15 Digital Audio Transmitter Timing51 16 Timer Timing ............................. 51 17 GPIO Timing ............................. 52 18 JTAG Timing ............................. 53 19 Package Information ................. 55 20 Design Considerations.............. 61 21 Power Consumption Benchmark63 22 IBIS Model ................................ 66 This document contains certain information on a new pr oduct. Specifications and information herein ar e subject to change without notice. © Freescale Semiconductor, Inc., 2005. All rights reserved. DSP56371 Technical Data DSP56371 Overview 2 5 12 12 11 Memory Expansion Area GPIO EFCOP 2 PIO_EB DAX Peripheral Expansion Area Address Generation Unit Six Channel DMA Unit Program RAM 4K × 24 X Data RAM 36K × 24 Y Data RAM 48K × 24 ROM 64K × 24 ROM 32K × 24 ROM 32K × 24 YAB XAB PAB DAB YM_EB ESAI_1 Interface XM_EB ESAI Interface PM_EB Triple Timer SHI Interface 24-Bit Bootstrap ROM DSP56300 Core DDB YDB XDB PDB GDB Internal Data Bus Switch Clock Generator EXTAL RESET PINIT/NMI Power Mngmnt. PLL Program Interrupt Controller Program Decode Controller Program Address Generator Data ALU 24 × 24+56→56-bit MAC Two 56-bit Accumulators 56-bit Barrel Shifter 4 JTAG OnCE™ MODA/IRQA MODB/IRQB MODC/IRQC MODD/IRQD Figure 1. DSP56371 Block Diagram 2.2 DSP56300 Core Description The DSP56371 uses the DSP56300 core, a high-performance, single clock cycle per instruction engine that provides up to twice the performance of Motorola's popular DSP56000 core family while retaining code compatibility with it. The DSP56300 core family offers a new level of performance in speed and power, provided by its rich instruction set and low power dissipation, thus enabling a new generation of wireless, telecommunications and multimedia products. For a description of the DSP56300 core, see Section 2.4 DSP56300 Core Functional Blocks. Significant architectural enhancements to the DSP56300 core family include a barrel shifter, 24-bit addressing, an instruction patch module and direct memory access (DMA). The DSP56300 core family members contain the DSP56300 core and additional modules. The modules are chosen from a library of standard predesigned elements such as memories and peripherals. New modules may be added to the library to meet customer specifications. A standard interface between the DSP56300 core and the on-chip memory and peripherals supports a wide variety of memory and peripheral configurations. Refer to DSP56371 User Manual, Section 3, Memory Configuration. Core features are described fully in the DSP56300 Family Manual. Pinout, memory and peripheral features are described in this manual. 2 DSP56371 Technical Data Freescale Semiconductor DSP56371 Overview • • • 2.3 DSP56300 modular chassis — 181 Million Instructions Per Second (MIPS) with a 181 MHz clock at an internal logic supply (QVDDL) of 1.25V. — Object Code Compatible with the 56K core. — Data ALU with a 24 x 24 bit multiplier-accumulator and a 56-bit barrel shifter. 16-bit arithmetic support. — Program Control with position independent code support and instruction patch support. — EFCOP running concurrently with the core, capable of executing 181 million filter taps per second at peak performance. — Six-channel DMA controller. — Low jitter, PLL based clocking with a wide range of frequency multiplications (1 to 255), predivider factors (1 to 31) and power saving clock divider (2i: i=0 to 7). Reduces clock noise. — Internal address tracing support and OnCE for Hardware/Software debugging. — JTAG port. — Very low-power CMOS design, fully static design with operating frequencies down to DC. — STOP and WAIT low-power standby modes. On-chip Memory Configuration — 48Kx24 Bit Y-Data RAM and 32Kx24 Bit Y-Data ROM. — 36Kx24 Bit X-Data RAM and 32Kx24 Bit X-Data ROM. — 64Kx24 Bit Program and Bootstrap ROM. — 4Kx24 Bit Program RAM. — PROM patching mechanism. — Up to 32Kx24 Bit from Y Data RAM and 8Kx24 Bit from X Data RAM can be switched to Program RAM resulting in up to 44Kx24 Bit of Program RAM. Peripheral modules — Enhanced Serial Audio Interface (ESAI): up to 4 receivers and up to 6 transmitters, master or slave. I2S, Left justified, Right justified, Sony, AC97, network and other programmable protocols. — Enhanced Serial Audio Interface I (ESAI_1): up to 4 receivers and up to 6 transmitters, master or slave. I2S, Left justified, Right justified, Sony, AC97, network and other programmable protocols. — Serial Host Interface (SHI): SPI and I2C protocols, multi master capability in I2C mode, 10-word receive FIFO, support for 8, 16 and 24-bit words. — Triple Timer module (TEC). — 11 dedicated GPIO pins — Digital Audio Transmitter (DAX): 1 serial transmitter capable of supporting the SPDIF, IEC958, CP-340 and AES/EBU digital audio formats. — Pins of unused peripherals (except SHI) may be programmed as GPIO lines. DSP56371 Audio Processor Architecture This section defines the DSP56371 audio processor architecture. The audio processor is composed of the following units: • The DSP56300 core is composed of the Data ALU, Address Generation Unit, Program Controller, DMA Controller, Memory Module Interface, Peripheral Module Interface and the On-Chip Emulator (OnCE). The DSP56300 core is described in the document DSP56300 24-Bit Digital Signal Processor Family Manual, Motorola publication DSP56300FM/AD. • Phased Lock Loop and Clock Generator • Memory modules. • Peripheral modules. The peripheral modules are defined in the following sections. Memory sizes in the block diagram are defaults. Memory may be differently partitioned, according to the memory mode of the chip. See Section 2.4.7 On-Chip Memory for more details about memory size. 2.4 DSP56300 Core Functional Blocks The DSP56300 core provides the following functional blocks: • • Data arithmetic logic unit (Data ALU) Address generation unit (AGU) Freescale Semiconductor DSP56371 Technical Data 3 DSP56371 Overview • Program control unit (PCU) • DMA controller (with six channels) • Instruction patch controller • PLL-based clock oscillator • OnCE module • Memory In addition, the DSP56371 provides a set of on-chip peripherals, described in Section 2.5 Peripheral Overview. 2.4.1 Data ALU The Data ALU performs all the arithmetic and logical operations on data operands in the DSP56300 core. The components of the Data ALU are as follows: • • • • • • • 2.4.1.1 Fully pipelined 24-bit × 24-bit parallel multiplier-accumulator (MAC) Bit field unit, comprising a 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing) Conditional ALU instructions 24-bit or 16-bit arithmetic support under software control Four 24-bit input general purpose registers: X1, X0, Y1 and Y0 Six Data ALU registers (A2, A1, A0, B2, B1 and B0) that are concatenated into two general purpose, 56-bit accumulators (A and B), accumulator shifters Two data bus shifter/limiter circuits Data ALU Registers The Data ALU registers can be read or written over the X memory data bus (XDB) and the Y memory data bus (YDB) as 24- or 48-bit operands (or as 16- or 32-bit operands in 16-bit arithmetic mode). The source operands for the Data ALU, which can be 24, 48, or 56 bits (16, 32, or 40 bits in 16-bit arithmetic mode), always originate from Data ALU registers. The results of all Data ALU operations are stored in an accumulator. All the Data ALU operations are performed in two clock cycles in pipeline fashion so that a new instruction can be initiated in every clock, yielding an effective execution rate of one instruction per clock cycle. The destination of every arithmetic operation can be used as a source operand for the immediately following arithmetic operation without a time penalty (i.e., without a pipeline stall). 2.4.1.2 Multiplier-Accumulator (MAC) The MAC unit comprises the main arithmetic processing unit of the DSP56300 core and performs all of the calculations on data operands. In the case of arithmetic instructions, the unit accepts as many as three input operands and outputs one 56-bit result of the following form- Extension:Most Significant Product:Least Significant Product (EXT:MSP:LSP). The multiplier executes 24-bit × 24-bit, parallel, fractional multiplies, between two’s-complement signed, unsigned, or mixed operands. The 48-bit product is right-justified and added to the 56-bit contents of either the A or B accumulator. A 56-bit result can be stored as a 24-bit operand. The LSP can either be truncated or rounded into the MSP. Rounding is performed if specified. 4 DSP56371 Technical Data Freescale Semiconductor DSP56371 Overview 2.4.2 Address Generation Unit (AGU) The AGU performs the effective address calculations using integer arithmetic necessary to address data operands in memory and contains the registers used to generate the addresses. It implements four types of arithmetic: linear, modulo, multiple wraparound modulo and reverse-carry. The AGU operates in parallel with other chip resources to minimize address-generation overhead. The AGU is divided into two halves, each with its own Address ALU. Each Address ALU has four sets of register triplets, and each register triplet is composed of an address register, an offset register and a modifier register. The two Address ALUs are identical. Each contains a 24-bit full adder (called an offset adder). A second full adder (called a modulo adder) adds the summed result of the first full adder to a modulo value that is stored in its respective modifier register. A third full adder (called a reverse-carry adder) is also provided. The offset adder and the reverse-carry adder are in parallel and share common inputs. The only difference between them is that the carry propagates in opposite directions. Test logic determines which of the three summed results of the full adders is output. Each Address ALU can update one address register from its respective address register file during one instruction cycle. The contents of the associated modifier register specifies the type of arithmetic to be used in the address register update calculation. The modifier value is decoded in the Address ALU. 2.4.3 Program Control Unit (PCU) The PCU performs instruction prefetch, instruction decoding, hardware DO loop control and exception processing. The PCU implements a seven-stage pipeline and controls the different processing states of the DSP56300 core. The PCU consists of the following three hardware blocks: • Program decode controller (PDC) • Program address generator (PAG) • Program interrupt controller The PDC decodes the 24-bit instruction loaded into the instruction latch and generates all signals necessary for pipeline control. The PAG contains all the hardware needed for program address generation, system stack and loop control. The Program interrupt controller arbitrates among all interrupt requests (internal interrupts, as well as the five external requests: IRQA, IRQB, IRQC, IRQD and NMI) and generates the appropriate interrupt vector address. PCU features include the following: • Position independent code support • Addressing modes optimized for DSP applications (including immediate offsets) • On-chip instruction cache controller • On-chip memory-expandable hardware stack • Nested hardware DO loops • Fast auto-return interrupts The PCU implements its functions using the following registers: • PC—program counter register • SR—Status register • LA—loop address register • LC—loop counter register • VBA—vector base address register • SZ—stack size register • SP—stack pointer • OMR—operating mode register • SC—stack counter register The PCU also includes a hardware system stack (SS). Freescale Semiconductor DSP56371 Technical Data 5 DSP56371 Overview 2.4.4 Internal Buses To provide data exchange between blocks, the following buses are implemented: • • • • • Peripheral input/output expansion bus (PIO_EB) to peripherals Program memory expansion bus (PM_EB) to program memory X memory expansion bus (XM_EB) to X memory Y memory expansion bus (YM_EB) to Y memory Global data bus (GDB) between registers in the DMA, AGU, OnCE, PLL, BIU and PCU, as well as the memory-mapped registers in the peripherals • DMA data bus (DDB) for carrying DMA data between memories and/or peripherals • DMA address bus (DAB) for carrying DMA addresses to memories and peripherals • Program Data Bus (PDB) for carrying program data throughout the core • X memory Data Bus (XDB) for carrying X data throughout the core • Y memory Data Bus (YDB) for carrying Y data throughout the core • Program address bus (PAB) for carrying program memory addresses throughout the core • X memory address bus (XAB) for carrying X memory addresses throughout the core • Y memory address bus (YAB) for carrying Y memory addresses throughout the core All internal buses on the DSP56300 family members are 24-bit buses. See Figure 1. 2.4.5 Direct Memory Access (DMA) The DMA block has the following features: • • • • 2.4.6 Six DMA channels supporting internal and external accesses One-, two- and three-dimensional transfers (including circular buffering) End-of-block-transfer interrupts Triggering from interrupt lines and all peripherals PLL-based Clock Oscillator The clock generator in the DSP56300 core is composed of two main blocks: the PLL, which performs clock input division, frequency multiplication, skew elimination and the clock generator (CLKGEN), which performs low-power division and clock pulse generation. PLL-based clocking: • • • Allows change of low-power divide factor (DF) without loss of lock Provides output clock with skew elimination Provides a wide range of frequency multiplications (1 to 255), predivider factors (1 to 31), PLL feedback multiplier (2 or 4), Output divide factor (1, 2 or 4) and a power-saving clock divider (2i: i = 0 to 7) to reduce clock noise The PLL allows the processor to operate at a high internal clock frequency using a low frequency clock input. This feature offers two immediate benefits: • • A lower frequency clock input reduces the overall electromagnetic interference generated by a system. The ability to oscillate at different frequencies reduces costs by eliminating the need to add additional oscillators to a system. NOTE The PLL will momentarily overshoot the target frequency when the PLL is first enabled or when the VCO frequency is modified. It is important that when modifying the PLL frequency or enabling the PLL that the two step procedure defined in Section 3, DSP56371 Overview be followed. 2.4.7 On-Chip Memory The memory space of the DSP56300 core is partitioned into program memory space, X data memory space and Y data memory space. The data memory space is divided into X and Y data memory in order to work with the two Address ALUs and to feed two operands simultaneously to the Data ALU. Memory space includes internal RAM and ROM and can not be expanded off-chip. There is an instruction patch module. The patch module is used to patch program ROM. The memory switch mode is used to increase the size of program RAM as needed (switch from X data RAM and/or Y data RAM). 6 DSP56371 Technical Data Freescale Semiconductor DSP56371 Overview There are on-chip ROMs for program and bootstrap memory (64K x 24-bit), X ROM (32K x 24-bit) and Y ROM(32K x 24-bit). More information on the internal memory is provided in DSP56371 User Manual, Section 3, MemorySection 3, . 2.4.8 Off-Chip Memory Expansion Memory cannot be expanded off-chip. There is no external memory bus. 2.5 Peripheral Overview The DSP56371 is designed to perform a wide variety of fixed-point digital signal processing functions. In addition to the core features previously discussed, the DSP56371 provides the following peripherals: • • • • • • • • 2.5.1 As many as 39 dedicate or user-configurable general purpose input/output (GPIO) signals Timer/event counter (TEC) module, containing three independent timers Memory switch mode in on-chip memory Four external interrupt/mode control lines and one external non-maskable interrupt line Enhanced serial audio interface (ESAI) with up to four receivers and up to six transmitters, master or slave, using the I2S, Sony, AC97, network and other programmable protocols A second enhanced serial audio interface (ESAI_1) with up to four receivers and up to six transmitters, master or slave, using the I2S, Sony, AC97, network and other programmable protocols. Serial host interface (SHI) using SPI and I2C protocols, with multi-master capability, 10-word receive FIFO and support for 8-, 16- and 24-bit words A Digital audio transmitter (DAX): a serial transmitter capable of supporting the SPDIF, IEC958, CP-340 and AES/EBU digital audio formats General Purpose Input/Output (GPIO) The DSP56371 provides 11 dedicated GPIO and 28 programmable signals that can operate either as GPIO pins or peripheral pins (ESAI, ESAI_1, DAX, and TEC). The signals are configured as GPIO after hardware reset. Register programming techniques for all GPIO functionality among these interfaces are very similar and are described in the following sections. 2.5.2 Triple Timer (TEC) This section describes a peripheral module composed of a common 21-bit prescaler and three independent and identical general purpose 24-bit timer/event counters, each one having its own register set. Each timer can use internal or external clocking and can interrupt the DSP after a specified number of events (clocks). Two of the three timers can signal an external device after counting internal events. Each timer can also be used to trigger DMA transfers after a specified number of events (clocks) occurred. Two of the three timers connect to the external world through bidirectional pins (TIO0, TIO1). When a TIO pin is configured as input, the timer functions as an external event counter or can measure external pulse width/signal period. When a TIO pin is used as output the timer is functioning as either a timer, a watchdog or a Pulse Width Modulator. When a TIO pin is not used by the timer it can be used as a General Purpose Input/Output Pin. Refer to DSP56371 User Manual, Section 11, Triple Timer Module. 2.5.3 Enhanced Serial Audio Interface (ESAI) The ESAI provides a full-duplex serial port for serial communication with a variety of serial devices including one or more industrystandard codecs, other DSPs, microprocessors and peripherals that implement the Motorola SPI serial protocol. The ESAI consists of independent transmitter and receiver sections, each with its own clock generator. It is a superset of the DSP56300 family ESSI peripheral and of the DSP56000 family SAI peripheral. For more information on the ESAI, refer to DSP56371 User Manual, Section 8, Enhanced Serial Audio Interface (ESAI). 2.5.4 Enhanced Serial Audio Interface 1 (ESAI_1) The ESAI_1 is a second ESAI interface. The ESAI_1 is functionally identical to ESAI. For more information on the ESAI_1, refer to DSP56371 User Manual, Section 9, Enhanced Serial Audio Interface (ESAI_1). 2.5.5 Serial Host Interface (SHI) The SHI is a serial input/output interface providing a path for communication and program/coefficient data transfers between the DSP and an external host processor. The SHI can also communicate with other serial peripheral devices. The SHI can interface directly to either of two well-known and widely used synchronous serial buses: the Motorola serial peripheral interface (SPI) bus Freescale Semiconductor DSP56371 Technical Data 7 Signal/Connection Descriptions and the Philips inter-integrated-circuit control (I2C) bus. The SHI supports either the SPI or I2C bus protocol, as required, from a slave or a single-master device. To minimize DSP overhead, the SHI supports single-, double- and triple-byte data transfers. The SHI has a 10-word receive FIFO that permits receiving up to 30 bytes before generating a receive interrupt, reducing the overhead for data reception. For more information on the SHI, refer to DSP56371 User Manual, Section 7, Serial Host Interface. 2.5.6 Digital Audio Transmitter (DAX) The DAX is a serial audio interface module that outputs digital audio data in the AES/EBU, CP-340 and IEC958 formats. For more information on the DAX, refer to DSP56371 User Manual, Section 10, Digital Audio. 3 Signal/Connection Descriptions 3.1 Signal Groupings The input and output signals of the DSP56374 are organized into functional groups, which are listed in Table 1. and illustrated in Figure 2. The DSP56374 is operated from a 1.25 V and 3.3 V supply; however, some of the inputs can tolerate 5.0 V. A special notice for this feature is added to the signal descriptions of those inputs. 8 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions Table 1. DSP56374 Functional Signal Groupings Number of Signals Detailed Description Power (VDD) 12 Table 2. Ground (GND) 12 Table 3. Scan Pins 1 Table 4. Clock and PLL 2 Table 5. Interrupt and mode control 5 Table 6. SHI 5 Table 7. Functional Group ESAI Port C1 12 Table 8. ESAI_1 Port E2 12 Table 9. SPDIF Transmitter (DAX) Port D3 2 Table 10. Dedicated GPIO Port F4 11 Table 11. Timer 2 Table 12. JTAG/OnCE Port 4 Table 13. Notes: 1. 2. 3. 4. Port C signals are the GPIO port signals which are multiplexed with the ESAI signals. Port E signals are the GPIO port signals which are multiplexed with the ESAI_1 signals. Port D signals are the GPIO port signals which are multiplexed with the DAX signals. Port F signals are the dedicated GPIO port signals. Freescale Semiconductor DSP56371 Technical Data 9 Signal/Connection Descriptions Pinout (80 pin package) GPIO GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 GPIO8 GPIO9 GPIO10 Port F SPDIF TRANSMITTER (DAX) Port D MOSI/HA0 SS/HA2 MISO/HDA SCK/SCL SHI HREQ Port C TIO0 TIO1 TIMER SCKT FST HCKT SCKR ESAI FSR HCKR SDO0 SDO1 SDO2/SDI3 ADO [PD1] ACI [PD0] INTERRUPTS IRQA/MODA IRGB/MODB IRQC/MODC IRQD/MODD RESET SDO3/SDI2 SDO4/SDI1 SDO5/SDI0 SCKT_1 FST_1 HCKT_1 SCKR_1 Port E PLL AND CLOCK EXTAL NMI/PINIT PLL_VDD(3) PLL_GND(3) ESAI_1 FSR_1 HCKR_1 SDO0_1 SDO1_1 SDO2_1/SDI3_1 CORE POWER CORE_VDD (4) CORE_GND (4) SDO3_1/SDI2_1 SDO4_1/SDI1_1 SDO5_1/SDI0_1 OnCE/JTAG TDI TCLK TDO TMS PERIPHERAL I/O POWER IO_VDD (5) IO_GNDS (5) SCAN SCAN Figure 2. Signals Identified by Functional Group 10 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions 3.2 Power Table 2. Power Inputs Power Name Description PLLA_VDD (1) PLL Power— The voltage (3.3 V) should be well-regulated and the input should be provided with an extremely low impedance path to the 3.3 VDD power rail. The user must provide adequate external decoupling capacitors. PLLP_VDD(1) PLLD_VDD (1) PLL Power— The voltage (1.25 V) should be well-regulated and the input should be provided with an extremely low impedance path to the 1.25 VDD power rail. The user must provide adequate external decoupling capacitors. CORE_VDD (4) Core Power—The voltage (1.25 V) should be well-regulated and the input should be provided with an extremely low impedance path to the 1.25 VDD power rail. The user must provide adequate decoupling capacitors. SHI, ESAI, ESAI_1, DAX and Timer I/O Power —The voltage (3.3 V) should be well-regulated and the input should be provided with an extremely low impedance path to the 3.3 VDD power rail. This is an isolated power for the SHI, ESAI, ESAI_1, DAX and Timer I/O. The user must provide adequate external decoupling capacitors. ESAI 61 62 63 64 65 66 67 68 DAX ESAI_1 60 1 59 2 58 3 57 4 56 5 55 6 54 7 53 8 52 9 51 10 50 11 49 Int/Mod 12 13 GPIO 48 47 14 46 15 45 16 44 17 43 PLL 18 42 40 39 38 41 37 36 35 34 SHI 33 32 31 30 28 27 26 25 23 22 OnCE FST_PE4 SDO5_SDI0_PE6 SDO4_SDI1_PE7 SDO3_SDI2_PE8 SDO2_SDI3_PE9 SDO1_PE10 SDO0_PE11 CORE_GND CORE_VDD MODB_IRQA MODB_IRQB MODC_IRQC MODD_IRQD RESET_B PINIT_NMI EXTAL PLLD_VDD PLLD_GND PLLP_GND PLLP_VDD PF9 SCAN PF10 IO_GND IO_VDD TIO0_PB0 TIO1_PB1 CORE_GND CORE_VDD TDO TDI TCK TMS MOSI_HA0 MISO_SDA SCK_SCL SS_HA2 HREQ PLLA_VDD PLLA_GND 24 Timer 20 29 19 21 SDO5_SDI0_PC7 IO_GND IO_VDD SDO3_SDI2_PC8 SDO2_SDI3_PC9 SDO1_PC10 SDO0_PC11 CORE_VDD PF8 PF6 PF7 CORE_GND PF2 PF3 PF4 PF5 IO_VDD PF1 PF0 IO_GND 69 70 71 72 73 74 75 76 77 78 79 0 8 SDO5_SDI0_PC6 FST_PC4 FSR_PC1 SCKT_PC3 SCKR_PC0 IO_VDD IO_GND HCKT_PC5 HCKR_PC2 CORE_VDD ACI_PD0 ADO_PD1 CORE_GND HCKR_PE2 HCKT_PE5 IO_GND IO_VDD SCKR_PE0 SCKT_PE3 FSR_PE1 IO_VDD (5) 1.25V 3.3V Figure 3. VDD Connections Freescale Semiconductor DSP56371 Technical Data 11 Signal/Connection Descriptions 3.3 Ground Table 3. Grounds Ground Name PLLA_GND(1) PLLP_GND(1) PLLD_GND(1) Description PLL Ground—The PLL ground should be provided with an extremely low-impedance path to ground. The user must provide adequate external decoupling capacitors. PLL Ground—The PLL ground should be provided with an extremely low-impedance path to ground. The user must provide adequate external decoupling capacitors. CORE_GND (4) Core Ground—The Core ground should be provided with an extremely low-impedance path to ground. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. IO_GND (5) 3.4 SHI, ESAI, ESAI_1, DAX and Timer I/O Ground—IO_GND is an isolated ground for the SHI, ESAI, ESAI_1, DAX and Timer I/O. This connection must be tied externally to all other chip ground connections. The user must provide adequate external decoupling capacitors. SCAN Table 4. SCAN signals Signal Name Type State during Reset SCAN Input Input Signal Description SCAN—Manufacturing test pin. This pin should be pulled low. Internal Pull down resistor. 3.5 Clock and PLL Table 5. Clock and PLL Signals Signal Name Type State during Reset EXTAL Input Input Signal Description External Clock Input—An external clock source must be connected to EXTAL in order to supply the clock to the internal clock generator and PLL. This input cannot tolerate 5 V. PINIT/NMI Input Input PLL Initial/Nonmaskable Interrupt—During assertion of RESET, the value of PINIT/NMI is written into the PLL Enable (PEN) bit of the PLL control register, determining whether the PLL is enabled or disabled. After RESET de assertion and during normal instruction processing, the PINIT/NMI Schmitt-trigger input is a negative-edge-triggered nonmaskable interrupt (NMI) request internally synchronized to internal system clock. Internal Pull up resistor. This input is 5 V tolerant. 3.6 Interrupt and Mode Control The interrupt and mode control signals select the chip’s operating mode as it comes out of hardware reset. After RESET is deasserted, these inputs are hardware interrupt request lines. 12 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions Table 6. Interrupt and Mode Control Signal Name Type State During Reset MODA/IRQA Input Input Signal Description Mode Select A/External Interrupt Request A—MODA/IRQA is an active-low Schmitt-trigger input, internally synchronized to the DSP clock. MODA/IRQA selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC and MODD select one of 16 initial chip operating modes, latched into the OMR when the RESET signal is deasserted. If the processor is in the stop standby state and the MODA/IRQA pin is pulled to GND, the processor will exit the stop state. Internal Pull up resistor. This input is 5 V tolerant. MODB/IRQB Input Input Mode Select B/External Interrupt Request B—MODB/IRQB is an active-low Schmitt-trigger input, internally synchronized to the DSP clock. MODB/IRQB selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC and MODD select one of 16 initial chip operating modes, latched into OMR when the RESET signal is deasserted. Internal Pull up resistor. This input is 5 V tolerant. MODC/IRQC Input Input Mode Select C/External Interrupt Request C—MODC/IRQC is an active-low Schmitt-trigger input, internally synchronized to the DSP clock. MODC/IRQC selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC and MODD select one of 16 initial chip operating modes, latched into OMR when the RESET signal is deasserted. Internal Pull up resistor. This input is 5 V tolerant. MODD/IRQD Input Input Mode Select D/External Interrupt Request D—MODD/IRQD is an active-low Schmitt-trigger input, internally synchronized to the DSP clock. MODD/IRQD selects the initial chip operating mode during hardware reset and becomes a level-sensitive or negative-edge-triggered, maskable interrupt request input during normal instruction processing. MODA, MODB, MODC and MODD select one of 16 initial chip operating modes, latched into OMR when the RESET signal is deasserted. Internal Pull up resistor. This input is 5 V tolerant. Freescale Semiconductor DSP56371 Technical Data 13 Signal/Connection Descriptions Table 6. Interrupt and Mode Control (Continued) Signal Name Type State During Reset RESET Input Input Signal Description Reset—RESET is an active-low, Schmitt-trigger input. When asserted, the chip is placed in the Reset state and the internal phase generator is reset. The Schmitt-trigger input allows a slowly rising input (such as a capacitor charging) to reset the chip reliably. When the RESET signal is deasserted, the initial chip operating mode is latched from the MODA, MODB, MODC and MODD inputs. The RESET signal must be asserted during power up. A stable EXTAL signal must be supplied while RESET is being asserted. Internal Pull up resistor. This input is 5 V tolerant. 3.7 Serial Host Interface The SHI has five I/O signals that can be configured to allow the SHI to operate in either SPI or I2C mode. Table 7. Serial Host Interface Signals Signal Name Signal Type State during Reset SCK Input or output Tri-stated SCL Input or output Signal Description SPI Serial Clock—The SCK signal is an output when the SPI is configured as a master and a Schmitt-trigger input when the SPI is configured as a slave. When the SPI is configured as a master, the SCK signal is derived from the internal SHI clock generator. When the SPI is configured as a slave, the SCK signal is an input, and the clock signal from the external master synchronizes the data transfer. The SCK signal is ignored by the SPI if it is defined as a slave and the slave select (SS) signal is not asserted. In both the master and slave SPI devices, data is shifted on one edge of the SCK signal and is sampled on the opposite edge where data is stable. Edge polarity is determined by the SPI transfer protocol. I2C Serial Clock—SCL carries the clock for I2C bus transactions in the I2C mode. SCL is a Schmitt-trigger input when configured as a slave and an opendrain output when configured as a master. SCL should be connected to VDD through a pull-up resistor. This signal is tri-stated during hardware, software and individual reset. Thus, there is no need for an external pull-up in this state. Internal Pull up resistor. This input is 5 V tolerant. 14 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions Table 7. Serial Host Interface Signals (Continued) Signal Name Signal Type State during Reset Input or output Tri-stated MISO SDA Signal Description SPI Master-In-Slave-Out—When the SPI is configured as a master, MISO is the master data input line. The MISO signal is used in conjunction with the MOSI signal for transmitting and receiving serial data. This signal is a Schmitttrigger input when configured for the SPI Master mode, an output when configured for the SPI Slave mode, and tri-stated if configured for the SPI Slave mode when SS is deasserted. An external pull-up resistor is not required for SPI operation. I2C Data and Acknowledge—In I2C mode, SDA is a Schmitt-trigger input when receiving and an open-drain output when transmitting. SDA should be connected to VDD through a pull-up resistor. SDA carries the data for I2C transactions. The data in SDA must be stable during the high period of SCL. The data in SDA is only allowed to change when SCL is low. When the bus is free, SDA is high. The SDA line is only allowed to change during the time SCL is high in the case of start and stop events. A high-to-low transition of the SDA line while SCL is high is a unique situation, and it is defined as the start event. A low-to-high transition of SDA while SCL is high is a unique situation defined as the stop event. Input or open-drain output This signal is tri-stated during hardware, software and individual reset. Thus, there is no need for an external pull-up in this state. Internal Pull up resistor. This input is 5 V tolerant. MOSI Input or output HA0 Input Tri-stated SPI Master-Out-Slave-In—When the SPI is configured as a master, MOSI is the master data output line. The MOSI signal is used in conjunction with the MISO signal for transmitting and receiving serial data. MOSI is the slave data input line when the SPI is configured as a slave. This signal is a Schmitt-trigger input when configured for the SPI Slave mode. I2C Slave Address 0—This signal uses a Schmitt-trigger input when configured for the I2C mode. When configured for I2C slave mode, the HA0 signal is used to form the slave device address. HA0 is ignored when configured for the I2C master mode. This signal is tri-stated during hardware, software and individual reset. Thus, there is no need for an external pull-up in this state. Internal Pull up resistor. This input is 5 V tolerant. Freescale Semiconductor DSP56371 Technical Data 15 Signal/Connection Descriptions Table 7. Serial Host Interface Signals (Continued) Signal Name Signal Type State during Reset Input Tri-stated SS HA2 Signal Description SPI Slave Select—This signal is an active low Schmitt-trigger input when configured for the SPI mode. When configured for the SPI Slave mode, this signal is used to enable the SPI slave for transfer. When configured for the SPI master mode, this signal should be kept deasserted (pulled high). If it is asserted while configured as SPI master, a bus error condition is flagged. If SS is deasserted, the SHI ignores SCK clocks and keeps the MISO output signal in the high-impedance state. I2C Slave Address 2—This signal uses a Schmitt-trigger input when configured for the I2C mode. When configured for the I2C Slave mode, the HA2 signal is used to form the slave device address. HA2 is ignored in the I2C master mode. Input This signal is tri-stated during hardware, software and individual reset. Thus, there is no need for an external pull-up in this state. Internal Pull up resistor. This input is 5 V tolerant. HREQ Input or Output Tri-stated Host Request—This signal is an active low Schmitt-trigger input when configured for the master mode but an active low output when configured for the slave mode. When configured for the slave mode, HREQ is asserted to indicate that the SHI is ready for the next data word transfer and deasserted at the first clock pulse of the new data word transfer. When configured for the master mode, HREQ is an input. When asserted by the external slave device, it will trigger the start of the data word transfer by the master. After finishing the data word transfer, the master will await the next assertion of HREQ to proceed to the next transfer. This signal is tri-stated during hardware, software, personal reset, or when the HREQ1–HREQ0 bits in the HCSR are cleared. There is no need for an external pull-up in this state. Internal Pull up resistor. This input is 5 V tolerant. 16 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions 3.8 Enhanced Serial Audio Interface Table 8. Enhanced Serial Audio Interface Signals Signal Name Signal Type State during Reset Signal Description HCKR Input or output GPIO disconnected High Frequency Clock for Receiver—When programmed as an input, this signal provides a high frequency clock source for the ESAI receiver as an alternate to the DSP core clock. When programmed as an output, this signal can serve as a highfrequency sample clock (e.g., for external digital to analog converters [DACs]) or as an additional system clock. PC2 Input, output, or disconnected Port C2—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. HCKT Input or output PC5 Input, output, or disconnected GPIO disconnected High Frequency Clock for Transmitter—When programmed as an input, this signal provides a high frequency clock source for the ESAI transmitter as an alternate to the DSP core clock. When programmed as an output, this signal can serve as a high frequency sample clock (e.g., for external DACs) or as an additional system clock. Port C5—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. Freescale Semiconductor DSP56371 Technical Data 17 Signal/Connection Descriptions Table 8. Enhanced Serial Audio Interface Signals (Continued) Signal Name Signal Type State during Reset Signal Description FSR Input or output GPIO disconnected Frame Sync for Receiver—This is the receiver frame sync input/output signal. In the asynchronous mode (SYN=0), the FSR pin operates as the frame sync input or output used by all the enabled receivers. In the synchronous mode (SYN=1), it operates as either the serial flag 1 pin (TEBE=0), or as the transmitter external buffer enable control (TEBE=1, RFSD=1). When this pin is configured as serial flag pin, its direction is determined by the RFSD bit in the RCCR register. When configured as the output flag OF1, this pin will reflect the value of the OF1 bit in the SAICR register, and the data in the OF1 bit will show up at the pin synchronized to the frame sync in normal mode or the slot in network mode. When configured as the input flag IF1, the data value at the pin will be stored in the IF1 bit in the SAISR register, synchronized by the frame sync in normal mode or the slot in network mode. PC1 Input, output, or disconnected Port C1—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. FST Input or output PC4 Input, output, or disconnected GPIO disconnected Frame Sync for Transmitter—This is the transmitter frame sync input/output signal. For synchronous mode, this signal is the frame sync for both transmitters and receivers. For asynchronous mode, FST is the frame sync for the transmitters only. The direction is determined by the transmitter frame sync direction (TFSD) bit in the ESAI transmit clock control register (TCCR). Port C4—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. 18 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions Table 8. Enhanced Serial Audio Interface Signals (Continued) Signal Name Signal Type State during Reset Signal Description SCKR Input or output GPIO disconnected Receiver Serial Clock—SCKR provides the receiver serial bit clock for the ESAI. The SCKR operates as a clock input or output used by all the enabled receivers in the asynchronous mode (SYN=0), or as serial flag 0 pin in the synchronous mode (SYN=1). When this pin is configured as serial flag pin, its direction is determined by the RCKD bit in the RCCR register. When configured as the output flag OF0, this pin will reflect the value of the OF0 bit in the SAICR register, and the data in the OF0 bit will show up at the pin synchronized to the frame sync in normal mode or the slot in network mode. When configured as the input flag IF0, the data value at the pin will be stored in the IF0 bit in the SAISR register, synchronized by the frame sync in normal mode or the slot in network mode. PC0 Input, output, or disconnected Port C0—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SCKT Input or output PC3 Input, output, or disconnected GPIO disconnected Transmitter Serial Clock—This signal provides the serial bit rate clock for the ESAI. SCKT is a clock input or output used by all enabled transmitters and receivers in synchronous mode, or by all enabled transmitters in asynchronous mode. Port C3—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SDO5 Output GPIO disconnected Serial Data Output 5—When programmed as a transmitter, SDO5 is used to transmit data from the TX5 serial transmit shift register. SDI0 Input Serial Data Input 0—When programmed as a receiver, SDI0 is used to receive serial data into the RX0 serial receive shift register. PC6 Input, output, or disconnected Port C6—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. Freescale Semiconductor DSP56371 Technical Data 19 Signal/Connection Descriptions Table 8. Enhanced Serial Audio Interface Signals (Continued) Signal Name Signal Type State during Reset SDO4 Output GPIO disconnected SDI1 Input Serial Data Input 1—When programmed as a receiver, SDI1 is used to receive serial data into the RX1 serial receive shift register. PC7 Input, output, or disconnected Port C7—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. Signal Description Serial Data Output 4—When programmed as a transmitter, SDO4 is used to transmit data from the TX4 serial transmit shift register. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SDO3 Output GPIO disconnected Serial Data Output 3—When programmed as a transmitter, SDO3 is used to transmit data from the TX3 serial transmit shift register. SDI2 Input Serial Data Input 2—When programmed as a receiver, SDI2 is used to receive serial data into the RX2 serial receive shift register. PC8 Input, output, or disconnected Port C8—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. 20 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions Table 8. Enhanced Serial Audio Interface Signals (Continued) Signal Name Signal Type State during Reset SDO2 Output GPIO disconnected SDI3 Input Serial Data Input 3—When programmed as a receiver, SDI3 is used to receive serial data into the RX3 serial receive shift register. PC9 Input, output, or disconnected Port C9—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. Signal Description Serial Data Output 2—When programmed as a transmitter, SDO2 is used to transmit data from the TX2 serial transmit shift register The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SDO1 Output PC10 Input, output, or disconnected GPIO disconnected Serial Data Output 1—SDO1 is used to transmit data from the TX1 serial transmit shift register. Port C10—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SDO0 Output PC11 Input, output, or disconnected GPIO disconnected Serial Data Output 0—SDO0 is used to transmit data from the TX0 serial transmit shift register. Port C11—When the ESAI is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. Freescale Semiconductor DSP56371 Technical Data 21 Signal/Connection Descriptions 3.9 Enhanced Serial Audio Interface_1 Table 9. Enhanced Serial Audio Interface_1 Signals Signal Name Signal Type State during Reset Signal Description HCKR_1 Input or output GPIO disconnected High Frequency Clock for Receiver—When programmed as an input, this signal provides a high frequency clock source for the ESAI_1 receiver as an alternate to the DSP core clock. When programmed as an output, this signal can serve as a high-frequency sample clock (e.g., for external digital to analog converters [DACs]) or as an additional system clock. PE2 Input, output, or disconnected Port E2—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. HCKT_1 Input or output PE5 Input, output, or disconnected GPIO disconnected High Frequency Clock for Transmitter—When programmed as an input, this signal provides a high frequency clock source for the ESAI_1 transmitter as an alternate to the DSP core clock. When programmed as an output, this signal can serve as a high frequency sample clock (e.g., for external DACs) or as an additional system clock. Port E5—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. 22 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions Table 9. Enhanced Serial Audio Interface_1 Signals Signal Name Signal Type State during Reset Signal Description FSR_1 Input or output GPIO disconnected Frame Sync for Receiver_1—This is the receiver frame sync input/output signal. In the asynchronous mode (SYN=0), the FSR_1 pin operates as the frame sync input or output used by all the enabled receivers. In the synchronous mode (SYN=1), it operates as either the serial flag 1 pin (TEBE=0), or as the transmitter external buffer enable control (TEBE=1, RFSD=1). When this pin is configured as serial flag pin, its direction is determined by the RFSD bit in the RCCR_1 register. When configured as the output flag OF1, this pin will reflect the value of the OF1 bit in the SAICR_1 register, and the data in the OF1 bit will show up at the pin synchronized to the frame sync in normal mode or the slot in network mode. When configured as the input flag IF1, the data value at the pin will be stored in the IF1 bit in the SAISR register, synchronized by the frame sync in normal mode or the slot in network mode. PE1 Input, output, or disconnected Port E1—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. FST_1 Input or output PE4 Input, output, or disconnected GPIO disconnected Frame Sync for Transmitter_1—This is the transmitter frame sync input/output signal. For synchronous mode, this signal is the frame sync for both transmitters and receivers. For asynchronous mode, FST_1 is the frame sync for the transmitters only. The direction is determined by the transmitter frame sync direction (TFSD) bit in the ESAI_1 transmit clock control register (TCCR_1). Port E4—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. Freescale Semiconductor DSP56371 Technical Data 23 Signal/Connection Descriptions Table 9. Enhanced Serial Audio Interface_1 Signals Signal Name Signal Type State during Reset Signal Description SCKR_1 Input or output GPIO disconnected Receiver Serial Clock_1—SCKR_1 provides the receiver serial bit clock for the ESAI_1. The SCKR_1 operates as a clock input or output used by all the enabled receivers in the asynchronous mode (SYN=0), or as serial flag 0 pin in the synchronous mode (SYN=1). When this pin is configured as serial flag pin, its direction is determined by the RCKD bit in the RCCR_1 register. When configured as the output flag OF0, this pin will reflect the value of the OF0 bit in the SAICR_1 register, and the data in the OF0 bit will show up at the pin synchronized to the frame sync in normal mode or the slot in network mode. When configured as the input flag IF0, the data value at the pin will be stored in the IF0 bit in the SAISR_1 register, synchronized by the frame sync in normal mode or the slot in network mode. PE0 Input, output, or disconnected Port E0—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SCKT_1 Input or output PE3 Input, output, or disconnected GPIO disconnected Transmitter Serial Clock_1—This signal provides the serial bit rate clock for the ESAI_1. SCKT_1 is a clock input or output used by all enabled transmitters and receivers in synchronous mode, or by all enabled transmitters in asynchronous mode. Port E3—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SDO5_1 Output GPIO disconnected Serial Data Output 5_1—When programmed as a transmitter, SDO5_1 is used to transmit data from the TX5 serial transmit shift register. SDI0_1 Input Serial Data Input 0_1—When programmed as a receiver, SDI0_1 is used to receive serial data into the RX0 serial receive shift register. PE6 Input, output, or disconnected Port E6—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. 24 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions Table 9. Enhanced Serial Audio Interface_1 Signals Signal Name Signal Type State during Reset Signal Description SDO4_1 Output GPIO disconnected Serial Data Output 4_1—When programmed as a transmitter, SDO4_1 is used to transmit data from the TX4 serial transmit shift register. SDI1_1 Input Serial Data Input 1_1—When programmed as a receiver, SDI1_1 is used to receive serial data into the RX1 serial receive shift register. PE7 Input, output, or disconnected Port E7—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SDO3_1 Output GPIO disconnected Serial Data Output 3—When programmed as a transmitter, SDO3_1 is used to transmit data from the TX3 serial transmit shift register. SDI2_1 Input Serial Data Input 2—When programmed as a receiver, SDI2_1 is used to receive serial data into the RX2 serial receive shift register. PE8 Input, output, or disconnected Port E8—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SDO2_1 Output GPIO disconnected Serial Data Output 2—When programmed as a transmitter, SDO2_1 is used to transmit data from the TX2 serial transmit shift register. SDI3_1 Input Serial Data Input 3—When programmed as a receiver, SDI3_1 is used to receive serial data into the RX3 serial receive shift register. PE9 Input, output, or disconnected Port E9—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. Freescale Semiconductor DSP56371 Technical Data 25 Signal/Connection Descriptions Table 9. Enhanced Serial Audio Interface_1 Signals Signal Name Signal Type State during Reset SDO1_1 Output GPIO disconnected PE10 Input, output, or disconnected Signal Description Serial Data Output 1—SDO1_1 is used to transmit data from the TX1 serial transmit shift register. Port E10—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. SDO0_1 Output GPIO disconnected PE11 Input, output, or disconnected Serial Data Output 0—SDO0_1 is used to transmit data from the TX0 serial transmit shift register. Port E11—When the ESAI_1 is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. 3.10 SPDIF Transmitter Digital Audio Interface Table 10. Digital Audio Interface (DAX) Signals Signal Name Type State During Reset Signal Description ACI Input GPIO Disconnected Audio Clock Input—This is the DAX clock input. When programmed to use an external clock, this input supplies the DAX clock. The external clock frequency must be 256, 384, or 512 times the audio sampling frequency (256 × Fs, 384 × Fs or 512 × Fs, respectively). PD0 Input, output, or disconnected Port D0—When the DAX is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. 26 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions Table 10. Digital Audio Interface (DAX) Signals (Continued) Signal Name Type State During Reset Signal Description ADO Output GPIO Disconnected Digital Audio Data Output—This signal is an audio and nonaudio output in the form of AES/SPDIF, CP340 and IEC958 data in a biphase mark format. PD1 Input, output, or disconnected Port D1—When the DAX is configured as GPIO, this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. 3.11 Dedicated GPIO Interface Table 11. Dedicated GPIO Signals Signal Name Type State During Reset Signal Description PF0 Input, GPIO disconnected Port F0—this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. output, or disconnected Internal Pull down resistor. This input is 5 V tolerant. PF1 Input, output, or disconnected GPIO disconnected Port F1— this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. PF2 Input, output, or disconnected GPIO disconnected Port F2— this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. PF3 Input, output, or disconnected GPIO disconnected Port F3—this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. Freescale Semiconductor DSP56371 Technical Data 27 Signal/Connection Descriptions Table 11. Dedicated GPIO Signals (Continued) Signal Name PF4 Type State During Reset Signal Description Input, GPIO disconnected Port F4— this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. output, or disconnected Internal Pull down resistor. This input is 5 V tolerant. PF5 Input, output, or disconnected GPIO disconnected Port F5—this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. PF6 Input, output, or disconnected GPIO disconnected Port F6—this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. PF7 Input, output, or disconnected GPIO disconnected Port F7— this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. PF8 Input, output, or disconnected GPIO disconnected Port F8— this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. PF9 Input, output, or disconnected GPIO disconnected Port F9— this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. PF10 Input, output, or disconnected GPIO disconnected Port F10— this signal is individually programmable as input, output, or internally disconnected. The default state after reset is GPIO disconnected. Internal Pull down resistor. This input is 5 V tolerant. 28 DSP56371 Technical Data Freescale Semiconductor Signal/Connection Descriptions 3.12 Timer Table 12. Timer Signal Signal Name Type TIO0 Input or Output State during Reset Signal Description GPIO Input Timer 0 Schmitt-Trigger Input/Output—When timer 0 functions as an external event counter or in measurement mode, TIO0 is used as input. When timer 0 functions in watchdog, timer, or pulse modulation mode, TIO0 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a timer input/output through the timer 0 control/status register (TCSR0). If TIO0 is not being used, it is recommended to either define it as GPIO output immediately at the beginning of operation or leave it defined as GPIO input but connected to VDD through a pull-up resistor in order to ensure a stable logic level at this input. Internal Pull down resistor. This input is 5 V tolerant. TIO1 Input or Output GPIO Input Timer 1 Schmitt-Trigger Input/Output—When timer 1 functions as an external event counter or in measurement mode, TIO1 is used as input. When timer 1 functions in watchdog, timer, or pulse modulation mode, TIO1 is used as output. The default mode after reset is GPIO input. This can be changed to output or configured as a timer input/output through the timer 1 control/status register (TCSR1). If TIO1 is not being used, it is recommended to either define it as GPIO output immediately at the beginning of operation or leave it defined as GPIO input but connected to Vdd through a pull-up resistor in order to ensure a stable logic level at this input. Internal Pull down resistor. This input is 5 V tolerant. 3.13 JTAG/OnCE Interface Table 13. JTAG/OnCE Interface Signal Name Signal Type State during Reset TCK Input Input Signal Description Test Clock—TCK is a test clock input signal used to synchronize the JTAG test logic. It has an internal pull-up resistor. Internal Pull up resistor. This input is 5 V tolerant.. Freescale Semiconductor DSP56371 Technical Data 29 Maximum Ratings Table 13. JTAG/OnCE Interface (Continued) Signal Name Signal Type State during Reset TDI Input Input Signal Description Test Data Input—TDI is a test data serial input signal used for test instructions and data. TDI is sampled on the rising edge of TCK and has an internal pull-up resistor. Internal Pull up resistor. This input is 5 V tolerant. TDO Output Tri-state TMS Input Input Test Data Output—TDO is a test data serial output signal used for test instructions and data. TDO is tri-statable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK. Test Mode Select—TMS is an input signal used to sequence the test controller’s state machine. TMS is sampled on the rising edge of TCK and has an internal pull-up resistor. Internal Pull up resistor. This input is 5 V tolerant. 4 Maximum Ratings CAUTION This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability of operation is enhanced if unused inputs are pulled to an appropriate logic voltage level (e.g., either GND or VDD). The suggested value for a pullup or pulldown resistor is 10 kΩ. NOTE In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a “maximum” value for a specification will never occur in the same device that has a “minimum” value for another specification; adding a maximum to a minimum represents a condition that can never exist. Table 14. Maximum Ratings Rating1 Supply Voltage Symbol VCORE_VDD, VPLLD_VDD VPLLP_VDD, VIO_VDD, VPLLA_VDD, 30 DSP56371 Technical Data Value1, 2 Unit −0.3 to + 1.6 V −0.3 to + 4.0 V Freescale Semiconductor Maximum Ratings Table 14. Maximum Ratings (Continued) Rating1 Symbol Value1, 2 Unit VIN GND − 0.3 to 5.5V V I 12 mA SCK_SCL ISCK 16 mA ACI_PD0,ADO_PD1 IDAX 24 mA TDO Ijtag 24 mA TJ -40 to +115 TSTG −55 to +125 °C °C All “5.0V tolerant” input voltages Current drain per pin excluding VDD and GND (Except for pads listed below) Operating temperature range3 Storage temperature Notes: 1. GND = 0 V; TJ = –40°C to 115°C for 150 MHz; TJ = 0°C to 100°C for 181 MHz; CL = 50PF 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device. 3. Operating temperature qualified for automotive applications. Freescale Semiconductor DSP56371 Technical Data 31 Power Requirements 5 Power Requirements To prevent high current conditions due to possible improper sequencing of the power supplies, the connection shown below is recommended to be made between the DSP56371 IO_VDD and CORE_VDD power pins. IO VDD CORE VDD External Schottky Diode To prevent a high current condition upon power up, the IOVDD must be applied ahead of the CORE VDD as shown below if the external Schottcky is not used. CORE VDD IO VDD 6 Thermal Characteristics Table 15. Thermal Characteristics Characteristic Symbol TQFP Value Unit Natural Convection, Junction-to-ambient thermal resistance1,2 RθJA or θJA 39 °C/W Junction-to-case thermal resistance3 RθJC or θJC 18.25 °C/W Notes: 32 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. 3. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC883 Method 1012.1). DSP56371 Technical Data Freescale Semiconductor DC Electrical Characteristics 7 DC Electrical Characteristics Table 16. DC ELECTRICAL CHARACTERISTICS4 Characteristics Supply voltages Symbol Min Typ Max 1 Unit VDD 1.2 1.25 1.3 V VDDIO 3.14 3.3 3.461 V • Core (core_vdd) • PLL (plld_vdd) Supply voltages • Vio_vdd • PLL (pllp_vdd) • PLL (plla_vdd) Input high voltage • All pins V VIH 2.0 — VIO_VDD+2V Note: All 3.3 volt supplies must rise prior to the rise of the 1.25 volt supplies to avoid a high current condition and possible system damage. Input low voltage • All pins VIL –0.3 — 0.8 V Input leakage current (All pins) IIN — — 84 µA Clock pin Input Capacitance (EXTAL) CIN High impedance (off-state) input current (@ 3.46 V) ITSI –84 — 84 µA Output high voltage VOH 2.4 — — V VOL — — 0.4 V • In Normal mode ICCI — 99 200 mA • In Wait mode ICCW — 48 150 mA • In Stop mode3 ICCS — 2.5 82 mA — 115 150 mA — — 10 pF 3.749 pF IOH = -5 mA Output low voltage IOL = 5 mA Internal supply current1 at internal clock of 181MHz IO supply current Input capacitance4 Notes: CIN 1. The Section 3, Power Consumption Considerations section provides a formula to compute the estimated current requirements in Normal mode. In order to obtain these results, all inputs must be terminated (i.e., not allowed to float). Measurements are based on synthetic intensive DSP benchmarks. The power consumption numbers in this specification are 90% of the measured results of this benchmark. This reflects typical DSP applications. Typical internal supply current is measured with VCORE_VDD = 1.25V, VDD_IO = 3.3V at TJ = 25°C. Maximum internal supply current is measured with VCORE_VDD = 1.30V, VIO_VDD) = 3.46V at TJ = 115°C. 2. In order to obtain these results, all inputs, which are not disconnected at Stop mode, must be terminated (i.e., not allowed to float). 3. Periodically sampled and not 100% tested 4. TJ = –40°C to 115°C for 150 MHz; TJ = 0°C to 100°C for 181 MHz; CL=50pF Freescale Semiconductor DSP56371 Technical Data 33 AC Electrical Characteristics 8 AC Electrical Characteristics The timing waveforms shown in the AC electrical characteristics section are tested with a VIL maximum of 0.8V and a VIH minimum of 2.0V for all pins. AC timing specifications, which are referenced to a device input signal, are measured in production with respect to the 50% point of the respective input signal’s transition. DSP56371 output levels are measured with the production test machine VOL and VOH reference levels set at 1.0V and 1.8V, respectively. NOTE Although the minimum value for the frequency of EXTAL is 0 MHz (PLL bypassed), the device AC test conditions are 5 MHz and rated speed. 9 Internal Clocks Table 17. INTERNAL CLOCKS No. Symbol Min Typ Max UNIT Condition 5 -- 20 MHZ Fref = FN/NR 1 Comparison Frequency Fref1 2 Input Clock Frequency FIN 3 Output clock Frequency (with PLL enabled2,3 FOUT 75 (1000/Etc × MF x FM)/ (PDF × DF x OD) -- MHZ FOUT=FVCO/NO where NO is output divider value 4 Output clock Frequency (with PLL disabled2,3 FOUT -- 1000/Etc -- MHZ --- 5 Duty Cycle -- 40 50 60 % FVCO=300MHZ~60 0MHZ Notes: 34 Characteristics Fref*NR NR is input divider value 1. See users manual for definition. 2. DF = Division Factor Ef = External frequency MF = Multiplication Factor PDF = Predivision Factor FM= Feedback Multiplier OD = Output Divider 3. Maximum frequency will vary depending on the ordered part number. DSP56371 Technical Data Freescale Semiconductor External Clock Operation 10 External Clock Operation The DSP56371 system clock is an externally supplied square wave voltage source connected to EXTAL (see Figure 4). . VIH Midpoint EXTAL ETH VIL ETL 6 7 8 Note: ETC The midpoint is 0.5 (VIH + VIL). Figure 4. External Clock Timing Table 18. Clock Operation 150 and 181 MHz Values 150 MHz No. 6 Characteristics EXTAL input high 1,2 181 MHz Symbol Min Max Min Max Eth 3.33ns 100ns 2.75ns 100ns Etl 3.33ns 100ns 2.75ns 100ns 6.66ns inf 5.52ns inf 6.66ns 200ns 5.52ns 200ns 6.66ns inf 5.52ns inf 6.66ns 13.0ns 5.52ns 13.0ns (40% to 60% duty cycle) 7 EXTAL input low1,2 (40% to 60% duty cycle) 8 EXTAL cycle time2 Etc • With PLL disabled • With PLL enabled 9 Instruction cycle time= ICYC = TC3 Icyc • With PLL disabled • With PLL enabled Notes: 1. 2. 3. 4. Measured at 50% of the input transition The maximum value for PLL enabled is given for minimum VCO and maximum MF. The maximum value for PLL enabled is given for minimum VCO and maximum DF. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum clock high or low time required for correct operation, however, remains the same at lower operating frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the specified duty cycle as long as the minimum high time and low time requirements are met. Freescale Semiconductor DSP56371 Technical Data 35 Reset, Stop, Mode Select, and Interrupt Timing 11 Reset, Stop, Mode Select, and Interrupt Timing Table 19. Reset, Stop, Mode Select, and Interrupt Timing No. Characteristics Expression Min Max Unit 10 Delay from RESET assertion to all output pins at reset value3 — — 11 ns 11 Required RESET duration4 • Power on, external clock generator, PLL disabled 2 x TC 11.1 — ns • Power on, external clock generator, PLL enabled 2 x TC 11.1 -- ns TC — 5.5 ns 2× TC 11.1 — (2xTC)+TLOCK 5.0 12 Syn reset setup time from RESET • Maximum 13 Syn reset de assert delay time • Minimum • Maximum(PLL enabled) 14 Mode select setup time 10.0 — ns 15 Mode select hold time 10.0 — ns 16 Minimum edge-triggered interrupt request assertion width 2 xTC 11.1 — ns 17 Minimum edge-triggered interrupt request deassertion width 2 xTC 11.1 — ns 18 Delay from interrupt trigger to interrupt code execution. 10 xTC + 5 60.0 19 Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop)2, 3 9+(128K× TC) 704 — us • PLL is active during Stop and Stop delay is not enabled (OMR Bit 6 = 1) 25× TC 138 — ns • PLL is not active during Stop and Stop delay is enabled (OMR Bit 6 = 0) 9+(128KxTC)+Tlock 5.7 ms • PLL is not active during Stop and Stop delay is not enabled (OMR Bit 6 = 1) (25 x TC)+Tlock 5 ms • Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution 10 x TC + 3.0 • PLL is active during Stop and Stop delay is enabled (OMR Bit 6 = 0) 20 36 ns ms DSP56371 Technical Data ns 59.0 ns Freescale Semiconductor Reset, Stop, Mode Select, and Interrupt Timing Table 19. Reset, Stop, Mode Select, and Interrupt Timing (Continued) No. 21 22 Notes: Characteristics Expression Min Max Unit • ESAI, ESAI_1, SHI, DAX, Timer 12 x TC — — ns • DMA 8 x TC — — ns • IRQ, NMI (edge trigger) 8 x TC — — ns • IRQ (level trigger) 12 c TC — — ns • Data read from ESAI, ESAI_1, SHI, DAX 6 x TC — — ns • Data write to ESAI, ESAI_1, SHI, DAX 7 x TC — — ns • Timer 2 x TC — — ns • IRQ, NMI (edge trigger) 3 x TC — — ns Interrupt Requests Rate DMA Requests Rate 1. When using fast interrupts and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended when using fast interrupts. Long interrupts are recommended when using Level-sensitive mode. 2. For PLL disable, using external clock (PCTL Bit 13 = 0), no stabilization delay is required and recovery time will be defined by the OMR Bit 6 settings. For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0.5 ms. 3. Periodically sampled and not 100% tested 4. RESET duration is measured during the time in which RESET is asserted, VDD is valid, and the EXTAL input is active and valid. When the VDD is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the shortest possible duration. VIH RESET 11 13 10 All Pins Reset Value Figure 5. Reset Timing Freescale Semiconductor DSP56371 Technical Data 37 Reset, Stop, Mode Select, and Interrupt Timing VIH RESET 14 15 MODA, MODB, MODC, MODD, PINIT VIH VIH VIL VIL IRQA, IRQB, IRQD, NMI Figure 6. Recovery from Stop State Using IRQA Interrupt Service IRQA, IRQB, IRQC, IRQD, NMI 16 IRQA, IRQB, IRQC, IRQD, NMI 17 Figure 7. External Interrupt Timing (Negative Edge-Triggered) IRQA, IRQB, IRQC, IRQD, NMI 19 18 a) First Interrupt Instruction Execution General Purpose I/O 20 IRQA, IRQB, IRQC, IRQD, NMI b) General Purpose I/O Figure 8. External Fast Interrupt Timing 38 DSP56371 Technical Data Freescale Semiconductor Serial Host Interface SPI Protocol Timing 12 Serial Host Interface SPI Protocol Timing Table 20. Serial Host Interface SPI Protocol Timing Characteristics1 No. Mode Min Max Unit 23 Minimum serial clock cycle = tSPICC(min) Master 79.0 — ns 24 Serial clock high period Master 29.5 — ns Slave 25.8 — ns Master 29.5 — ns Slave 25.8 — ns Master — 10 ns Slave — 10 ns CPHA = 0 Slave 34.4 — ns CPHA = 1 Slave 10 — ns 28 Last SCK edge to SS not asserted Slave 12 — ns 29 Data input valid to SCK edge (data input set-up time) Master/Slave 0 — ns 30 SCK last sampling edge to data input not valid Master/Slave 22.4 — ns 31 SS assertion to data out active Slave 5 — ns Slave — 9 ns 25 26 27 Serial clock low period Serial clock rise/fall time SS assertion to first SCK edge impedance2 32 SS deassertion to data high 33 SCK edge to data out valid (data out delay time) Master/Slave — 100 ns 34 SCK edge to data out not valid (data out hold time) Master/Slave 21.4 — ns 35 SS assertion to data out valid (CPHA = 0) Slave — 15.0 ns 36 First SCK sampling edge to HREQ output deassertion Slave 50 — ns 37 Last SCK sampling edge to HREQ output not deasserted (CPHA = 1) Slave 52.2 — ns 38 SS deassertion to HREQ output not deasserted (CPHA = 0) Slave 46.6 — ns 39 SS deassertion pulse width (CPHA = 0) Slave 12.7 — ns 40 HREQ in assertion to first SCK edge Master — — ns 41 HREQ in deassertion to last SCK sampling edge (HREQ in set-up time) (CPHA = 1) Master 0 — ns First SCK edge to HREQ in not asserted Master 0 — ns 42 (HREQ in hold time) 43 Notes: HREQ assertion width Master ns 1. VCORE_VDD = 1.2 5 ± 0.05 V; TJ = –40°C to 115°C for 150 MHz; TJ = 0°C to 100°C for 181 MHz; CL = 50 pF 2. Periodically sampled, not 100% tested Freescale Semiconductor DSP56371 Technical Data 39 Serial Host Interface SPI Protocol Timing SS (Input) 25 23 24 26 26 SCK (CPOL = 0) (Output) 24 23 26 25 26 SCK (CPOL = 1) (Output) 29 30 MISO (Input) MSB Valid LSB Valid 34 33 MOSI (Output) MSB 40 30 29 LSB 42 HREQ (Input) 71 Figure 9. SPI Master Timing (CPHA = 0) 40 DSP56371 Technical Data Freescale Semiconductor Serial Host Interface SPI Protocol Timing SS (Input) 25 23 24 26 26 SCK (CPOL = 0) (Output) 24 23 26 25 SCK (CPOL = 1) (Output) 26 29 29 30 MISO (Input) 30 MSB Valid LSB Valid 33 MOSI (Output) 34 MSB LSB 40 41 42 HREQ (Input) 2 Figure 10. SPI Master Timing (CPHA = 1) Freescale Semiconductor DSP56371 Technical Data 41 Serial Host Interface SPI Protocol Timing SS (Input) 25 23 24 26 28 26 39 SCK (CPOL = 0) (Input) 27 24 23 26 25 26 SCK (CPOL = 1) (Input) 35 33 34 31 MISO (Output) 34 32 MSB LSB 29 29 30 MOSI (Input) MSB Valid 30 LSB Valid 36 38 HREQ (Output) 73 Figure 11. SPI Slave Timing (CPHA = 0) 42 DSP56371 Technical Data Freescale Semiconductor Serial Host Interface SPI Protocol Timing SS (Input) 25 23 24 26 28 26 SCK (CPOL = 0) (Input) 27 24 26 25 27 SCK (CPOL = 1) (Input) 33 33 34 31 MISO (Output) 32 MSB LSB 29 29 30 MOSI (Input) MSB Valid 30 LSB Valid 36 37 HREQ (Output) 74 Figure 12. SPI Slave Timing (CPHA = 1) Freescale Semiconductor DSP56371 Technical Data 43 Serial Host Interface (SHI) I2C Protocol Timing Serial Host Interface (SHI) I2C Protocol Timing 13 Table 21. SHI I2C Protocol Timing Standard I2C* Characteristics1 No. Standard Fast-Mode Symbol/ Expression Min Max Min Max Unit 44 SCL clock frequency FSCL — 100 — 400 kHz 44 SCL clock cycle TSCL 10 — 2.5 — µs 45 Bus free time TBUF 4.7 — 1.3 — µs 46 Start condition set-up time TSUSTA 4.7 — 0.6 — µs 47 Start condition hold time THD;STA 4.0 — 0.6 — µs 48 SCL low period TLOW 4.7 — 1.3 — µs 49 SCL high period THIGH 4.0 — 1.3 — µs 50 SCL and SDA rise time TR — 5 — 5 ns 51 SCL and SDA fall time TF — 5 — 5 ns 52 Data set-up time TSU;DAT 250 — 100 — ns 53 Data hold time THD;DAT 0.0 — 0.0 0.9 µs 54 DSP clock frequency FOSC 10.6 — 28.5 — MHz 55 SCL low to data out valid TVD;DAT — 3.4 — 0.9 µs 56 Stop condition setup time TSU;STO 4.0 — 0.6 — µs 57 HREQ in deassertion to last SCL edge (HREQ in set-up time) tSU;RQI 0.0 — 0.0 — ns 58 First SCL sampling edge to HREQ output deassertion — — — — ns 50 — 50 — ns 0.5 × TI2CCP 4327 — 927 — ns tHO;RQI 0.0 — 0.0 — ns TNG;RQO 4 × TC + 30 59 Last SCL edge to HREQ output not deasserted TAS;RQO 2 × TC + 30 60 HREQ in assertion to first SCL edge TAS;RQI -0.5 × TC - 21 61 Note: 44 First SCL edge to HREQ in not asserted (HREQ in hold time.) 1. VCORE_VDD = 1.2 5 ± 0.05 V; TJ = –40°C to 115°C for 150 MHz; TJ = 0°C to 100°C for 181 MHz; CL = 50 pF DSP56371 Technical Data Freescale Semiconductor Serial Host Interface (SHI) I2C Protocol Timing 13.1 Programming the Serial Clock The programmed serial clock cycle, T I2CCP , is specified by the value of the HDM[7:0] and HRS bits of the HCKR (SHI clock control register). The expression for T I2CCP is T I2CCP = [TC × 2 × (HDM[7:0] + 1) × (7 × (1 – HRS) + 1)] where — HRS is the pre-scaler rate select bit. When HRS is cleared, the fixed divide-by-eight pre-scaler is operational. When HRS is set, the pre-scaler is bypassed. — HDM[7:0] are the divider modulus select bits. A divide ratio from 1 to 256 (HDM[7:0] = $00 to $FF) may be selected. In I2C mode, the user may select a value for the programmed serial clock cycle from 6 × TC (if HDM[7:0] = $02 and HRS = 1) 4096 × TC (if HDM[7:0] = $FF and HRS = 0) to The programmed serial clock cycle (TI2CCP ), SCL rise time (TR), should be chosen in order to achieve the desired SCL serial clock cycle (TSCL), as shown in Table 22. 44 46 49 48 SCL 50 SDA 53 51 45 52 Stop Start MSB 47 60 LSB 58 61 55 ACK Stop 56 57 59 HREQ Figure 13. I2C Timing Freescale Semiconductor DSP56371 Technical Data 45 Enhanced Serial Audio Interface Timing 14 Enhanced Serial Audio Interface Timing Table 22. Enhanced Serial Audio Interface Timing Characteristics1, 2, 3 No. 62 63 5 Clock cycle Symbol Expression3 Min Max Condition4 Unit tSSICC 4 × Tc 22.3 — i ck ns 4 × Tc 22.3 — x ck SCKT:max[(3*TC) or t87] 26.5 — x ck 2 × Tc − 10.0 3.4 — 2 × Tc 10.0 — 2 × Tc − 10.0 3.4 — 2 × Tc 10.0 — Clock high period • For internal clock — • For external clock 64 Clock low period • For internal clock — • For external clock 65 66 67 68 69 70 71 72 73 74 75 76 77 46 ns SCKR rising edge to FSR out (bl) high — SCKR rising edge to FSR out (bl) low — SCKR rising edge to FSR out (wr) high6 — SCKR rising edge to FSR out (wr) low6 — SCKR rising edge to FSR out (wl) high — SCKR rising edge to FSR out (wl) low — Data in setup time before SCKR (SCK in synchronous mode) falling edge — Data in hold time after SCKR falling edge — FSR input (bl, wr) high before SCKR falling edge 6 — FSR input (wl) high before SCKR falling edge — FSR input hold time after SCKR falling edge Flags input setup before SCKR falling edge Flags input hold time after SCKR falling edge — — — — — — — — — — — — — — — — DSP56371 Technical Data ns — 37.0 x ck — 22.0 i ck a — 37.0 x ck — 22.0 i ck a — 39.0 x ck — 24.0 i ck a — 39.0 x ck — 24.0 i ck a — 36.0 x ck — 21.0 i ck a — 37.0 x ck — 22.0 i ck a 0.0 — x ck 19.0 — i ck 5.0 — x ck 3.0 — i ck 1.0 — x ck 23.0 — i ck a 1.0 — x ck 23.0 — i ck a 3.0 — x ck 0.0 — i ck a 0.0 — x ck 19.0 — i ck s 6.0 — x ck 0.0 — i ck s ns ns ns ns ns ns ns ns ns ns ns ns ns Freescale Semiconductor Enhanced Serial Audio Interface Timing Table 22. Enhanced Serial Audio Interface Timing (Continued) No. 78 79 80 82 83 84 85 86 87 88 Characteristics1, 2, 3 SCKT rising edge to FST out (bl) high SCKT rising edge to FST out (bl) low SCKT rising edge to FST out (wr) Expression3 Min Max Condition4 Unit — — — 29.0 x ck ns — 15.0 i ck — 31.0 x ck — 17.0 i ck — 31.0 x ck — 17.0 i ck — 33.0 x ck — 19.0 i ck — 30.0 x ck — 16.0 i ck — 31.0 x ck — 17.0 i ck — 31.0 x ck — 17.0 i ck — 34.0 x ck — 20.0 i ck — 26.5 x ck — 21.0 i ck — 31.0 x ck — 16.0 i ck — 34.0 x ck — 20.0 i ck 2.0 — x ck 21.0 — i ck — high6 SCKT rising edge to FST out (wr) low Symbol — 6 — SCKT rising edge to FST out (wl) high — SCKT rising edge to FST out (wl) low — SCKT rising edge to data out enable from high impedance — SCKT rising edge to transmitter #0 drive enable assertion — SCKT rising edge to data out valid — — — — — — — — — ns ns ns ns ns ns ns ns SCKT rising edge to data out high impedance7 — SCKT rising edge to transmitter #0 drive enable deassertion7 — FST input (bl, wr) setup time before SCKT falling edge6 — 91 FST input (wl) to data out enable from high impedance — — — 27.0 — ns 92 FST input (wl) to transmitter #0 drive enable assertion — — — 31.0 — ns 93 FST input (wl) setup time before SCKT falling edge — — ns FST input hold time after SCKT falling edge — 89 90 94 95 Flag output valid after SCKT rising edge — — — — — — 2.0 — x ck 21.0 — i ck 4.0 — x ck 0.0 — i ck — 32.0 x ck — 18.0 i ck ns ns ns ns ns 96 HCKR/HCKT clock cycle — 2 x TC 40.0 — ns 97 HCKT input rising edge to SCKT output — — — 18.0 ns 98 HCKR input rising edge to SCKR output — — — 18.0 ns Freescale Semiconductor DSP56371 Technical Data 47 Enhanced Serial Audio Interface Timing Table 22. Enhanced Serial Audio Interface Timing (Continued) No. Notes: 48 Characteristics1, 2, 3 Symbol Expression3 Min Max Condition4 Unit 1. VCORE_VDD = 1.25 ± 0.05 V; TJ = –40°C to 115°C for 150 MHz; TJ = 0°C to 100°C for 181 MHz; CL = 50 pF 2. i ck = internal clock x ck = external clock i ck a = internal clock, asynchronous mode (asynchronous implies that SCKT and SCKR are two different clocks) i ck s = internal clock, synchronous mode (synchronous implies that SCKT and SCKR are the same clock) 3. bl = bit length wl = word length wr = word length relative 4. SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) = receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock 5. For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register. 6. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync signal waveform, but spreads from one serial clock before first bit clock (same as bit length frame sync signal), until the one before last bit clock of the first word in frame. 7. Periodically sampled and not 100% tested 8. ESAI_1 specs match those of ESAI_0 DSP56371 Technical Data Freescale Semiconductor Enhanced Serial Audio Interface Timing 62 SCKT (Input/Output ) 63 64 78 FST (Bit) Out 79 83 FST (Word) Out 84 87 87 85 88 First Bit Data Out Transmitter #0 Drive Enable Last Bit 92 90 86 89 94 FST (Bit) In 91 94 93 FST (Word) In 95 See Note Flags Out Note: In network mode, output flag transitions can occur at the start of each time slot within the frame. In normal mode, the output flag state is asserted for the entire frame period. Figure 14. ESAI Transmitter Timing Freescale Semiconductor DSP56371 Technical Data 49 Enhanced Serial Audio Interface Timing 62 63 64 SCKR (Input/Output) 65 66 FSR (Bit) Out 69 70 FSR (Word) Out 72 71 Data In First Bit Last Bit 75 73 FSR (Bit) In 74 75 FSR (Word) In 76 77 Flags In Figure 15. ESAI Receiver Timing HCKT SCKT(output) 96 97 Figure 16. ESAI HCKT Timing HCKR SCKR (output) 96 98 Figure 17. ESAI HCKR Timing 50 DSP56371 Technical Data Freescale Semiconductor Digital Audio Transmitter Timing 15 Digital Audio Transmitter Timing Table 23. Digital Audio Transmitter Timing 181 MHz No. Characteristic Expression Unit Min Max 1 / (2 x TC) — 90 MHz 2 × TC 11.1 — ns 99 ACI frequency (see note) 100 ACI period 101 ACI high duration 0.5 × TC 2.8 — ns 102 ACI low duration 0.5 × TC 2.8 — ns 103 ACI rising edge to ADO valid 1.5 × TC — 8.3 ns Note: 1. In order to assure proper operation of the DAX, the ACI frequency should be less than 1/2 of theDSP56371 internal clock frequency. For example, if the DSP56371 is running at 181 MHz internally, the ACI frequency should be less than 90MHz. ACI 100 101 102 103 ADO Figure 18. Digital Audio Transmitter Timing 16 Timer Timing Table 24. Timer Timing 181 MHz No. Characteristics Expression Unit Min Max 104 TIO Low 2 × TC + 2.0 13 — ns 105 TIO High 2 × TC + 2.0 13 — ns Note: 1. VCORE_VDD = 1.25 V ± 0.05 V; TJ = –40°C to 115°C for 150 MHz; TJ = 0°C to 100°C for 181 MHz; CL = 50 pF TIO 104 105 Figure 19. TIO Timer Event Input Restrictions Freescale Semiconductor DSP56371 Technical Data 51 GPIO Timing 17 GPIO Timing Table 25. GPIO Timing Characteristics1 No. Expression Min Max Unit 106 FOSC edge to GPIO out valid (GPIO out delay time) — 7 ns 107 FOSC edge to GPIO out not valid (GPIO out hold time) ---- 7 ns 108 FOSC In valid to EXTAL edge (GPIO in set-up time) 2 --- ns 109 FOSC edge to GPIO in not valid (GPIO in hold time) 0 --- ns 110 Minimum GPIO pulse high width (except Port F) 2 x TC 11.1 — ns 111 Minimum GPIO pulse low width (except Port F) 2 x TC 11.1 ns 112 Minimum GPIO pulse low width (Port F) 6 x TC 33.3 ns 113 Minimum GPIO pulse high width (Port F) 6 x TC 33.3 ns 114 GPIO out rise time — — 13 ns 115 GPIO out fall time — — 13 ns Note: 1. VCORE_VDD = 1.25 V ± 0.05 V; TJ = –40°C to 115°C for 150 MHz; TJ = 0°C to 100°C for 181 MHz; CL = 50 pF FOSC 106 107 GPIO (Output) 108 GPIO (Input) 109 Valid GPIO (Output) 110 111 112 113 Figure 20. GPIO Timing 52 DSP56371 Technical Data Freescale Semiconductor JTAG Timing 18 JTAG Timing Table 26. JTAG Timing All frequencies No. Characteristics Unit Min Max 116 TCK frequency of operation (1/(TC × 6); maximum 22 MHz) 0.0 22.0 MHz 117 TCK cycle time 45.0 — ns 118 TCK clock pulse width 20.0 — ns 119 TCK rise and fall times 0.0 10.0 ns 120 TCK low to output data valid 0.0 40.0 ns 121 TCK low to output high impedance 0.0 40.0 ns 122 TMS, TDI data setup time 5.0 — ns 123 TMS, TDI data hold time 25.0 — ns 124 TCK low to TDO data valid 0.0 44.0 ns 125 TCK low to TDO high impedance 0.0 44.0 ns Note: 1. VCORE_VDD = 1.25 V ± 0.05 V; TJ = –40°C to 115°C for 150 MHz; TJ = 0°C to 100°C for 181 MHz; CL = 50 pF All timings apply to OnCE module data transfers because it uses the JTAG port as an interface. 117 TCK (Input) VIH 118 118 VM VM VIL 119 119 Figure 21. Test Clock Input Timing Diagram Freescale Semiconductor DSP56371 Technical Data 53 JTAG Timing TCK (Input) VIH VIL 122 Data Inputs 123 Input Data Valid 120 Data Outputs Output Data Valid 121 Data Outputs 120 Data Outputs Output Data Valid Figure 22. Debugger Port Timing Diagram TCK (Input) VIH VIL 122 TDI TMS (Input) 123 Input Data Valid 124 TDO (Output) Output Data Valid 125 TDO (Output) 124 TDO (Output) Output Data Valid Figure 23. Test Access Port Timing Diagram 54 DSP56371 Technical Data Freescale Semiconductor Package Information 19 Package Information IO_VDD SCKR_PE0 SCKT_PE3 FSR_PE1 62 61 IO_GND 65 63 HCKT_PE5 66 DAX 64 HCKR_PE2 67 CORE_VDD 71 CORE_GND HCKR_PC2 72 ADO_PD1 HCKT_PC5 73 68 IO_GND 74 ACI_PD0 IO_VDD 69 SCKR_PC0 75 ESAI 70 SCKT_PC3 FSR_PC1 78 76 FST_PC4 79 77 SDO5_SDI0_PC6 80 . ESAI_1 SDO4_SDI1_PC7 1 60 FST_PE4 IO_GND 2 59 SDO5_SDI0_PE6 IO_VDD 3 58 SDO4_SDI1_PE7 SDO3_SDI2_PC8 4 57 SDO3_SDI2_PE8 SDO2_SDI3_PC9 5 56 SDO2_SDI3_PE9 SDO1_PC10 6 55 SDO1_PE10 SDO0_PC11 7 54 SDO0_PE11 CORE_VDD 8 53 CORE_GND PF8 9 52 CORE_VDD PF6 10 51 MODA_IRQA PF7 11 50 MODB_IRQB CORE_GND 12 49 MODC_IRQC PF2 13 48 MODD_IRQD PF3 14 47 RESET_B PF4 15 46 PINIT_NMI PF5 16 45 EXTAL IO_VDD 17 44 PLLD_VDD PF1 18 43 PLLD_GND PF0 19 42 PLLP_GND GND 20 41 PLLP_VDD Int/Mod GPIO PLL 28 29 30 31 32 33 34 35 36 37 38 39 40 CORE_GND CORE_VDD TDO TDI TCK TMS MOSI_HA0 MISO_SDA SCK_SCL SS_HA2 HREQ PLLA_VDD PLLA_GND 25 IO_VDD 27 24 IO_GND TIO1_PB1 23 PF10 SHI 26 22 SCAN OnCE TIO0_PB0 21 PF9 Timer Figure 24. DSP56371 Pinout Freescale Semiconductor DSP56371 Technical Data 55 Package Information Table 27. Signal Identification by Pin Number Pin No. 56 Signal Name Pin No Signal Name Pin No Signal Name Pin No Signal Name 1 SDO4_SDI1_PC7 21 PF9 41 PLLP_VDD 61 FSR_PE1 2 IO_GND 22 SCAN 42 PLLP_GND 62 SCKT_PE3 3 IO_VDD 23 PF10 43 PLLD_GND 63 SCKR_PE0 4 SDO3_SDI2_PC8 24 IO_GND 44 PLLD_VDD 64 IO_VDD 5 SDO2_SDI3_PC9 25 IO_VDD 45 EXTAL 65 IO_GND 6 SDO1_PC10 26 TI0_PB0 46 PINIT_NMI 66 HCKT_PE5 7 SDO0_PC11 27 TI0_PB1 47 RESET_B 67 HCKR_PE2 8 CORE_VDD 28 CORE_GND 48 MODD_IRQD 68 CORE_GND 9 PF8 29 CORE_VDD 49 MODC_IRQC 69 ADO_PD1 10 PF6 30 TDO 50 MODB_IRQB 70 ADI_PD0 11 PF7 31 TDI 51 MODA_IRQA 71 CORE_VDD 12 CORE_GND 32 TCK 52 CORE_VDD 72 HCKR_PC2 13 PF2 33 TMS 53 CORE_GND 73 HCKT2_PC5 14 PF3 34 MOSI_HA0 54 SDO0_PE11 74 IO_GND 15 PF4 35 MISO_SDA 55 SDO1_PE10 75 IO_VDD 16 PF5 36 SCK_SCL 56 SDO2_SDI3_PE9 76 SCKR_PC0 17 IO_VDD 37 SS_HA2 57 SDO3_SDI2_PE8 77 SCKT_PC3 18 PF1 38 HREQ 58 SDO4_SDI1_PE7 78 FSR_PC1 19 PF0 39 PLLA_VDD 59 SDO5_SD10_PE6 79 FST_PC4 20 GND 40 PLLA_GND 60 FST_PE4 80 SDO5_SDI10_PC6 DSP56371 Technical Data Freescale Semiconductor Package Information Freescale Semiconductor DSP56371 Technical Data 57 Package Information 58 DSP56371 Technical Data Freescale Semiconductor Package Information Freescale Semiconductor DSP56371 Technical Data 59 Package Information 60 DSP56371 Technical Data Freescale Semiconductor Design Considerations 20 Design Considerations 20.1 Thermal Design Considerations An estimation of the chip junction temperature, TJ, in °C can be obtained from the following equation: T J = T A + ( P D × R θJA ) Where: TA = RqJA = PD = ambient temperature °C package junction-to-ambient thermal resistance °C/W power dissipation in package W Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance. R θJA = R θJC + R θCA Where: RθJA = RθJC = RθCA = package junction-to-ambient thermal resistance °C/W package junction-to-case thermal resistance °C/W package case-to-ambient thermal resistance °C/W RθJC is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-toambient thermal resistance, RθCA. For example, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB), or otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the device thermal performance may need the additional modeling capability of a system level thermal simulation tool. The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package is mounted. Again, if the estimations obtained from RθJA do not satisfactorily answer whether the thermal performance is adequate, a system level model may be appropriate. A complicating factor is the existence of three common ways for determining the junction-to-case thermal resistance in plastic packages. • To minimize temperature variation across the surface, the thermal resistance is measured from the junction to the outside surface of the package (case) closest to the chip mounting area when that surface has a proper heat sink. • To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance is measured from the junction to where the leads are attached to the case. • If the temperature of the package case (TT) is determined by a thermocouple, the thermal resistance is computed using the value obtained by the equation (TJ – TT)/PD. As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will estimate a junction temperature slightly hotter than actual temperature. Hence, the new thermal metric, thermal characterization parameter or ΨJT, has been defined to be (TJ – TT)/PD. This value gives a better estimate of the junction temperature in natural convection when using the surface temperature of the package. Remember that surface temperature readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy. Freescale Semiconductor DSP56371 Technical Data 61 Design Considerations 20.2 Electrical Design Considerations CAUTION This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either GND or VCC). The suggested value for a pullup or pulldown resistor is 10 k ohm. Use the following list of recommendations to assure correct DSP operation: • • • • • • • • • • • 20.3 Provide a low-impedance path from the board power supply to each VCC pin on the DSP and from the board ground to each GND pin. Use at least six 0.01–0.1 µF bypass capacitors positioned as close as possible to the four sides of the package to connect the VCC power source to GND. Ensure that capacitor leads and associated printed circuit traces that connect to the chip VCC and GND pins are less than 1.2 cm (0.5 inch) per capacitor lead. Route the DVDD pin carefully to minimize noise. Use at least a four-layer PCB with two inner layers for VCC and GND. Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal. This recommendation particularly applies to the IRQA, IRQB, IRQC, and IRQD pins. Maximum PCB trace lengths on the order of 15 cm (6 inches) are recommended. Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the VCC and GND circuits. Take special care to minimize noise levels on the VCCP and GNDP pins. If multiple DSP56371 devices are on the same board, check for cross-talk or excessive spikes on the supplies due to synchronous operation of the devices. RESET must be asserted when the chip is powered up. A stable EXTAL signal must be supplied before deassertion of RESET. At power-up, ensure that the voltage difference between the 3.3 V tolerant pins and the chip VCC never exceeds a 3.00 V. Power Consumption Considerations Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current consumption are described in this section. Most of the current consumed by CMOS devices is alternating current (ac), which is charging and discharging the capacitances of the pins and internal nodes. Current consumption is described by the following formula: I = C×V×f where C V f 62 = = = node/pin capacitance voltage swing frequency of node/pin toggle DSP56371 Technical Data Freescale Semiconductor Power Consumption Benchmark Power Consumption Example For a GPIO address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 150 MHz clock, toggling at its maximum possible rate (75 MHz), the current consumption is I = 50 x 10 – 12 x 3.3 x 75 x 10 6 = 12.375mA The maximum internal current (ICCImax) value reflects the typical possible switching of the internal buses on best-case operation conditions, which is not necessarily a real application case. The typical internal current (ICCItyp) value reflects the average switching of the internal buses on typical operating conditions. For applications that require very low current consumption, do the following: • Minimize the number of pins that are switching. • Minimize the capacitive load on the pins. One way to evaluate power consumption is to use a current per MIPS measurement methodology to minimize specific board effects (i.e., to compensate for measured board current not caused by the DSP). Use the test algorithm, specific test current measurements, and the following equation to derive the current per MIPS value. I/MIPS = I/MHz = (ItypF2 - ItypF1)/(F2 - F1) where :ItypF2 ItypF1 F2 F1 = = = = current at F2 current at F1 high frequency (any specified operating frequency) low frequency (any specified operating frequency lower than F2) NOTE F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33 MHz. The degree of difference between F1 and F2 determines the amount of precision with which the current rating can be determined for an application. 21 Power Consumption Benchmark The following benchmark program permits evaluation of DSP power usage in a test situation. ;***********************************;******************************** ;* ;* CHECKS Typical Power Consumption ;******************************************************************** ORG P:$000800 move #$000000,r1 move #$000000,r0 do #1024,ldmem move r1,p:(r0) move r1,y:(r0)+ ldmem nop move #0,b1 ;jmp $FF2AE0 ;org P:$FF2AE0 move b1,y:>$100 Freescale Semiconductor DSP56371 Technical Data 63 Power Consumption Benchmark move move move move #$FF,B #>$AF080,X0 #>$FF2AD6,r0 #$0,r1 dor #6,loop1 move p:(r0)+,x1 move x0,p:(r1)+ move x1,p:(r1)+ nop loop1 move #$0,vba move #$0,sp move #$0,sc reset move #$FFFFFF,m0 move m0,m1 move m0,m2 move m0,m3 move m0,m4 move m0,m5 move m0,m6 move m0,m7 move #>$102,ep move #>$18,sz move #>$110000,omr move #$300,sr movep #>$F02000,X:$FFFFFF movep #$187,X:$FFFFFE ;then sets up BCR and AAR registers ;then sets up PORTB and HDI08 PORT andi #$FC,mr ;start running ROM intialisation stage ;jsr $FF1C7E ; Set green HLX zone table jsr $FF1D64 ; Run GPIONil function jsr $FF2F82 ; Initialise Green HLX jsr $FF1FA1 ; Disable DAX move #>$15F,x1 move x1,P:$FF0D7F ; Run Green HLX jmp $FF1FDB nop nop nop nop nop nop 64 DSP56371 Technical Data Freescale Semiconductor Power Consumption Benchmark dor forever,endprog nop nop endprog nop Freescale Semiconductor DSP56371 Technical Data 65 IBIS Model 22 IBIS Model [IBIS ver] 2.1 [File name] [File Rev] [Date] tpz013g3.ibs 1.0 07/30/2002 [Source] Made By 0.13uu HSPICE model. [Disclaimer] This information is for modeling purposes only and is not guaranteed. [Copyright] Copyright 2002, Design Service, tsmc, All Rights Reserved. | |************************************************************************ | Component tpz013g3 |************************************************************************ (Pin) signal_name model_name 1 SDO4_SDI1_PC7 PRD12DGZ 2 IO_GND PVSS3DGZ 3 IO_VDD PVDD2DGZ 4 SDO3_SDI2_PC8 PRD12DGZ 5 SDO2_SDI3_PC9 PRD12DGZ 6 SDO1_PC10 PRD12DGZ 7 SDO0_PC11 PRD12DGZ 8 CORE_VDD PVDD1DGZ 9 PF8 PRD12DGZ 10 PF6 PRD12DGZ 11 PF7 PRD12DGZ 12 CORE_GND PVSS3DGZ 13 PF2 PRD12DGZ 14 PF3 PRD12DGZ 15 PF4 PRD12DGZ 16 PF5 PRD12DGZ 17 IO_VDD PVDD2DGZ 18 PF1 PRD12DGZ 19 PF0 PRD12DGZ 66 DSP56371 Technical Data Freescale Semiconductor IBIS Model 20 GND PVSS2DGZ 21 PF9 PRD12DGZ 22 SCAN PDDDGZ 23 PF10 PRD12DGZ 24 IO_GND PVSS3DGZ 25 IO_VDD PVDD2DGZ 26 TI0_PB0 PVDD2DGZ 27 TI1_PB1 PVDD2DGZ 28 CORE_GND PVSS3DGZ 29 CORE_VDD PVDD1DGZ 30 TDO PRT24DGZ 31 TDI PDUDGZ 32 TCK PDUDGZ 33 TMS PDUDGZ 34 MOSI_HA0 PRD12DGZ 35 MISO_SDA PRD12DGZ 36 SCK_SCL PRD16DGZ 37 SS_HA2 PDUSDGZ 38 HREQ PRD12DGZ 39 PLLA_VDD PVDD1P 40 PLLA_GND PVSS1P 41 PLLP_VDD PVDD2DGZ 42 PLLP_GND PVSS2P 43 PLLD_GND PVSS1P 44a PLLD_VDD PVDD1PC 44b PLLD_VDD PVDD1DGZ 45 EXTAL PDIDGZ 46 PINIT_NMI PDUSDGZ 47 RESET_B PDUSDGZ 48 MODD_IRQD PDUSDGZ 49 MODC_IRQC PDUSDGZ 50 MODB_IRQB PDUSDGZ 51 MODA_IRQA PDUSDGZ Freescale Semiconductor DSP56371 Technical Data 67 IBIS Model 52 CORE_VDD PVDD1DGZ 53 CORE_GND PVSS3DGZ 54 SDO0_PE11 PRD12DGZ 55 SDO1_PE10 PRD12DGZ 56 SDO2_SDI3_PE9 PRD12DGZ 57 SDO3_SDI2_PE8 PRD12DGZ 58 SDO4_SDI1_PE7 PRD12DGZ 59 SDO5_SDI0_PE6 PRD12DGZ 60 FST_PE4 PRD12DGZ 61 FSR_PE1 PRD12DGZ 62 SCKT_PE4 PRD12DGZ 63 SCKR_PE0 PRD12DGZ 64 IO_VDD PVDD2DGZ 65 IO_GND PVSS3DGZ 66 HCKT_PE5 PRD12DGZ 67 HCKR_PE2 PRD12DGZ 68 CORE_GND PVSS3DGZ 69 ADO_PD1 PRD24DGZ 70 ADI_PD2 PRD24DGZ 71 CORE_VDD PVDD1DGZ 72 HCKR_PC2 PRD12DGZ 73 HCKT_PC5 PRD12DGZ 74 IO_GND PVSS3DGZ 75 IO_VDD PVDD2DGZ 76 SCKR_PC0 PRD12DGZ 77 SCKT_PC4 PRD12DGZ 78 FSR_PC1 PRD12DGZ 79 FST_PC4 PRD12DGZ 80 SDO5_SDI0_PC6 PRD12DGZ |************************************************************************ | Model prd12dgz |************************************************************************ | 68 DSP56371 Technical Data Freescale Semiconductor IBIS Model [Model] prd12dgz Model_type I/O Polarity Non-Inverting Enable Active-Low Vinl = 0.80V Vinh = 2.00V Vmeas = 1.50V Cref = 50.00pF Rref = 1.00M Vref = 0.000V C_comp 4.17pF | | [Temperature Range] 25.00 [Pullup Reference] 3.30V [Pulldown Reference] 0.000V [POWER Clamp Reference] 5.00V [GND Clamp Reference] 0.000V [Pulldown] | voltage I(typ) I(min) | -3.30 0.000A 0.000A -3.10 0.000A 0.000A -2.90 0.000A 0.000A -2.70 0.000A 0.000A -2.50 0.000A -10.00mA -2.30 -10.00mA 0.000A -2.10 0.000A -10.00mA -1.90 0.000A 0.000A -1.70 0.000A 0.000A -1.50 -10.00mA 0.000A -1.00 -11.00mA -5.00mA -0.90 -12.00mA -5.00mA -0.80 -24.00mA -7.00mA -0.70 -29.14mA -8.00mA -0.60 -26.47mA -13.80mA -0.50 -22.61mA -14.54mA -0.40 -18.32mA -12.17mA -0.30 -13.87mA -9.16mA -0.20 -9.33mA -6.10mA -0.10 -4.70mA -3.05mA -0.00 2.86nA 7.25nA 0.10 4.61mA 2.94mA 0.20 8.96mA 5.69mA 0.30 13.07mA 8.26mA 0.40 16.92mA 10.65mA 0.50 20.53mA 12.86mA 0.60 23.91mA 14.90mA Freescale Semiconductor 3.75pF 4.58pF 0.12k 3.00V 0.000V 4.50V 0.000V 0.000 3.60V 0.000V 5.50V 0.000V I(max) 0.000A -10.00mA 0.000A 0.000A 0.000A -10.00mA 0.000A -10.00mA -10.00mA -10.00mA -13.00mA -15.00mA -32.51mA -32.35mA -29.35mA -25.54mA -20.93mA -15.91mA -10.74mA -5.43mA 11.72nA 5.36mA 10.49mA 15.36mA 20.00mA 24.40mA 28.55mA DSP56371 Technical Data 69 IBIS Model 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.70 4.90 5.10 5.30 5.50 5.70 5.90 6.10 6.60 | [Pullup] | voltage | 70 27.04mA 29.95mA 32.61mA 35.06mA 37.27mA 39.27mA 41.04mA 42.60mA 43.95mA 45.08mA 46.00mA 46.70mA 47.20mA 47.55mA 47.81mA 48.01mA 48.17mA 48.31mA 48.42mA 48.53mA 48.62mA 48.70mA 48.78mA 48.85mA 48.92mA 48.99mA 49.05mA 49.12mA 49.20mA 49.24mA 49.31mA 49.40mA 49.61mA 50.41mA 51.65mA 52.87mA 50.78mA 50.67mA 51.17mA 51.85mA 52.75mA 53.86mA 55.21mA 56.82mA 58.68mA 60.78mA 66.91mA 16.76mA 18.46mA 19.99mA 21.37mA 22.58mA 23.64mA 24.55mA 25.32mA 25.95mA 26.44mA 26.80mA 27.07mA 27.26mA 27.41mA 27.53mA 27.63mA 27.71mA 27.78mA 27.85mA 27.90mA 27.96mA 28.01mA 28.05mA 28.09mA 28.14mA 28.18mA 28.23mA 28.42mA 28.97mA 29.74mA 30.57mA 31.13mA 28.60mA 28.66mA 28.72mA 28.80mA 28.89mA 29.12mA 29.42mA 29.83mA 30.37mA 31.02mA 31.82mA 32.77mA 33.86mA 35.10mA 38.73mA 32.48mA 36.18mA 39.64mA 42.87mA 45.87mA 48.64mA 51.19mA 53.50mA 55.60mA 57.46mA 59.11mA 60.53mA 61.71mA 62.63mA 63.31mA 63.79mA 64.15mA 64.43mA 64.65mA 64.84mA 65.00mA 65.14mA 65.27mA 65.38mA 65.49mA 65.59mA 65.68mA 65.77mA 65.86mA 65.95mA 66.04mA 66.12mA 66.22mA 66.33mA 66.49mA 66.72mA 67.28mA 70.40mA 73.03mA 69.12mA 70.18mA 71.45mA 73.05mA 74.98mA 77.25mA 79.83mA 87.50mA I(typ) I(min) I(max) DSP56371 Technical Data Freescale Semiconductor IBIS Model -3.30 -3.10 -2.90 -2.70 -2.50 -2.30 -2.10 -1.90 -1.70 -1.50 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 0.11A 0.11A 0.10A 97.60mA 92.41mA 87.04mA 81.44mA 75.56mA 69.36mA 62.83mA 48.46mA 43.82mA 38.59mA 33.28mA 28.26mA 23.64mA 19.01mA 14.32mA 9.58mA 4.80mA 34.08uA -4.58mA -8.94mA -13.04mA -16.89mA -20.50mA -23.86mA -26.98mA -29.87mA -32.53mA -34.96mA -37.16mA -39.15mA -40.92mA -42.48mA -43.83mA -44.98mA -45.94mA -46.72mA -47.35mA -47.86mA -48.29mA -48.65mA -48.97mA -49.25mA -49.50mA -49.72mA -49.92mA -50.11mA -50.28mA -50.44mA Freescale Semiconductor 82.01mA 79.25mA 76.07mA 72.55mA 68.70mA 64.55mA 60.13mA 55.45mA 50.52mA 45.36mA 31.37mA 28.63mA 28.69mA 24.97mA 21.04mA 17.11mA 13.34mA 9.87mA 6.53mA 3.23mA 11.20uA -3.08mA -5.98mA -8.72mA -11.27mA -13.66mA -15.87mA -17.92mA -19.80mA -21.51mA -23.06mA -24.45mA -25.68mA -26.75mA -27.66mA -28.43mA -29.05mA -29.53mA -29.90mA -30.20mA -30.45mA -30.66mA -30.85mA -31.02mA -31.17mA -31.31mA -31.44mA -31.56mA -31.67mA -31.78mA -31.88mA 0.13A 0.13A 0.12A 0.11A 0.11A 0.10A 94.69mA 87.72mA 80.48mA 73.03mA 56.75mA 50.74mA 44.61mA 38.60mA 33.20mA 27.91mA 22.52mA 17.03mA 11.45mA 5.78mA 71.92uA -5.50mA -10.80mA -15.82mA -20.56mA -25.04mA -29.25mA -33.21mA -36.91mA -40.36mA -43.56mA -46.52mA -49.24mA -51.73mA -53.98mA -56.01mA -57.81mA -59.40mA -60.77mA -61.93mA -62.90mA -63.70mA -64.37mA -64.93mA -65.40mA -65.82mA -66.18mA -66.50mA -66.79mA -67.05mA -67.29mA DSP56371 Technical Data 71 IBIS Model 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.70 4.90 5.10 5.30 5.50 5.70 5.90 6.10 6.60 | [GND_clamp] | voltage | -5.00 -4.80 -4.60 -4.40 -4.20 -4.00 -3.80 -3.60 -3.40 -3.20 -3.00 -2.80 -2.60 -2.40 -2.20 -2.00 -1.80 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 72 -50.59mA -50.74mA -50.88mA -51.01mA -51.14mA -51.27mA -51.42mA -51.84mA -53.78mA -64.80mA -0.29A -1.85A -3.90A -8.00A -12.10A -16.20A -20.30A -24.40A -28.50A -32.60A -36.70A -40.80A -51.05A -31.98mA -32.08mA -32.20mA -32.75mA -40.35mA -0.14A -0.94A -2.69A -4.48A -6.27A -8.06A -9.85A -11.63A -15.21A -18.79A -22.36A -25.94A -29.51A -33.09A -36.67A -40.24A -43.82A -52.76A -67.51mA -67.72mA -67.92mA -68.11mA -68.29mA -68.47mA -68.64mA -68.80mA -68.97mA -69.30mA -70.82mA -75.29mA -83.12mA -1.14A -5.39A -9.64A -13.89A -18.15A -22.41A -26.66A -30.92A -35.17A -45.81A I(typ) I(min) I(max) -85.83A -81.73A -77.63A -73.53A -69.43A -65.33A -61.23A -57.13A -53.03A -48.93A -44.84A -40.74A -36.64A -32.54A -28.45A -24.35A -20.25A -16.15A -12.05A -7.95A -3.85A -0.23A -2.25mA -89.81uA -77.78A -74.20A -70.62A -67.04A -63.46A -59.88A -56.30A -52.72A -49.14A -45.56A -41.99A -38.42A -34.84A -31.27A -27.69A -24.12A -20.54A -16.97A -13.39A -9.82A -6.24A -2.66A -0.10A -0.52mA -88.32A -84.06A -79.80A -75.54A -71.28A -67.02A -62.76A -58.50A -54.24A -49.98A -45.73A -41.48A -37.22A -32.97A -28.72A -24.46A -20.21A -15.95A -11.70A -7.44A -3.19A -70.99mA -5.98mA -0.26mA DSP56371 Technical Data Freescale Semiconductor IBIS Model -0.20 -0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 -27.92uA -87.63nA 18.71uA 29.19uA 32.49uA 33.07uA 33.30uA 33.45uA 33.57uA 33.68uA 33.77uA 33.87uA 33.96uA 34.01uA 34.03uA 34.05uA 34.06uA 34.07uA 34.07uA 34.07uA 34.07uA 34.07uA 34.07uA 34.07uA 34.07uA 34.07uA 34.07uA | [POWER_clamp] | voltage I(typ) | -5.00 48.57uA -4.90 48.24uA -4.80 47.91uA -4.70 47.58uA -4.60 47.25uA -4.50 46.92uA -4.40 46.59uA -4.30 46.26uA -4.20 45.93uA -4.10 45.60uA -4.00 45.27uA -3.90 44.94uA -3.80 4.61uA -3.70 44.28uA -3.60 43.95uA -3.50 43.62uA -3.40 43.29uA -3.30 42.96uA -3.20 42.63uA -3.10 42.30uA Freescale Semiconductor -14.70uA -89.05nA 7.31uA 10.25uA 10.67uA 10.78uA 10.86uA 10.92uA 10.97uA 11.02uA 11.07uA 11.11uA 11.14uA 11.15uA 11.16uA 11.17uA 11.19uA 11.51uA 10.95uA 10.39uA 9.83uA 9.27uA 8.71uA 8.15uA 7.59uA 7.03uA 6.47uA -42.92uA -0.10uA 32.27uA 54.12uA 65.78uA 69.33uA 70.17uA 70.55uA 70.80uA 70.99uA 71.16uA 71.32uA 71.46uA 71.61uA 71.76uA 71.84uA 71.86uA 71.88uA 71.90uA 71.92uA 71.94uA 71.96uA 71.98uA 72.00uA 72.02uA 72.04uA 72.06uA I(min) I(max) 16.33uA 16.21uA 16.09uA 15.97uA 15.85uA 15.73uA 15.61uA 15.49uA 15.37uA 15.25uA 15.13uA 15.01uA 14.89uA 14.77uA 14.65uA 14.53uA 14.41uA 14.29uA 14.17uA 14.05uA 95.57uA 95.07uA 94.57uA 94.07uA 93.57uA 93.07uA 92.57uA 92.07uA 91.57uA 91.07uA 90.57uA 90.07uA 89.57uA 89.07uA 88.57uA 88.07uA 87.57uA 87.07uA 86.57uA 86.07uA DSP56371 Technical Data 73 IBIS Model -3.00 -2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00 -1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 0.40 -0.30 -0.20 -0.10 41.97uA 41.64uA 41.31uA 40.98uA 40.65uA 40.32uA 39.99uA 39.66uA 39.33uA 39.00uA 38.67uA 38.34uA 38.01uA 37.68uA 37.35uA 37.02uA 36.71uA 36.42uA 36.15uA 35.89uA 35.66uA 35.45uA 35.26uA 35.09uA 34.93uA 34.80uA 34.68uA 34.59uA 34.50uA 34.43uA 13.93uA 13.81uA 13.69uA 13.57uA 13.45uA 13.33uA 13.21uA 13.09uA 12.97uA 12.85uA 12.73uA 12.61uA 12.49uA 12.37uA 12.25uA 12.15uA 12.05uA 11.95uA 11.87uA 11.79uA 11.72uA 11.66uA 11.60uA 11.55uA 11.51uA 11.47uA 11.43uA 11.41uA 11.38uA 11.36uA 0.00 34.37uA 11.34uA | [Ramp] | variable typ dV/dt_r 1.21/2.06n dV/dt_f 1.22/2.51n R_load = 50.00 | [Rising Waveform] R_fixture = 50.00 V_fixture = 0.000 V_fixture_min = 0.000 V_fixture_max = 0.000 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 1.26uV 0.20nS 1.04uV 0.40nS -5.64uV 74 85.57uA 85.07uA 84.57uA 84.07uA 83.57uA 83.07uA 82.57uA 82.07uA 81.57uA 81.07uA 80.57uA 80.07uA 79.57uA 79.07uA 78.57uA 78.07uA 77.57uA 77.07uA 76.57uA 76.07uA 75.57uA 75.10uA 74.67uA 74.28uA 73.93uA 73.61uA 73.34uA 73.10uA 72.89uA 72.72uA 72.57uA min 0.85/2.62n 0.78/3.11n max 1.45/1.82n 1.45/2.14n V(min) V(max) 1.62uV 1.45uV -1.36uV 1.22uV 0.74uV 11.59uV DSP56371 Technical Data Freescale Semiconductor IBIS Model 0.60nS 0.80nS 1.00nS 1.20nS 1.40nS 1.60nS 1.80nS 2.00nS 2.20nS 2.40nS 2.60nS 2.80nS 3.00nS 3.20nS 3.40nS 3.60nS 3.80nS 4.00nS 4.20nS 4.40nS 4.60nS 4.80nS 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS -0.29mV -3.54mV -3.50mV 33.86mV 79.34mV 0.14V 0.20V 0.28V 0.36V 0.47V 0.60V 0.77V 0.92V 1.03V 1.16V 1.29V 1.39V 1.49V 1.58V 1.65V 1.69V 1.72V 1.76V 1.80V 1.83V 1.86V 1.88V 1.89V 1.91V 1.92V 1.93V 1.94V 1.95V 1.96V 1.97V 1.98V 1.98V 1.98V 1.99V 1.99V 1.99V 2.00V 2.00V 2.00V 2.01V 2.01V 2.01V 2.01V -5.13uV 25.94uV -4.79uV -0.86mV -3.75mV -8.09mV 3.52mV 38.97mV 82.84mV 0.13V 0.18V 0.27V 0.34V 0.40V 0.50V 0.59V 0.67V 0.75V 0.84V 0.91V 0.95V 0.99V 1.03V 1.07V 1.12V 1.16V 1.18V 1.20V 1.23V 1.25V 1.27V 1.28V 1.30V 1.31V 1.33V 1.34V 1.35V 1.36V 1.37V 1.37V 1.38V 1.39V 1.39V 1.40V 1.40V 1.41V 1.41V 1.41V -3.27mV -9.17mV 56.24mV 0.13V 0.19V 0.27V 0.36V 0.47V 0.59V 0.74V 0.90V 1.12V 1.32V 1.46V 1.63V 1.78V 1.91V 2.01V 2.11V 2.18V 2.21V 2.23V 2.27V 2.29V 2.31V 2.33V 2.34V 2.34V 2.35V 2.36V 2.37V 2.38V 2.38V 2.39V 2.39V 2.39V 2.40V 2.40V 2.40V 2.40V 2.41V 2.41V 2.41V 2.41V 2.41V 2.42V 2.42V 2.42V | [Rising Waveform] R_fixture = 50.00 Freescale Semiconductor DSP56371 Technical Data 75 IBIS Model V_fixture = 3.30 V_fixture_min = 3.00 V_fixture_max = 3.60 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 1.27V 0.20nS 1.27V 0.40nS 1.27V 0.60nS 1.27V 0.80nS 1.28V 1.00nS 1.40V 1.20nS 1.60V 1.40nS 1.77V 1.60nS 1.99V 1.80nS 2.24V 2.00nS 2.50V 2.20nS 2.74V 2.40nS 2.94V 2.60nS 3.09V 2.80nS 3.18V 3.00nS 3.24V 3.20nS 3.26V 3.40nS 3.27V 3.60nS 3.29V 3.80nS 3.29V 4.00nS 3.30V 4.20nS 3.30V 4.40nS 3.30V 4.60nS 3.30V 4.80nS 3.30V 5.00nS 3.30V 5.20nS 3.30V 5.40nS 3.30V 5.60nS 3.30V 5.80nS 3.30V 6.00nS 3.30V 6.20nS 3.30V 6.40nS 3.30V 6.60nS 3.30V 6.80nS 3.30V 7.00nS 3.30V 7.20nS 3.30V 7.40nS 3.30V 7.60nS 3.30V 7.80nS 3.30V 8.00nS 3.30V 8.20nS 3.30V 8.40nS 3.30V 8.60nS 3.30V 76 V(min) V(max) 1.66V 1.66V 1.66V 1.66V 1.66V 1.66V 1.67V 1.69V 1.80V 1.95V 2.13V 2.32V 2.49V 2.63V 2.79V 2.87V 2.91V 2.96V 2.98V 2.99V 2.99V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 1.18V 1.18V 1.18V 1.19V 1.24V 1.47V 1.71V 1.88V 2.12V 2.41V 2.70V 2.99V 3.21V 3.34V 3.44V 3.49V 3.52V 3.55V 3.57V 3.59V 3.59V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V DSP56371 Technical Data Freescale Semiconductor IBIS Model 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V | [Falling Waveform] R_fixture = 50.00 V_fixture = 0.000 V_fixture_min = 0.000 V_fixture_max = 0.000 L_fixture = 0.000H C_fixture = 0.000F |time V(typ) | 0.000S 2.02V 0.20nS 2.02V 0.40nS 2.02V 0.60nS 2.02V 0.80nS 1.97V 1.00nS 1.73V 1.20nS 1.45V 1.40nS 1.24V 1.60nS 0.96V 1.80nS 0.70V 2.00nS 0.50V 2.20nS 0.36V 2.40nS 0.27V 2.60nS 0.20V 2.80nS 0.14V 3.00nS 99.16mV 3.20nS 79.41mV 3.40nS 53.08mV 3.60nS 36.21mV 3.80nS 23.36mV 4.00nS 12.42mV 4.20nS 6.73mV 4.40nS 2.10mV 4.60nS 1.57mV 4.80nS 1.14mV 5.00nS 0.68mV 5.20nS 0.62mV 5.40nS 0.54mV 5.60nS 0.46mV 5.80nS 0.41mV 6.00nS 0.37mV 6.20nS 0.34mV 6.40nS 0.32mV 6.60nS 0.27mV Freescale Semiconductor 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V V(min) V(max) 1.44V 1.44V 1.44V 1.44V 1.44V 1.44V 1.42V 1.38V 1.29V 1.12V 0.92V 0.73V 0.55V 0.40V 0.27V 0.20V 0.16V 0.11V 75.26mV 51.00mV 31.87mV 18.57mV 8.15mV 5.93mV 3.71mV 1.71mV 1.31mV 0.89mV 0.73mV 0.65mV 0.59mV 0.53mV 0.48mV 0.43mV 2.43V 2.43V 2.43V 2.38V 2.13V 1.82V 1.49V 1.24V 0.92V 0.67V 0.50V 0.38V 0.30V 0.24V 0.17V 0.13V 0.11V 78.74mV 59.16mV 39.59mV 27.31mV 15.01mV 7.54mV 4.99mV 2.45mV 1.29mV 0.88mV 0.54mV 0.46mV 0.42mV 0.38mV 0.34mV 0.29mV 0.26mV DSP56371 Technical Data 77 IBIS Model 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 0.22mV 0.18mV 0.18mV 0.18mV 0.15mV 0.12mV 0.11mV 0.11mV 0.12mV 97.87uV 59.73uV 36.18uV 61.23uV 87.87uV 67.13uV 29.42uV 71.42uV | [Falling Waveform] R_fixture = 50.00 V_fixture = 3.30 V_fixture_min = 3.00 V_fixture_max = 3.60 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 3.30V 0.20nS 3.30V 0.40nS 3.30V 0.60nS 3.30V 0.80nS 3.30V 1.00nS 3.22V 1.20nS 3.12V 1.40nS 3.06V 1.60nS 2.96V 1.80nS 2.86V 2.00nS 2.75V 2.20nS 2.64V 2.40nS 2.52V 2.60nS 2.40V 2.80nS 2.26V 3.00nS 2.16V 3.20nS 2.10V 3.40nS 2.01V 3.60nS 1.93V 3.80nS 1.86V 4.00nS 1.78V 4.20nS 1.68V 4.40nS 1.58V 4.60nS 1.53V 78 0.38mV 0.34mV 0.30mV 0.26mV 0.23mV 0.22mV 0.20mV 0.18mV 0.17mV 0.16mV 0.15mV 0.14mV 0.12mV 0.10mV 0.10mV 0.10mV 84.83uV 0.22mV 0.20mV 0.18mV 0.15mV 0.13mV 0.12mV 0.11mV 0.10mV 92.36uV 78.53uV 64.71uV 61.02uV 60.74uV 58.12uV 46.02uV 39.81uV 50.29uV V(min) V(max) 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 2.95V 2.89V 2.83V 2.77V 2.70V 2.61V 2.54V 2.48V 2.41V 2.35V 2.30V 2.25V 2.19V 2.13V 2.10V 3.60V 3.60V 3.60V 3.59V 3.48V 3.36V 3.25V 3.16V 3.04V 2.90V 2.76V 2.61V 2.48V 2.34V 2.18V 2.04V 1.93V 1.79V 1.68V 1.57V 1.49V 1.41V 1.34V 1.31V DSP56371 Technical Data Freescale Semiconductor IBIS Model 4.80nS 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 1.49V 1.43V 1.39V 1.35V 1.32V 1.31V 1.30V 1.29V 1.29V 1.29V 1.28V 1.28V 1.28V 1.28V 1.28V 1.28V 1.28V 1.28V 1.27V 1.27V 1.27V 1.27V 1.27V 1.27V 1.27V 1.27V 1.27V 2.08V 2.04V 2.01V 1.98V 1.95V 1.94V 1.93V 1.91V 1.90V 1.88V 1.87V 1.85V 1.84V 1.83V 1.82V 1.81V 1.81V 1.80V 1.79V 1.79V 1.78V 1.77V 1.76V 1.75V 1.73V 1.72V 1.71V 1.29V 1.26V 1.24V 1.22V 1.21V 1.20V 1.20V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.19V 1.18V 1.18V 1.18V | | End [Model] prd12dgz | |************************************************************************ | Model prd16dgz |************************************************************************ | [Model] prd16dgz Model_type I/O Polarity Non-Inverting Enable Active-Low Vinl = 0.80V Vinh = 2.00V Vmeas = 1.50V Cref = 50.00pF Rref = 1.00M Vref = 0.000V C_comp 3.86pF 3.48pF 4.25pF | | [Temperature Range] 25.00 0.12k 0.000 [Pullup Reference] 3.30V 3.00V 3.60V [Pulldown Reference] 0.000V 0.000V 0.000V [POWER Clamp Reference] 5.00V 4.50V 5.50V Freescale Semiconductor DSP56371 Technical Data 79 IBIS Model [GND Clamp Reference] [Pulldown] | voltage I(typ) | -3.30 -10.00mA -3.10 0.000A -2.90 0.000A -2.70 0.000A -2.50 0.000A -2.30 0.000A -2.10 -10.00mA -1.90 0.000A -1.70 -10.00mA -1.50 -10.00mA -1.00 -16.00mA -0.90 -16.00mA -0.80 -32.00mA -0.70 -38.86mA -0.60 -35.29mA -0.50 -30.14mA -0.40 -24.42mA -0.30 -18.49mA -0.20 -12.44mA -0.10 -6.27mA -0.00 4.09nA 0.10 6.14mA 0.20 11.95mA 0.30 17.42mA 0.40 22.56mA 0.50 27.38mA 0.60 31.88mA 0.70 36.06mA 0.80 39.93mA 0.90 43.49mA 1.00 46.74mA 1.10 49.69mA 1.20 52.35mA 1.30 54.72mA 1.40 56.80mA 1.50 58.59mA 1.60 60.11mA 1.70 61.33mA 1.80 62.26mA 1.90 62.93mA 2.00 63.40mA 2.10 63.75mA 2.20 64.01mA 2.30 64.23mA 2.40 64.41mA 2.50 64.56mA 2.60 64.70mA 80 0.000V 0.000V I(min) I(max) 0.000A 0.000A 0.000A 0.000A 0.000A 0.000A 0.000A 0.000A 0.000A 0.000A -6.00mA -8.00mA -8.00mA -10.60mA -18.40mA -19.39mA -16.22mA -12.22mA -8.14mA -4.06mA 6.98nA 3.92mA 7.59mA 11.01mA 14.20mA 17.14mA 19.86mA 22.35mA 24.61mA 26.66mA 28.49mA 30.11mA 31.52mA 32.74mA 33.76mA 34.59mA 35.25mA 35.74mA 36.09mA 36.35mA 36.55mA 36.71mA 36.84mA 36.95mA 37.04mA 37.13mA 37.21mA 0.000A 0.000A 0.000A 0.000A 0.000A 0.000A 0.000A -10.00mA -10.00mA -20.00mA -18.00mA -21.00mA -43.34mA -43.13mA -39.13mA -34.05mA -27.89mA -21.21mA -14.32mA -7.24mA 10.67nA 7.15mA 13.98mA 20.48mA 26.67mA 32.53mA 38.07mA 43.31mA 48.24mA 52.85mA 57.16mA 61.16mA 64.86mA 68.25mA 71.34mA 74.13mA 76.62mA 78.81mA 80.70mA 82.27mA 83.51mA 84.41mA 85.06mA 85.54mA 85.91mA 86.20mA 86.45mA 0.000V DSP56371 Technical Data Freescale Semiconductor IBIS Model 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.70 4.90 5.10 5.30 5.50 5.70 5.90 6.10 6.60 | [Pullup] | voltage | -3.30 -3.10 -2.90 -2.70 -2.50 -2.30 -2.10 -1.90 -1.70 -1.50 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 64.82mA 64.94mA 65.04mA 65.14mA 65.23mA 65.32mA 65.40mA 65.49mA 65.59mA 65.66mA 65.75mA 65.86mA 66.08mA 66.86mA 68.11mA 69.36mA 67.34mA 67.43mA 68.10mA 69.00mA 70.20mA 71.67mA 73.47mA 75.61mA 78.09mA 80.89mA 89.06mA 37.28mA 37.34mA 37.40mA 37.46mA 37.51mA 37.57mA 37.63mA 37.81mA 38.34mA 39.10mA 39.94mA 40.42mA 38.09mA 38.16mA 38.25mA 38.35mA 38.47mA 38.78mA 39.19mA 39.73mA 40.44mA 41.32mA 42.38mA 43.64mA 45.10mA 46.75mA 51.59mA 86.66mA 86.85mA 87.02mA 87.17mA 87.32mA 87.45mA 87.58mA 87.70mA 87.82mA 87.93mA 88.05mA 88.16mA 88.29mA 88.44mA 88.63mA 88.90mA 89.46mA 92.67mA 95.47mA 91.91mA 93.29mA 95.00mA 97.12mA 99.69mA 0.10A 0.11A 0.12A I(typ) I(min) I(max) 0.16A 0.16A 0.15A 0.14A 0.14A 0.13A 0.12A 0.11A 0.10A 93.76mA 70.54mA 63.97mA 56.74mA 49.39mA 42.27mA 35.43mA 28.50mA 21.47mA 14.35mA 7.19mA 0.12A 0.12A 0.11A 0.11A 0.10A 96.26mA 89.72mA 82.79mA 75.47mA 67.80mA 46.98mA 42.83mA 41.47mA 36.27mA 30.78mA 25.27mA 19.90mA 14.79mA 9.79mA 4.85mA 0.19A 0.18A 0.17A 0.16A 0.16A 0.15A 0.14A 0.13A 0.12A 0.11A 82.43mA 74.23mA 65.83mA 57.50mA 49.67mA 41.79mA 33.74mA 25.52mA 17.14mA 8.64mA Freescale Semiconductor DSP56371 Technical Data 81 IBIS Model 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.70 4.90 5.10 5.30 5.50 5.70 82 34.08uA -6.89mA -13.43mA -19.58mA -25.36mA -30.77mA -35.81mA -40.49mA -44.83mA -48.81mA -52.46mA -55.77mA -58.75mA -61.41mA -63.75mA -65.77mA -67.50mA -68.93mA -70.10mA -71.04mA -71.82mA -72.46mA -73.01mA -73.48mA -73.90mA -74.27mA -74.60mA -74.91mA -75.18mA -75.44mA -75.68mA -75.90mA -76.12mA -76.32mA -76.52mA -76.71mA -76.89mA -77.09mA -77.56mA -79.54mA -90.56mA -0.31A -1.88A -3.93A -8.04A -12.14A -16.25A -20.36A -24.46A -28.57A -32.68A 11.19uA -4.62mA -8.98mA -13.08mA -16.92mA -20.50mA -23.82mA -26.89mA -29.70mA -32.27mA -34.60mA -36.68mA -38.52mA -40.13mA -41.50mA -42.65mA -43.58mA -44.31mA -44.87mA -45.31mA -45.68mA -46.00mA -46.28mA -46.53mA -46.76mA -46.97mA -47.17mA -47.35mA -47.52mA -47.68mA -47.83mA -47.97mA -48.11mA -48.27mA -48.87mA -56.48mA -0.15A -0.95A -2.71A -4.50A -6.29A -8.09A -9.88A -11.66A -15.24A -18.83A -22.41A -25.99A -29.57A -33.15A -36.73A 71.92uA -8.29mA -16.24mA -23.77mA -30.88mA -37.60mA -43.93mA -49.86mA -55.41mA -60.59mA -65.39mA -69.83mA -73.91mA -77.64mA -81.02mA -84.06mA -86.77mA -89.14mA -91.20mA -92.94mA -94.40mA -95.60mA -96.60mA -97.44mA -98.15mA -98.77mA -99.31mA -99.80mA -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.11A -0.11A -0.12A -1.17A -5.43A -9.69A -13.95A -18.21A -22.48A -26.74A DSP56371 Technical Data Freescale Semiconductor IBIS Model 5.90 6.10 6.60 | [GND_clamp] | voltage | -5.00 -4.80 -4.60 -4.40 -4.20 -4.00 -3.80 -3.60 -3.40 -3.20 -3.00 -2.80 -2.60 -2.40 -2.20 -2.00 -1.80 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 0.20 -0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 -36.78A -40.89A -51.16A -40.31A -43.89A -52.84A -31.00A -35.27A -45.93A I(typ) I(min) I(max) -85.90A -81.80A -77.70A -73.60A -69.50A -65.40A -61.30A -57.20A -53.10A -49.00A -44.90A -40.80A -36.69A -32.59A -28.49A -24.38A -20.28A -16.17A -12.06A -7.96A -3.86A -0.23A -2.22mA -89.20uA -27.89uA -62.88nA 18.73uA 29.21uA 32.51uA 33.09uA 33.31uA 33.46uA 33.58uA 33.69uA 33.78uA 33.87uA 33.96uA 34.01uA 34.03uA 34.04uA 34.05uA 34.06uA 34.08uA 34.10uA -77.84A -74.26A -70.68A -67.10A -63.52A -59.94A -56.36A -52.78A -49.20A -45.62A -42.04A -38.46A -34.89A -31.31A -27.73A -24.15A -20.57A -16.99A -13.40A -9.83A -6.25A -2.66A -0.10A -0.52mA -14.67uA -63.80nA 7.33uA 10.27uA 10.69uA 10.80uA 10.87uA 10.93uA 10.98uA 11.03uA 11.08uA 11.12uA 11.14uA 11.15uA 11.16uA 11.17uA 11.18uA 11.57uA 10.87uA 10.17uA -88.40A -84.14A -79.88A -75.62A -71.36A -67.10A -62.84A -58.58A -54.32A -50.06A -45.80A -41.54A -37.28A -33.02A -28.76A -24.50A -20.24A -15.97A -11.71A -7.45A -3.19A -70.76mA -5.90mA -0.26mA -42.88uA -74.38nA 32.30uA 54.14uA 65.81uA 69.35uA 70.19uA 70.56uA 70.81uA 71.00uA 71.17uA 71.33uA 71.47uA 71.62uA 71.76uA 71.84uA 71.86uA 71.88uA 71.90uA 71.92uA Freescale Semiconductor DSP56371 Technical Data 83 IBIS Model 3.80 4.00 4.20 4.40 4.60 4.80 5.00 34.12uA 34.14uA 34.16uA 34.18uA 34.20uA 34.22uA 34.24uA | [POWER_clamp] | voltage I(typ) | -5.00 48.54uA -4.90 48.21uA -4.80 47.88uA -4.70 47.55uA -4.60 47.22uA -4.50 46.89uA -4.40 46.56uA -4.30 46.23uA -4.20 45.90uA -4.10 45.57uA -4.00 45.24uA -3.90 44.91uA -3.80 44.58uA -3.70 44.25uA -3.60 43.92uA -3.50 43.59uA -3.40 43.26uA -3.30 42.93uA -3.20 42.60uA -3.10 42.27uA -3.00 41.94uA -2.90 41.61uA -2.80 41.28uA -2.70 40.95uA -2.60 40.62uA 2.50 40.29uA -2.40 39.96uA -2.30 39.63uA -2.20 39.30uA -2.10 38.97uA -2.00 38.64uA -1.90 38.31uA -1.80 37.98uA -1.70 37.65uA -1.60 37.32uA -1.50 36.99uA -1.40 36.68uA -1.30 36.39uA -1.20 36.12uA -1.10 35.87uA 84 9.47uA 8.77uA 8.07uA 7.37uA 6.67uA 5.97uA 5.27uA 71.94uA 71.96uA 71.98uA 72.00uA 72.02uA 72.04uA 72.06uA I(min) I(max) 16.29uA 16.17uA 16.05uA 15.93uA 15.81uA 15.69uA 15.57uA 15.45uA 15.33uA 15.21uA 15.09uA 14.97uA 14.85uA 14.73uA 14.61uA 14.49uA 14.37uA 14.25uA 14.13uA 14.01uA 13.89uA 13.77uA 13.65uA 13.53uA 13.41uA 13.29uA 13.17uA 13.05uA 12.93uA 12.81uA 12.69uA 12.57uA 12.45uA 12.33uA 12.22uA 12.11uA 12.02uA 11.92uA 11.84uA 11.76uA 95.93uA 95.42uA 94.91uA 94.40uA 93.89uA 93.38uA 92.87uA 92.36uA 91.85uA 91.34uA 90.83uA 90.32uA 89.81uA 89.30uA 88.79uA 88.28uA 87.77uA 87.26uA 86.75uA 86.24uA 85.73uA 85.22uA 84.71uA 84.20uA 83.69uA 83.18uA 82.67uA 82.16uA 81.65uA 81.14uA 80.63uA 80.12uA 79.61uA 79.10uA 78.59uA 78.08uA 77.57uA 77.06uA 76.55uA 76.04uA DSP56371 Technical Data Freescale Semiconductor IBIS Model -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 35.63uA 35.42uA 35.23uA 35.06uA 34.91uA 34.78uA 34.66uA 34.56uA 34.48uA 34.41uA 34.35uA | [Ramp] | variable typ dV/dt_r 1.43/2.06n dV/dt_f 1.39/2.80n R_load = 50.00 | [Rising Waveform] R_fixture = 50.00 V_fixture = 0.000 V_fixture_min = 0.000 V_fixture_max = 0.000 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) 0.000S 0.20nS 0.40nS 0.60nS 0.80nS 1.00nS 1.20nS 1.40nS 1.60nS 1.80nS 2.00nS 2.20nS 2.40nS 2.60nS 2.80nS 3.00nS 3.20nS 3.40nS 3.60nS 3.80nS 4.00nS 4.20nS 4.40nS 4.60nS 0.71uV 0.48uV -6.07uV -0.29mV -3.39mV -4.34mV 25.79mV 62.40mV 0.11V 0.16V 0.22V 0.28V 0.37V 0.48V 0.63V 0.79V 0.90V 1.07V 1.24V 1.39V 1.55V 1.71V 1.84V 1.90V Freescale Semiconductor 11.69uA 11.63uA 11.58uA 11.53uA 11.48uA 11.44uA 11.41uA 11.38uA 11.36uA 11.34uA 11.32uA 75.53uA 75.06uA 74.64uA 4.25uA 73.90uA 73.58uA 73.31uA 73.07uA 72.87uA 72.69uA 72.55uA min 1.08/2.82n 0.98/4.41n max 1.66/1.86n 1.61/2.52n V(min) V(max) 0.94uV 0.81uV -1.89uV -5.66uV 26.90uV -5.17uV -0.87mV -3.65mV -7.89mV 0.71mV 29.71mV 65.63mV 0.10V 0.15V 0.22V 0.28V 0.34V 0.43V 0.53V 0.63V 0.74V 0.86V 0.97V 1.03V 0.68uV 0.000V 12.38uV -3.13mV -6.39mV 43.34mV 0.11V 0.15V 0.21V 0.28V 0.37V 0.46V 0.59V 0.71V 0.92V 1.12V 1.28V 1.49V 1.70V 1.89V 2.07V 2.24V 2.37V 2.44V DSP56371 Technical Data 85 IBIS Model 4.80nS 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 1.96V 2.03V 2.08V 2.13V 2.18V 2.20V 2.22V 2.24V 2.26V 2.27V 2.29V 2.30V 2.31V 2.32V 2.33V 2.34V 2.34V 2.35V 2.35V 2.36V 2.36V 2.36V 2.37V 2.37V 2.38V 2.38V 2.38V | [Rising Waveform] R_fixture = 50.00 V_fixture = 3.30 V_fixture_min = 3.00 V_fixture_max = 3.60 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 0.98V 0.20nS 0.98V 0.40nS 0.98V 0.60nS 0.98V 0.80nS 0.99V 1.00nS 1.05V 1.20nS 1.18V 1.40nS 1.31V 1.60nS 1.49V 1.80nS 1.69V 2.00nS 1.92V 2.20nS 2.18V 2.40nS 2.46V 2.60nS 2.73V 86 1.09V 1.16V 1.22V 1.29V 1.36V 1.39V 1.43V 1.47V 1.51V 1.54V 1.57V 1.60V 1.63V 1.66V 1.68V 1.69V 1.70V 1.72V 1.73V 1.74V 1.75V 1.76V 1.77V 1.78V 1.79V 1.80V 1.80V 2.50V 2.54V 2.59V 2.62V 2.65V 2.66V 2.67V 2.68V 2.69V 2.70V 2.71V 2.72V 2.72V 2.73V 2.74V 2.74V 2.74V 2.75V 2.75V 2.75V 2.76V 2.76V 2.76V 2.76V 2.77V 2.77V 2.77V V(min) V(max) 1.34V 1.34V 1.34V 1.34V 1.34V 1.34V 1.34V 1.36V 1.44V 1.57V 1.73V 1.92V 2.11V 2.32V 0.92V 0.92V 0.92V 0.92V 0.94V 1.07V 1.24V 1.37V 1.55V 1.76V 2.02V 2.33V 2.62V 2.91V DSP56371 Technical Data Freescale Semiconductor IBIS Model 2.80nS 3.00nS 3.20nS 3.40nS 3.60nS 3.80nS 4.00nS 4.20nS 4.40nS 4.60nS 4.80nS 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 2.97V 3.09V 3.15V 3.20V 3.24V 3.26V 3.28V 3.29V 3.29V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V | [Falling Waveform] R_fixture = 50.00 V_fixture = 0.000 V_fixture_min = 0.000 V_fixture_max = 0.000 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 2.41V 0.20nS 2.41V 0.40nS 2.41V 0.60nS 2.41V Freescale Semiconductor 2.55V 2.69V 2.76V 2.86V 2.92V 2.95V 2.98V 2.99V 2.99V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.20V 3.33V 3.39V 3.44V 3.50V 3.53V 3.55V 3.57V 3.59V 3.59V 3.59V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V V(min) V(max) 1.87V 1.87V 1.87V 1.87V 2.79V 2.79V 2.79V 2.76V DSP56371 Technical Data 87 IBIS Model 0.80nS 1.00nS 1.20nS 1.40nS 1.60nS 1.80nS 2.00nS 2.20nS 2.40nS 2.60nS 2.80nS 3.00nS 3.20nS 3.40nS 3.60nS 3.80nS 4.00nS 4.20nS 4.40nS 4.60nS 4.80nS 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 2.37V 2.24V 2.07V 1.94V 1.76V 1.54V 1.28V 1.01V 0.78V 0.61V 0.46V 0.37V 0.33V 0.26V 0.21V 0.17V 0.14V 0.10V 73.29mV 60.19mV 48.89mV 34.23mV 24.65mV 14.47mV 8.10mV 5.49mV 3.06mV 1.82mV 1.09mV 0.61mV 0.54mV 0.47mV 0.42mV 0.35mV 0.31mV 0.29mV 0.27mV 0.24mV 0.20mV 0.18mV 0.18mV 0.17mV 0.15mV 0.12mV 0.10mV 0.11mV 0.11mV 1.87V 1.86V 1.85V 1.82V 1.75V 1.65V 1.51V 1.36V 1.18V 0.99V 0.76V 0.59V 0.49V 0.39V 0.31V 0.25V 0.19V 0.15V 0.10V 87.46mV 70.67mV 50.83mV 38.23mV 23.57mV 14.65mV 9.93mV 6.30mV 4.27mV 2.24mV 1.46mV 1.08mV 0.78mV 0.69mV 0.59mV 0.52mV 0.48mV 0.45mV 0.40mV 0.35mV 0.32mV 0.31mV 0.28mV 0.24mV 0.20mV 0.19mV 0.20mV 0.17mV 2.62V 2.44V 2.25V 2.10V 1.85V 1.55V 1.23V 0.96V 0.77V 0.63V 0.51V 0.43V 0.37V 0.32V 0.27V 0.22V 0.19V 0.14V 0.11V 93.57mV 8.29mV 61.98mV 46.06mV 32.51mV 20.47mV 15.65mV 11.70mV 6.64mV 4.15mV 2.31mV 1.05mV 0.76mV 0.48mV 0.37mV 0.31mV 0.29mV 0.26mV 0.24mV 0.21mV 0.18mV 0.16mV 0.16mV 0.15mV 0.12mV 93.74uV 90.71uV 97.83uV | [Falling Waveform] R_fixture = 50.00 V_fixture = 3.30 88 DSP56371 Technical Data Freescale Semiconductor IBIS Model V_fixture_min = 3.00 V_fixture_max = 3.60 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 3.30V 0.20nS 3.30V 0.40nS 3.30V 0.60nS 3.30V 0.80nS 3.30V 1.00nS 3.25V 1.20nS 3.17V 1.40nS 3.12V 1.60nS 3.05V 1.80nS 2.97V 2.00nS 2.87V 2.20nS 2.78V 2.40nS 2.68V 2.60nS 2.58V 2.80nS 2.45V 3.00nS 2.34V 3.20nS 2.26V 3.40nS 2.17V 3.60nS 2.07V 3.80nS 1.98V 4.00nS 1.89V 4.20nS 1.76V 4.40nS 1.63V 4.60nS 1.55V 4.80nS 1.48V 5.00nS 1.40V 5.20nS 1.32V 5.40nS 1.25V 5.60nS 1.19V 5.80nS 1.15V 6.00nS 1.13V 6.20nS 1.10V 6.40nS 1.07V 6.60nS 1.05V 6.80nS 1.03V 7.00nS 1.02V 7.20nS 1.01V 7.40nS 1.00V 7.60nS 1.00V 7.80nS 1.00V 8.00nS 1.00V 8.20nS 0.99V 8.40nS 0.99V 8.60nS 0.99V 8.80nS 0.99V Freescale Semiconductor V(min) V(max) 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 2.97V 2.92V 2.87V 2.82V 2.76V 2.69V 2.62V 2.57V 2.50V 2.44V 2.38V 2.32V 2.25V 2.18V 2.15V 2.11V 2.06V 2.01V 1.96V 1.92V 1.89V 1.87V 1.84V 1.81V 1.78V 1.75V 1.72V 1.70V 1.67V 1.64V 1.62V 1.60V 1.57V 1.53V 1.50V 1.47V 3.60V 3.60V 3.60V 3.59V 3.52V 3.43V 3.34V 3.27V 3.17V 3.06V 2.95V 2.83V 2.70V 2.58V 2.43V 2.30V 2.21V 2.07V 1.91V 1.76V 1.62V 1.49V 1.37V 1.32V 1.27V 1.21V 1.16V 1.10V 1.06V 1.04V 1.02V 1.00V 0.98V 0.96V 0.95V 0.94V 0.93V 0.93V 0.92V 0.92V 0.92V 0.92V 0.92V 0.92V 0.92V DSP56371 Technical Data 89 IBIS Model 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 0.99V 0.99V 0.99V 0.99V 0.99V 0.99V 1.44V 1.42V 1.40V 1.38V 1.37V 1.36V 0.92V 0.92V 0.92V 0.92V 0.92V 0.92V | | End [Model] prd16dgz | |************************************************************************ | Model prd24dgz |************************************************************************ | [Model] prd24dgz Model_type I/O Polarity Non-Inverting Enable Active-Low Vinl = 0.80V Vinh = 2.00V Vmeas = 1.50V Cref = 50.00pF Rref = 1.00M Vref = 0.000V C_comp 4.15pF 3.73pF 4.56pF | | [Temperature Range] 25.00 0.12k 0.000 [Pullup Reference] 3.30V 3.00V 3.60V [Pulldown Reference] 0.000V 0.000V 0.000V [POWER Clamp Reference] 5.00V 4.50V 5.50V [GND Clamp Reference] 0.000V 0.000V 0.000V [Pulldown] | voltage I(typ) I(min) I(max) | -3.30 -10.00mA 0.000A 0.000A -3.10 0.000A 0.000A -10.00mA -2.90 0.000A 0.000A 0.000A -2.70 0.000A 0.000A 0.000A -2.50 0.000A 0.000A 0.000A -2.30 0.000A 0.000A -10.00mA -2.10 -10.00mA 0.000A -10.00mA -1.90 -10.00mA 0.000A -10.00mA -1.70 -10.00mA -10.00mA -10.00mA -1.50 -10.00mA -10.00mA -20.00mA -1.00 -19.00mA -10.00mA -23.00mA -0.90 -21.00mA -10.00mA -26.00mA -0.80 -41.70mA -11.00mA -55.33mA -0.70 -50.61mA -14.60mA -55.12mA -0.60 -46.07mA -25.10mA -50.21mA -0.50 -39.45mA -26.37mA -43.90mA -0.40 -32.03mA -22.06mA -36.08mA 90 DSP56371 Technical Data Freescale Semiconductor IBIS Model -0.30 -0.20 -0.10 -0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.70 4.90 5.10 -24.29mA -16.36mA -8.26mA 3.80nA 8.11mA 15.76mA 22.98mA 29.76mA 36.11mA 42.04mA 47.55mA 52.66mA 57.35mA 61.65mA 65.55mA 69.06mA 72.19mA 74.94mA 77.32mA 79.33mA 80.95mA 82.19mA 83.09mA 83.74mA 84.23mA 84.62mA 84.93mA 85.20mA 85.44mA 85.65mA 85.84mA 86.01mA 86.18mA 86.33mA 86.48mA 86.62mA 86.75mA 86.89mA 87.06mA 87.16mA 87.30mA 87.47mA 87.77mA 88.66mA 90.00mA 91.34mA 89.39mA 89.66mA 90.64mA 91.94mA 93.66mA Freescale Semiconductor -16.63mA -11.11mA -5.55mA 7.33nA 5.36mA 10.37mA 15.05mA 19.40mA 23.42mA 27.12mA 30.50mA 33.58mA 36.36mA 38.84mA 41.04mA 42.96mA 44.61mA 45.99mA 47.12mA 48.01mA 48.68mA 49.17mA 49.54mA 49.83mA 50.06mA 50.25mA 50.42mA 50.57mA 50.70mA 50.82mA 50.93mA 51.03mA 51.13mA 51.22mA 51.31mA 51.40mA 51.50mA 51.73mA 52.32mA 53.14mA 54.02mA 54.48mA 52.16mA 52.28mA 52.42mA 52.58mA 52.77mA 53.24mA 53.86mA 54.68mA 55.73mA -27.48mA -18.57mA -9.40mA 12.06nA 9.30mA 18.18mA 26.64mA 34.69mA 42.32mA 49.54mA 56.36mA 62.78mA 68.80mA 74.42mA 79.65mA 84.48mA 88.92mA 92.97mA 96.63mA 99.91mA 0.10A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A DSP56371 Technical Data 91 IBIS Model 5.30 5.50 5.70 5.90 6.10 6.60 | [Pullup] | voltage | -3.30 -3.10 -2.90 -2.70 -2.50 -2.30 -2.10 -1.90 -1.70 -1.50 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 92 95.77mA 98.33mA 0.10A 0.10A 0.11A 0.12A 57.03mA 58.59mA 60.44mA 62.55mA 64.93mA 71.83mA 0.13A 0.13A 0.13A 0.14A 0.14A 0.15A I(typ) I(min) I(max) 0.22A 0.21A 0.20A 0.19A 0.18A 0.17A 0.16A 0.15A 0.14A 0.12A 92.80mA 84.30mA 75.06mA 65.63mA 56.31mA 47.22mA 38.00mA 28.62mA 19.12mA 9.57mA 34.08uA -9.20mA -17.92mA -26.12mA -33.83mA -41.04mA -47.76mA -54.01mA -59.78mA -65.10mA -69.96mA -74.37mA -78.35mA -81.89mA -85.01mA -87.72mA -90.01mA -91.93mA -93.48mA -94.74mA -95.77mA 0.16A 0.16A 0.15A 0.14A 0.14A 0.13A 0.12A 0.11A 0.10A 90.15mA 62.50mA 57.02mA 54.41mA 47.70mA 40.65mA 33.53mA 26.51mA 19.71mA 13.04mA 6.46mA 11.19uA -6.16mA -11.98mA -17.45mA -22.56mA -27.33mA -31.76mA -35.85mA -39.61mA -43.04mA -46.14mA -48.91mA -51.37mA -53.51mA -55.34mA -56.87mA -58.11mA -59.08mA -59.83mA -60.42mA -60.91mA 0.25A 0.24A 0.23A 0.22A 0.21A 0.20A 0.19A 0.17A 0.16A 0.14A 0.11A 97.94mA 87.24mA 76.50mA 66.14mA 55.68mA 44.96mA 34.00mA 22.83mA 11.50mA 71.92uA -11.08mA -21.68mA -31.71mA -41.21mA -50.17mA -58.60mA -66.51mA -73.91mA -80.81mA -87.22mA -93.14mA -98.58mA -0.10A -0.11A -0.11A -0.12A -0.12A -0.12A -0.12A -0.13A DSP56371 Technical Data Freescale Semiconductor IBIS Model 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.70 4.90 5.10 5.30 5.50 5.70 5.90 6.10 6.60 | [GND_clamp] | voltage | -5.00 -4.80 -4.60 -4.40 -4.20 -4.00 -3.80 -3.60 -3.40 -3.20 -3.00 -2.80 -2.60 -2.40 -96.63mA -97.36mA -97.99mA -98.55mA -99.04mA -99.49mA -99.89mA -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.11A -0.12A -0.34A -1.90A -3.94A -8.02A -12.10A -16.18A -20.27A -24.35A -28.43A -32.51A -36.60A -40.68A -50.89A -61.34mA -61.71mA -62.05mA -62.36mA -62.64mA -62.90mA -63.14mA -63.36mA -63.57mA -63.78mA -63.97mA -64.15mA -64.35mA -64.99mA -72.69mA -0.17A -0.97A -2.72A -4.50A -6.28A -8.06A -9.85A -11.62A -15.19A -18.75A -22.31A -25.88A -29.44A -33.00A -36.56A -40.13A -43.69A -52.59A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.15A -1.21A -5.43A -9.67A -13.90A -18.14A -22.38A -26.62A -30.86A -35.09A -45.69A I(typ) I(min) I(max) -85.26A -81.20A -77.14A -73.08A -69.02A -64.96A -60.90A -56.84A -52.78A -48.72A -44.64A -40.56A -36.48A -32.40A -77.43A -73.87A -70.31A -66.75A -63.19A -59.63A -56.07A -52.51A -48.95A -45.39A -41.83A -38.27A -34.71A -31.15A -87.91A -83.67A -79.43A -75.19A -70.95A -66.71A -62.47A -58.23A -53.99A -49.75A -45.52A -41.29A -37.05A -32.82A Freescale Semiconductor DSP56371 Technical Data 93 IBIS Model -2.20 -2.00 -1.80 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 -28.32A -24.24A -20.16A -16.08A -12.00A -7.92A -3.84A -0.23A -2.33mA -91.55uA -27.91uA -75.80nA 18.72uA 29.20uA 32.50uA 33.08uA 33.30uA 33.45uA 33.57uA 33.68uA 33.78uA 33.87uA 33.96uA 34.01uA 34.03uA 34.04uA 34.05uA 34.06uA 34.08uA 34.10uA 34.12uA 34.14uA 34.16uA 34.18uA 34.20uA 34.22uA 34.24uA | [POWER_clamp] | voltage I(typ) | -5.00 48.55uA -4.90 48.22uA -4.80 47.89uA -4.70 47.56uA -4.60 47.23uA -4.50 46.90uA -4.40 46.57uA -4.30 46.24uA -4.20 45.91uA -4.10 45.58uA 94 -27.59A -24.03A -20.47A -16.90A -13.34A -9.78A -6.22A -2.66A -0.10A -0.52mA -14.70uA -77.03nA 7.32uA 10.26uA 10.68uA 10.79uA 10.86uA 10.92uA 10.98uA 11.03uA 11.07uA 11.11uA 11.14uA 11.15uA 11.16uA 11.17uA 11.18uA 11.75uA 10.69uA 9.63uA 8.57uA 7.51uA 6.45uA 5.39uA 4.33uA 3.27uA 2.21uA -28.58A -24.35A -20.11A -15.88A -11.64A -7.41A -3.18A -71.67mA -6.23mA -0.28mA -42.94uA -90.19nA 32.29uA 54.13uA 65.79uA 69.34uA 70.18uA 70.55uA 70.80uA 71.00uA 71.16uA 71.32uA 71.47uA 71.61uA 71.76uA 71.84uA 71.86uA 71.88uA 71.90uA 71.92uA 71.94uA 71.96uA 71.98uA 72.00uA 72.02uA 72.04uA 72.06uA I(min) I(max) 16.31uA 16.19uA 16.07uA 15.95uA 15.83uA 15.71uA 15.59uA 15.47uA 15.35uA 15.23uA 95.55uA 95.05uA 94.55uA 94.05uA 93.55uA 93.05uA 92.55uA 92.05uA 91.55uA 91.05uA DSP56371 Technical Data Freescale Semiconductor IBIS Model -4.00 -3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00 -2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00 -1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 45.25uA 44.92uA 44.59uA 44.26uA 43.93uA 43.60uA 43.27uA 42.94uA 42.61uA 42.28uA 41.95uA 41.62uA 41.29uA 40.96uA 40.63uA 40.30uA 39.97uA 39.64uA 39.31uA 38.98uA 38.65uA 38.32uA 37.99uA 37.66uA 37.33uA 37.00uA 36.69uA 36.40uA 36.13uA 35.88uA 35.64uA 35.43uA 35.24uA 35.07uA 34.92uA 34.79uA 34.67uA 34.57uA 34.49uA 34.42uA 34.36uA | [Ramp] | variable typ dV/dt_r 1.54/2.22n dV/dt_f 1.52/3.16n R_load = 50.00 | [Rising Waveform] R_fixture = 50.00 V_fixture = 0.000 Freescale Semiconductor 15.11uA 14.99uA 14.87uA 14.75uA 14.63uA 14.51uA 14.39uA 14.27uA 14.15uA 14.03uA 13.91uA 13.79uA 13.67uA 13.55uA 13.43uA 13.31uA 13.19uA 13.07uA 12.95uA 12.83uA 12.71uA 12.59uA 12.47uA 12.35uA 12.23uA 12.13uA 12.03uA 11.94uA 11.85uA 11.78uA 11.71uA 11.64uA 11.59uA 11.54uA 11.49uA 11.45uA 11.42uA 11.39uA 11.37uA 11.35uA 11.33uA 90.55uA 90.05uA 89.55uA 89.05uA 88.55uA 88.05uA 87.55uA 87.05uA 86.55uA 86.05uA 85.55uA 85.05uA 84.55uA 84.05uA 83.55uA 83.05uA 82.55uA 82.05uA 81.55uA 81.05uA 80.55uA 80.05uA 79.55uA 79.05uA 78.55uA 78.05uA 77.55uA 77.05uA 76.55uA 76.05uA 75.55uA 75.08uA 74.65uA 74.26uA 73.91uA 73.60uA 73.32uA 73.08uA 72.88uA 72.70uA 72.56uA min 1.20/2.88n 1.15/4.46n max 1.77/2.15n 1.73/3.00n DSP56371 Technical Data 95 IBIS Model V_fixture_min = 0.000 V_fixture_max = 0.000 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 0.70uV 0.20nS 0.45uV 0.40nS -5.49uV 0.60nS -0.25mV 0.80nS -2.88mV 1.00nS -3.85mV 1.20nS 18.80mV 1.40nS 45.63mV 1.60nS 80.05mV 1.80nS 0.11V 2.00nS 0.16V 2.20nS 0.20V 2.40nS 0.26V 2.60nS 0.32V 2.80nS 0.41V 3.00nS 0.51V 3.20nS 0.58V 3.40nS 0.71V 3.60nS 0.85V 3.80nS 1.00V 4.00nS 1.17V 4.20nS 1.38V 4.40nS 1.57V 4.60nS 1.68V 4.80nS 1.78V 5.00nS 1.91V 5.20nS 2.01V 5.40nS 2.13V 5.60nS 2.22V 5.80nS 2.27V 6.00nS 2.31V 6.20nS 2.35V 6.40nS 2.38V 6.60nS 2.41V 6.80nS 2.43V 7.00nS 2.45V 7.20nS 2.46V 7.40nS 2.48V 7.60nS 2.49V 7.80nS 2.50V 8.00nS 2.51V 8.20nS 2.52V 8.40nS 2.52V 8.60nS 2.53V 8.80nS 2.54V 96 V(min) V(max) 0.92uV 0.77uV -1.76uV -4.97uV 24.27uV -5.54uV -0.76mV -3.09mV -6.58mV -0.18mV 21.52mV 48.21mV 76.15mV 0.11V 0.16V 0.19V 0.24V 0.30V 0.36V 0.45V 0.54V 0.67V 0.80V 0.88V 0.96V 1.06V 1.15V 1.25V 1.34V 1.40V 1.44V 1.50V 1.56V 1.61V 1.66V 1.70V 1.74V 1.78V 1.82V 1.84V 1.86V 1.88V 1.90V 1.92V 1.93V 0.68uV 0.000V 16.07uV -2.66mV -5.55mV 32.40mV 80.52mV 0.11V 0.16V 0.21V 0.27V 0.33V 0.41V 0.48V 0.61V 0.73V 0.82V 0.97V 1.16V 1.35V 1.55V 1.80V 2.03V 2.15V 2.26V 2.39V 2.51V 2.61V 2.70V 2.74V 2.77V 2.80V 2.82V 2.84V 2.86V 2.87V 2.88V 2.89V 2.90V 2.91V 2.91V 2.92V 2.92V 2.92V 2.93V DSP56371 Technical Data Freescale Semiconductor IBIS Model 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 2.54V 2.55V 2.55V 2.56V 2.56V 2.57V | [Rising Waveform] R_fixture = 50.00 V_fixture = 3.30 V_fixture_min = 3.00 V_fixture_max = 3.60 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 0.76V 0.20nS 0.76V 0.40nS 0.76V 0.60nS 0.76V 0.80nS 0.77V 1.00nS 0.81V 1.20nS 0.90V 1.40nS 0.98V 1.60nS 1.09V 1.80nS 1.22V 2.00nS 1.35V 2.20nS 1.51V 2.40nS 1.69V 2.60nS 1.91V 2.80nS 2.22V 3.00nS 2.47V 3.20nS 2.65V 3.40nS 2.85V 3.60nS 2.97V 3.80nS 3.08V 4.00nS 3.14V 4.20nS 3.19V 4.40nS 3.23V 4.60nS 3.25V 4.80nS 3.27V 5.00nS 3.28V 5.20nS 3.29V 5.40nS 3.29V 5.60nS 3.30V 5.80nS 3.30V 6.00nS 3.30V 6.20nS 3.30V 6.40nS 3.30V 6.60nS 3.30V 6.80nS 3.30V Freescale Semiconductor 1.95V 1.96V 1.97V 1.98V 2.00V 2.00V 2.93V 2.94V 2.94V 2.94V 2.95V 2.95V V(min) V(max) 1.03V 1.03V 1.03V 1.03V 1.03V 1.03V 1.03V 1.04V 1.11V 1.20V 1.32V 1.45V 1.59V 1.74V 1.96V 2.16V 2.31V 2.49V 2.62V 2.73V 2.83V 2.89V 2.94V 2.95V 2.97V 2.98V 2.99V 2.99V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 0.72V 0.72V 0.72V 0.72V 0.73V 0.82V 0.93V 1.01V 1.13V 1.26V 1.42V 1.58V 1.78V 2.02V 2.36V 2.63V 2.82V 3.03V 3.17V 3.30V 3.36V 3.42V 3.47V 3.50V 3.52V 3.54V 3.56V 3.57V 3.58V 3.59V 3.59V 3.59V 3.60V 3.60V 3.60V DSP56371 Technical Data 97 IBIS Model 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V | [Falling Waveform] R_fixture = 50.00 V_fixture = 0.000 V_fixture_min = 0.000 V_fixture_max = 0.000 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 2.62V 0.20nS 2.62V 0.40nS 2.62V 0.60nS 2.62V 0.80nS 2.60V 1.00nS 2.50V 1.20nS 2.38V 1.40nS 2.29V 1.60nS 2.17V 1.80nS 2.04V 2.00nS 1.89V 2.20nS 1.71V 2.40nS 1.51V 2.60nS 1.27V 2.80nS 0.99V 3.00nS 0.81V 3.20nS 0.71V 3.40nS 0.59V 3.60nS 0.51V 3.80nS 0.44V 4.00nS 0.37V 4.20nS 0.31V 4.40nS 0.26V 4.60nS 0.23V 4.80nS 0.20V 98 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V V(min) V(max) 2.12V 2.12V 2.12V 2.12V 2.12V 2.12V 2.11V 2.09V 2.04V 1.96V 1.85V 1.74V 1.63V 1.50V 1.33V 1.17V 1.04V 0.87V 0.72V 0.59V 0.49V 0.40V 0.33V 0.28V 0.25V 2.99V 2.99V 2.99V 2.96V 2.85V 2.72V 2.59V 2.50V 2.36V 2.20V 2.00V 1.76V 1.49V 1.23V 0.98V 0.83V 0.75V 0.66V 0.57V 0.50V 0.45V 0.38V 0.32V 0.29V 0.26V DSP56371 Technical Data Freescale Semiconductor IBIS Model 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 0.17V 0.15V 0.12V 92.71mV 79.46mV 67.17mV 54.74mV 42.77mV 33.26mV 25.46mV 18.21mV 13.43mV 8.06mV 4.81mV 3.27mV 1.98mV 1.32mV 0.78mV 0.50mV 0.42mV 0.34mV 0.30mV 0.27mV 0.24mV 0.21mV 0.22mV | [Falling Waveform] R_fixture = 50.00 V_fixture = 3.30 V_fixture_min = 3.00 V_fixture_max = 3.60 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 3.30V 0.20nS 3.30V 0.40nS 3.30V 0.60nS 3.30V 0.80nS 3.30V 1.00nS 3.25V 1.20nS 3.18V 1.40nS 3.14V 1.60nS 3.09V 1.80nS 3.03V 2.00nS 2.96V 2.20nS 2.88V 2.40nS 2.80V 2.60nS 2.72V 2.80nS 2.61V Freescale Semiconductor 0.21V 0.18V 0.14V 0.11V 96.17mV 83.01mV 65.86mV 53.06mV 41.31mV 31.29mV 23.99mV 16.92mV 11.32mV 6.46mV 4.82mV 3.62mV 2.10mV 1.45mV 1.01mV 0.70mV 0.61mV 0.51mV 0.45mV 0.40mV 0.35mV 0.32mV 0.23V 0.20V 0.17V 0.14V 0.12V 0.11V 89.82mV 75.55mV 61.63mV 50.25mV 40.51mV 31.37mV 23.11mV 15.54mV 12.49mV 9.63mV 6.17mV 4.24mV 2.46mV 1.45mV 0.94mV 0.50mV 0.38mV 0.28mV 0.23mV 0.21mV V(min) V(max) 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 2.97V 2.92V 2.88V 2.84V 2.80V 2.74V 3.60V 3.60V 3.60V 3.59V 3.52V 3.44V 3.37V 3.32V 3.24V 3.16V 3.07V 2.98V 2.88V 2.78V 2.65V DSP56371 Technical Data 99 IBIS Model 3.00nS 3.20nS 3.40nS 3.60nS 3.80nS 4.00nS 4.20nS 4.40nS 4.60nS 4.80nS 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 2.51V 2.44V 2.34V 2.25V 2.15V 2.06V 1.93V 1.81V 1.73V 1.65V 1.54V 1.44V 1.32V 1.23V 1.18V 1.13V 1.08V 1.04V 1.00V 0.96V 0.93V 0.90V 0.87V 0.85V 0.83V 0.82V 0.81V 0.80V 0.79V 0.78V 0.78V 0.78V 0.77V 0.77V 0.77V 0.77V 2.68V 2.64V 2.58V 2.52V 2.46V 2.39V 2.32V 2.24V 2.20V 2.15V 2.09V 2.04V 1.97V 1.91V 1.87V 1.84V 1.79V 1.75V 1.71V 1.67V 1.63V 1.59V 1.54V 1.48V 1.44V 1.40V 1.35V 1.31V 1.27V 1.23V 1.20V 1.17V 1.15V 1.12V 1.10V 1.09V 2.55V 2.47V 2.35V 2.23V 2.09V 1.93V 1.75V 1.58V 1.50V 1.43V 1.34V 1.26V 1.18V 1.11V 1.07V 1.04V 1.00V 0.96V 0.92V 0.89V 0.87V 0.84V 0.82V 0.80V 0.78V 0.78V 0.76V 0.75V 0.75V 0.74V 0.73V 0.73V 0.73V 0.72V 0.72V 0.72V | | End [Model] prd24dgz | |************************************************************************ | Model prt24dgz |************************************************************************ | [Model] prt24dgz Model_type 3-state Polarity Non-Inverting Enable Active-Low Vmeas = 1.50V Cref = 50.00pF Rref = 1.00M Vref = 0.000V 100 DSP56371 Technical Data Freescale Semiconductor IBIS Model C_comp 4.09pF | | [Temperature Range] 25.00 [Pullup Reference] 3.30V [Pulldown Reference] 0.000V [POWER Clamp Reference] 5.00V [GND Clamp Reference] 0.000V [Pulldown] | voltage I(typ) I(min) | -3.30 -10.00mA 0.000A -3.10 0.000A 0.000A -2.90 0.000A 0.000A -2.70 0.000A 0.000A -2.50 0.000A 0.000A -2.30 0.000A 0.000A -2.10 -10.00mA 0.000A -1.90 -10.00mA 0.000A -1.70 -10.00mA -10.00mA -1.50 -10.00mA -10.00mA -1.00 -20.00mA -10.00mA -0.90 -21.00mA -10.00mA -0.80 -41.70mA -12.00mA -0.70 -50.60mA -14.60mA -0.60 -46.07mA -25.10mA -0.50 -39.45mA -26.38mA -0.40 -32.03mA -22.06mA -0.30 -24.30mA -16.63mA -0.20 -16.36mA -11.10mA -0.10 -8.26mA -5.55mA -0.00 3.97nA 7.41nA 0.10 8.11mA 5.36mA 0.20 15.76mA 10.38mA 0.30 22.98mA 15.05mA 0.40 29.76mA 19.40mA 0.50 36.11mA 23.42mA 0.60 42.04mA 27.11mA 0.70 47.55mA 30.50mA 0.80 52.65mA 33.58mA 0.90 57.35mA 36.36mA 1.00 61.64mA 38.84mA 1.10 65.54mA 41.04mA 1.20 69.06mA 42.96mA 1.30 72.18mA 44.61mA 1.40 74.93mA 45.99mA 1.50 77.31mA 47.12mA 1.60 79.32mA 48.01mA 1.70 80.95mA 48.68mA 1.80 82.19mA 49.17mA 1.90 83.08mA 49.54mA Freescale Semiconductor 3.68pF 4.50pF 0.12k 3.00V 0.000V 4.50V 0.000V 0.000 3.60V 0.000V 5.50V 0.000V I(max) 0.000A -10.00mA 0.000A 0.000A 0.000A -10.00mA -10.00mA -10.00mA -10.00mA -20.00mA -23.00mA -26.00mA -55.37mA -55.11mA -50.21mA -43.90mA -36.09mA -27.49mA -18.57mA -9.40mA 12.45nA 9.30mA 18.18mA 26.64mA 34.68mA 42.32mA 49.54mA 56.36mA 62.78mA 68.80mA 74.42mA 79.65mA 84.48mA 88.92mA 92.97mA 96.63mA 99.91mA 0.10A 0.11A 0.11A DSP56371 Technical Data 101 IBIS Model 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 4.50 4.70 4.90 5.10 5.30 5.50 5.70 5.90 6.10 6.60 | [Pullup] | voltage | -3.30 -3.10 -2.90 -2.70 -2.50 -2.30 -2.10 -1.90 -1.70 -1.50 -1.00 -0.90 -0.80 102 83.74mA 84.23mA 84.61mA 84.93mA 85.20mA 85.43mA 85.64mA 85.83mA 86.01mA 86.17mA 86.32mA 86.47mA 86.61mA 86.75mA 86.88mA 87.01mA 87.15mA 87.30mA 87.47mA 87.77mA 88.66mA 90.00mA 91.29mA 89.03mA 89.65mA 90.63mA 91.94mA 93.62mA 95.73mA 98.29mA 0.10A 0.10A 0.11A 0.12A 49.82mA 50.06mA 50.25mA 50.42mA 50.57mA 50.70mA 50.82mA 50.93mA 51.03mA 51.13mA 51.22mA 51.31mA 51.40mA 51.50mA 51.73mA 52.32mA 53.14mA 54.01mA 54.42mA 52.16mA 52.28mA 52.42mA 52.58mA 52.77mA 53.24mA 53.86mA 54.68mA 55.72mA 57.02mA 58.58mA 60.42mA 62.54mA 64.92mA 71.81mA 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.11A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.12A 0.13A 0.13A 0.13A 0.14A 0.14A 0.15A I(typ) I(min) I(max) 0.22A 0.21A 0.20A 0.19A 0.18A 0.17A 0.16A 0.15A 0.14A 0.12A 92.59mA 84.26mA 75.03mA 0.16A 0.16A 0.15A 0.14A 0.14A 0.13A 0.12A 0.11A 0.10A 90.13mA 62.48mA 56.95mA 54.36mA 0.25A 0.24A 0.23A 0.22A 0.21A 0.20A 0.18A 0.17A 0.16A 0.14A 0.11A 97.88mA 87.19mA DSP56371 Technical Data Freescale Semiconductor IBIS Model -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 4.20 4.30 65.60mA 56.28mA 47.19mA 37.96mA 28.58mA 19.09mA 9.54mA 0.17uA -9.23mA -17.95mA -26.16mA -33.86mA -41.07mA -47.79mA -54.04mA -59.82mA -65.13mA -69.99mA -74.41mA -78.38mA -81.93mA -85.05mA -87.75mA -90.05mA -91.96mA -93.52mA -94.78mA -95.80mA -96.66mA -97.39mA -98.03mA -98.58mA -99.08mA -99.52mA -99.92mA -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.10A -0.11A -0.12A -0.34A -1.90A -3.94A Freescale Semiconductor 47.69mA 40.63mA 33.52mA 26.49mA 19.70mA 13.03mA 6.45mA 0.16uA -6.17mA -11.99mA -17.46mA -22.57mA -27.35mA -31.77mA -35.86mA -39.62mA -43.05mA -46.15mA -48.92mA -51.38mA -53.52mA -55.36mA -56.88mA -58.12mA -59.09mA -59.84mA -60.43mA -60.92mA -61.35mA -61.72mA -62.06mA -62.37mA -62.65mA -62.91mA -63.15mA -63.37mA -63.58mA -63.78mA -63.96mA -64.14mA -64.33mA -64.95mA -72.61mA -0.17A -0.97A -2.72A -4.50A -6.28A -8.06A -9.85A -11.62A 76.45mA 66.08mA 55.62mA 44.89mA 33.93mA 22.76mA 11.43mA 0.19uA -11.15mA -21.75mA -31.79mA -41.28mA -50.24mA -58.67mA -66.58mA -73.98mA -80.88mA -87.29mA -93.21mA -98.65mA -0.10A -0.11A -0.11A -0.12A -0.12A -0.12A -0.12A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.13A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.14A -0.15A DSP56371 Technical Data 103 IBIS Model 4.50 4.70 4.90 5.10 5.30 5.50 5.70 5.90 6.10 6.60 | [GND_clamp] | voltage | -3.30 -3.20 -3.10 -3.00 -2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00 -1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 -0.00 0.10 0.20 0.30 104 -8.02A -12.10A -16.18A -20.27A -24.35A -28.43A -32.51A -36.60A -40.68A -50.89A -15.19A -18.75A -22.31A -25.88A -29.44A -33.00A -36.56A -40.13A -43.69A -52.59A -1.20A -5.43A -9.67A -13.90A -18.14A -22.38A -26.62A -30.86A -35.09A -45.69A I(typ) I(min) I(max) -50.75A -48.72A -46.68A -44.64A -42.60A -40.56A -38.52A -36.48A -34.44A -32.40A -30.36A -28.32A -26.28A -24.24A -22.20A -20.16A -18.12A -16.08A -14.04A -12.00A -9.96A -7.92A -5.88A -3.84A -1.80A -0.23A -13.26mA -2.23mA -0.34mA -28.68uA -1.65uA -0.15uA -86.50nA -76.61nA -68.52nA -60.47nA -52.43nA -47.17A -45.39A -43.61A -41.83A -40.05A -38.27A -36.49A -34.71A -32.93A -31.15A -29.37A -27.59A -25.81A -24.03A -22.25A -20.47A -18.68A -16.90A -15.12A -13.34A -11.56A -9.78A -8.00A -6.22A -4.44A -2.65A -0.90A -0.10A -7.99mA -0.48mA -27.22uA -1.61uA -0.17uA -77.36nA -64.82nA -56.49nA -48.39nA -51.87A -49.75A -47.63A -45.52A -43.40A -41.29A -39.17A -37.05A -34.94A -32.82A -30.70A -28.58A -26.47A -24.35A -22.23A -20.11A -18.00A -15.88A -13.76A -11.64A -9.53A -7.41A -5.29A -3.18A -1.07A -71.53mA -13.93mA -6.08mA -1.62mA -0.18mA -10.18uA -0.42uA -0.11uA -91.73nA -83.30nA -75.01nA -66.73nA DSP56371 Technical Data Freescale Semiconductor IBIS Model 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 -44.39nA -36.35nA -28.31nA -20.27nA -12.24nA -4.20nA 3.83nA 11.86nA 19.89nA 27.92nA 35.95nA 43.98nA 52.00nA 60.02nA 68.04nA 76.05nA 84.05nA 92.04nA 100.00nA 0.11uA 0.12uA 0.12uA 0.13uA 0.13uA 0.14uA 0.14uA 0.15uA 0.15uA 0.15uA 0.16uA | [POWER_clamp] | voltage I(typ) | -3.30 0.37uA -3.20 0.37uA -3.10 0.36uA -3.00 0.35uA -2.90 0.35uA -2.80 0.34uA -2.70 0.33uA -2.60 0.33uA -2.50 0.32uA -2.40 0.32uA -2.30 0.31uA -2.20 0.30uA -2.10 0.30uA -2.00 0.29uA -1.90 0.28uA -1.80 0.28uA -1.70 0.27uA Freescale Semiconductor -40.30nA -32.21nA -24.12nA -16.03nA -7.94nA 0.15nA 8.23nA 16.32nA 24.41nA 32.50nA 40.59nA 48.68nA 56.77nA 64.85nA 72.94nA 81.03nA 89.12nA 97.20nA 0.11uA 0.11uA 0.12uA 0.12uA 0.13uA 0.13uA 0.13uA 0.14uA 0.15uA 0.17uA 0.56uA 0.19uA -58.46nA -50.19nA -41.93nA -33.68nA -25.42nA -17.17nA -8.92nA -0.67nA 7.58nA 15.84nA 24.10nA 32.36nA 40.64nA 48.92nA 57.21nA 65.52nA 73.85nA 82.20nA 90.59nA 99.01nA 0.11uA 0.12uA 0.12uA 0.13uA 0.14uA 0.15uA 0.15uA 0.16uA 0.16uA 0.17uA I(min) I(max) 0.37uA 0.36uA 0.36uA 0.35uA 0.34uA 0.34uA 0.33uA 0.33uA 0.32uA 0.31uA 0.31uA 0.30uA 0.29uA 0.29uA 0.28uA 0.28uA 0.27uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 0.37uA 0.36uA 0.36uA 0.35uA 0.34uA 0.34uA 0.33uA 0.32uA 0.32uA 0.31uA 0.30uA 0.30uA DSP56371 Technical Data 105 IBIS Model -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.27uA 0.26uA 0.25uA 0.25uA 0.24uA 0.24uA 0.23uA 0.22uA 0.22uA 0.21uA 0.21uA 0.20uA 0.20uA 0.19uA 0.48mA 0.16uA 0.16uA | [Ramp] | variable typ dV/dt_r 1.54/2.19n dV/dt_f 1.52/3.15n R_load = 50.00 | [Rising Waveform] R_fixture = 50.00 V_fixture = 0.000 V_fixture_min = 0.000 V_fixture_max = 0.000 L_fixture = 0.000H C_fixture = 0.000F time V(typ) | 0.000S 0.70uV 0.20nS 0.46uV 0.40nS -5.77uV 0.60nS -0.27mV 0.80nS -2.96mV 1.00nS -3.62mV 1.20nS 19.35mV 1.40nS 46.31mV 1.60nS 79.98mV 1.80nS 0.12V 2.00nS 0.16V 2.20nS 0.20V 2.40nS 0.26V 2.60nS 0.32V 2.80nS 0.42V 3.00nS 0.51V 3.20nS 0.58V 106 0.26uA 0.26uA 0.25uA 0.25uA 0.24uA 0.23uA 0.23uA 0.22uA 0.22uA 0.21uA 0.20uA 0.20uA 0.19uA 0.19uA 0.56uA 0.17uA 0.15uA 0.29uA 0.29uA 0.28uA 0.27uA 0.27uA 0.26uA 0.25uA 0.25uA 0.24uA 0.24uA 0.23uA 0.22uA 0.22uA 0.21uA 0.72uA 0.18uA 0.18uA min 1.20/2.87n 1.15/4.45n max 1.77/2.14n 1.73/3.01n V(min) V(max) 0.93uV 0.77uV -1.75uV -5.10uV 26.03uV -5.61uV -0.80mV -3.19mV -6.88mV -0.22mV 21.89mV 48.68mV 76.62mV 0.11V 0.16V 0.20V 0.24V 0.69uV 0.000V 11.67uV -2.79mV -6.12mV 32.64mV 81.12mV 0.11V 0.16V 0.21V 0.27V 0.33V 0.41V 0.49V 0.61V 0.73V 0.82V DSP56371 Technical Data Freescale Semiconductor IBIS Model 3.40nS 3.60nS 3.80nS 4.00nS 4.20nS 4.40nS 4.60nS 4.80nS 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 0.71V 0.85V 1.01V 1.18V 1.38V 1.57V 1.69V 1.79V 1.91V 2.03V 2.14V 2.24V 2.28V 2.31V 2.36V 2.39V 2.41V 2.43V 2.45V 2.46V 2.48V 2.49V 2.50V 2.51V 2.52V 2.52V 2.53V 2.54V .54V 2.55V 2.55V 2.56V 2.56V 2.57V | [Rising Waveform] R_fixture = 50.00 V_fixture = 3.30 V_fixture_min = 3.00 V_fixture_max = 3.60 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 0.76V 0.20nS 0.76V 0.40nS 0.76V 0.60nS 0.76V 0.80nS 0.77V 1.00nS 0.81V 1.20nS 0.90V Freescale Semiconductor 0.30V 0.36V 0.45V 0.54V 0.67V 0.81V 0.89V 0.96V 1.06V 1.15V 1.26V 1.35V 1.40V 1.45V 1.51V 1.56V 1.61V 1.66V 1.70V 1.74V 1.78V 1.82V 1.84V 1.86V 1.88V 1.90V 1.92V 1.93V 1.95V 1.96V 1.97V 1.99V 2.00V 2.00V 0.99V 1.17V 1.36V 1.56V 1.81V 2.03V 2.16V 2.27V 2.40V 2.52V 2.61V 2.70V 2.74V 2.77V 2.80V 2.83V 2.85V 2.86V 2.87V 2.88V 2.89V 2.90V 2.91V 2.91V 2.92V 2.92V 2.93V 2.93V 2.93V 2.94V 2.94V 2.94V 2.95V 2.95V V(min) V(max) 1.03V 1.03V 1.03V 1.03V 1.03V 1.03V 1.03V 0.72V 0.72V 0.72V 0.72V 0.73V 0.82V 0.93V DSP56371 Technical Data 107 IBIS Model 1.40nS 1.60nS 1.80nS 2.00nS 2.20nS 2.40nS 2.60nS 2.80nS 3.00nS 3.20nS 3.40nS 3.60nS 3.80nS 4.00nS 4.20nS 4.40nS 4.60nS 4.80nS 5.00nS 5.20nS 5.40nS 5.60nS 5.80nS 6.00nS 6.20nS 6.40nS 6.60nS 6.80nS 7.00nS 7.20nS 7.40nS 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 0.98V 1.10V 1.22V 1.36V 1.53V 1.72V 1.93V 2.23V 2.48V 2.66V 2.85V 2.97V 3.09V 3.14V 3.19V 3.23V 3.25V 3.27V 3.28V .29V 3.29V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 3.30V 1.04V 1.11V 1.21V 1.33V 1.46V 1.60V 1.75V 1.97V 2.16V 2.30V 2.49V 2.63V 2.73V 2.83V 2.89V 2.94V 2.96V 2.97V 2.98V 2.99V 2.99V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 1.02V 1.13V 1.26V 1.42V 1.58V 1.80V 2.04V 2.36V 2.62V 2.82V 3.04V 3.19V 3.29V 3.36V 3.42V 3.47V 3.50V 3.52V 3.54V 3.56V 3.57V 3.58V 3.59V 3.59V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V 3.60V | [Falling Waveform] R_fixture = 50.00 V_fixture = 0.000 V_fixture_min = 0.000 V_fixture_max = 0.000 L_fixture = 0.000H 108 DSP56371 Technical Data Freescale Semiconductor IBIS Model C_fixture = 0.000F | time V(typ) | 0.000S 2.62V 0.20nS 2.62V 0.40nS 2.62V 0.60nS 2.62V 0.80nS 2.60V 1.00nS 2.50V 1.20nS 2.37V 1.40nS 2.29V 1.60nS 2.17V 1.80nS 2.04V 2.00nS 1.89V 2.20nS 1.71V 2.40nS 1.50V 2.60nS 1.28V 2.80nS 1.01V 3.00nS 0.82V 3.20nS 0.72V 3.40nS 0.61V 3.60nS 0.51V 3.80nS 0.44V 4.00nS 0.38V 4.20nS 0.32V 4.40nS 0.26V 4.60nS 0.23V 4.80nS 0.21V 5.00nS 0.17V 5.20nS 0.15V 5.40nS 0.12V 5.60nS 93.14mV 5.80nS 80.86mV 6.00nS 68.57mV 6.20nS 55.24mV 6.40nS 43.92mV 6.60nS 33.33mV 6.80nS 25.91mV 7.00nS 18.81mV 7.20nS 13.52mV 7.40nS 8.40mV 7.60nS 4.73mV 7.80nS 3.46mV 8.00nS 2.19mV 8.20nS 1.26mV 8.40nS 0.84mV 8.60nS 0.49mV 8.80nS 0.41mV 9.00nS 0.35mV 9.20nS 0.31mV 9.40nS 0.28mV Freescale Semiconductor V(min) V(max) 2.12V 2.12V 2.12V 2.12V 2.12V 2.12V 2.11V 2.09V 2.04V 1.96V 1.85V 1.74V 1.63V 1.50V 1.33V 1.17V 1.04V 0.87V 0.72V 0.60V 0.49V 0.40V 0.32V 0.28V 0.25V 0.21V 0.18V 0.14V 0.11V 94.78mV 80.67mV 65.96mV 51.39mV 40.71mV 31.19mV 22.83mV 17.13mV 10.61mV 6.73mV 4.67mV 3.16mV 2.23mV 1.32mV 0.95mV 0.74mV 0.58mV 0.51mV 0.45mV 2.99V 2.99V 2.99V 2.96V 2.85V 2.72V 2.59V 2.50V 2.36V 2.20V 2.00V 1.75V 1.48V 1.24V 1.01V 0.82V 0.75V 0.65V 0.57V 0.50V 0.44V 0.38V 0.32V 0.29V 0.26V 0.23V 0.20V 0.17V 0.14V 0.12V 0.11V 90.13mV 74.96mV 61.03mV 50.31mV 39.65mV 31.61mV 22.62mV 15.75mV 12.43mV 9.14mV 6.37mV 4.12mV 2.29mV 1.55mV 0.81mV 0.53mV 0.39mV DSP56371 Technical Data 109 IBIS Model 9.60nS 9.80nS 10.00nS 0.24mV 0.22mV 0.20mV | [Falling Waveform] R_fixture = 50.00 V_fixture = 3.30 V_fixture_min = 3.00 V_fixture_max = 3.60 L_fixture = 0.000H C_fixture = 0.000F | time V(typ) | 0.000S 3.30V 0.20nS 3.30V 0.40nS 3.30V 0.60nS 3.30V 0.80nS 3.30V 1.00nS 3.25V 1.20nS 3.18V 1.40nS 3.14V 1.60nS 3.09V 1.80nS 3.03V 2.00nS 2.96V 2.20nS 2.88V 2.40nS 2.80V 2.60nS 2.72V 2.80nS 2.60V 3.00nS 2.51V 3.20nS 2.44V 3.40nS 2.34V 3.60nS 2.25V 3.80nS 2.15V 4.00nS 2.05V 4.20nS 1.93V 4.40nS 1.81V 4.60nS 1.73V 4.80nS 1.65V 5.00nS 1.53V 5.20nS 1.43V 5.40nS 1.32V 5.60nS 1.22V 5.80nS 1.18V 6.00nS 1.13V 6.20nS 1.08V 6.40nS 1.03V 6.60nS 0.99V 6.80nS 0.96V 7.00nS 0.93V 7.20nS 0.90V 7.40nS 0.87V 110 0.40mV 0.36mV 0.32mV 0.27mV 0.24mV 0.21mV V(min) V(max) 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 3.00V 2.97V 2.92V 2.88V 2.84V 2.80V 2.74V 2.68V 2.64V 2.58V 2.52V 2.46V 2.39V 2.32V 2.24V 2.19V 2.15V 2.09V 2.04V 1.97V 1.91V 1.87V 1.84V 1.79V 1.75V 1.70V 1.66V 1.63V 1.59V 1.53V 3.60V 3.60V 3.60V 3.59V 3.52V 3.44V 3.37V 3.32V 3.24V 3.16V 3.07V 2.98V 2.88V 2.77V 2.64V 2.54V 2.46V 2.34V 2.22V 2.08V 1.92V 1.74V 1.58V 1.50V 1.42V 1.34V 1.26V 1.18V 1.11V 1.07V 1.03V 0.99V 0.95V 0.92V 0.89V 0.87V 0.84V 0.82V DSP56371 Technical Data Freescale Semiconductor IBIS Model 7.60nS 7.80nS 8.00nS 8.20nS 8.40nS 8.60nS 8.80nS 9.00nS 9.20nS 9.40nS 9.60nS 9.80nS 10.00nS 0.84V 0.83V 0.82V 0.81V 0.80V 0.79V 0.78V 0.78V 0.78V 0.77V 0.77V 0.77V 0.77V 1.47V 1.44V 1.40V 1.35V 1.30V 1.26V 1.23V 1.19V 1.17V 1.14V 1.12V 1.10V 1.08V 0.80V 0.78V 0.78V 0.76V 0.75V 0.75V 0.74V 0.73V 0.73V 0.73V 0.72V 0.72V 0.72V | | End [Model] prt24dgz | |************************************************************************ | Model pdusdgz |************************************************************************ | [Model] pdusdgz Model_type Input Polarity Non-Inverting Vinl = 0.000V Vinh = 3.30V C_comp 5.00pF 5.00pF 5.00pF | | [Temperature Range] 25.00 0.12k 0.000 [Pullup Reference] 3.30V 3.00V 3.60V [Pulldown Reference] 0.000V 0.000V 0.000V [POWER Clamp Reference] 5.00V 4.50V 5.50V [GND Clamp Reference] 0.000V 0.000V 0.000V [GND_clamp] | voltage I(typ) I(min) I(max) | -5.00 -64.63A -59.13A -66.41A -4.80 -61.55A -56.41A -63.21A -4.60 -58.47A -53.69A -60.01A -4.40 -55.39A -50.97A -56.81A -4.20 -52.31A -48.25A -53.61A -4.00 -49.23A -45.53A -50.41A -3.80 -46.15A -42.81A -47.21A -3.60 -43.07A -40.09A -44.01A -3.40 -39.99A -37.37A -40.81A -3.20 -36.91A -34.65A -37.61A -3.00 -33.82A -31.94A -34.41A -2.80 -30.73A -29.22A -31.22A -2.60 -27.64A -26.51A -28.02A -2.40 -24.56A -23.79A -24.82A -2.20 -21.47A -21.08A -21.62A Freescale Semiconductor DSP56371 Technical Data 111 IBIS Model -2.00 -1.80 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 -18.38A -15.29A -12.20A -9.12A -6.03A -2.94A -0.20A -1.85mA -83.24uA -60.52uA -60.40uA -60.32uA -60.23uA -60.11uA -59.96uA -59.74uA -59.32uA -58.35uA -56.47uA -53.57uA -49.55uA -43.70uA -3.73uA 0.10uA 0.12uA 0.13uA 0.14uA 0.15uA 0.16uA 0.17uA 0.18uA 0.18uA 0.19uA 0.20uA 0.21uA 0.22uA | [POWER_clamp] | voltage I(typ) | -5.00 0.61uA -4.90 0.60uA -4.80 0.59uA -4.70 0.59uA -4.60 0.58uA -4.50 0.57uA -4.40 0.56uA -4.30 0.56uA -4.20 0.55uA -4.10 0.54uA -4.00 0.54uA 112 -18.36A -15.64A -12.93A -10.21A -7.50A -4.78A -2.07A -96.40mA -0.50mA -36.82uA -35.33uA -35.27uA -35.20uA -35.13uA -35.03uA -34.91uA -34.50uA -33.59uA -31.92uA -29.25uA -7.60uA -16.78nA 0.10uA 0.11uA 0.12uA 0.13uA 0.20uA 0.15uA 96.30nA 43.50nA -9.30nA 62.10nA -0.11uA -0.17uA -0.22uA -0.27uA -18.42A -15.22A -12.03A -8.83A -5.63A -2.43A -64.17mA -4.85mA -0.23mA -86.29uA -85.95uA -85.85uA -85.73uA -85.57uA -85.37uA -85.08uA -84.56uA -83.44uA -81.36uA -78.20uA -73.89uA -68.43uA -61.70uA -51.99uA -2.43uA 0.13uA 0.14uA 0.15uA 0.16uA 0.17uA 0.18uA 0.19uA 0.20uA 0.21uA 0.22uA 0.23uA I(min) I(max) 0.59uA 0.58uA 0.58uA 0.57uA 0.56uA 0.56uA 0.55uA 0.54uA 0.54uA 0.53uA 0.52uA 0.65uA 0.65uA 0.64uA 0.63uA 0.63uA 0.62uA 0.61uA 0.60uA 0.60uA 0.59uA 0.58uA DSP56371 Technical Data Freescale Semiconductor IBIS Model -3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00 -2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00 -1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.53uA 0.52uA 0.52uA 0.51uA 0.50uA 0.50uA 0.49uA 0.48uA 0.48uA 0.47uA 0.46uA 0.46uA 0.45uA 0.44uA 0.44uA 0.43uA 0.42uA 0.42uA 0.41uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.33uA 0.32uA 0.31uA 0.31uA 0.30uA 0.29uA 0.29uA 0.28uA 0.27uA 0.27uA 0.52uA 0.51uA 0.50uA 0.50uA 0.49uA 0.48uA 0.48uA 0.47uA 0.46uA 0.46uA 0.45uA 0.44uA 0.44uA 0.43uA 0.42uA 0.41uA 0.41uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.33uA 0.32uA 0.31uA 0.31uA 0.30uA 0.29uA 0.29uA 0.28uA 0.27uA 0.27uA 0.26uA 0.25uA 0.58uA 0.57uA 0.56uA 0.56uA 0.55uA 0.54uA 0.53uA 0.53uA 0.52uA 0.51uA 0.51uA 0.50uA 0.49uA 0.49uA 0.48uA 0.47uA 0.46uA 0.46uA 0.45uA 0.44uA 0.44uA 0.43uA 0.42uA 0.42uA 0.41uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.32uA 0.32uA 0.31uA 0.30uA | | End [Model] pdusdgz | |************************************************************************ | Model pdddgz |************************************************************************ | [Model] pdddgz Model_type Input Polarity Non-Inverting Vinl = 0.000V Freescale Semiconductor DSP56371 Technical Data 113 IBIS Model Vinh = 3.30V C_comp 5.00pF | | [Temperature Range] 25.00 [Pullup Reference] 3.30V [Pulldown Reference] 0.000V [POWER Clamp Reference] 5.00V [GND Clamp Reference] \ 0.000V [GND_clamp] | voltage I(typ) I(min) | -5.00 -64.63A -59.13A -4.80 -61.55A -56.41A -4.60 -58.47A -53.69A -4.40 -55.39A -50.97A -4.20 -52.31A -48.25A -4.00 -49.23A -45.53A -3.80 -46.15A -42.81A -3.60 -43.07A -40.09A -3.40 -39.99A -37.37A -3.20 -36.91A -34.65A -3.00 -33.82A -31.94A -2.80 -30.73A -29.22A -2.60 -27.64A -26.51A -2.40 -24.56A -23.79A -2.20 -21.47A -21.08A -2.00 -18.38A -18.36A -1.80 -15.29A -15.64A -1.60 -12.20A -12.93A -1.40 -9.12A -10.21A -1.20 -6.03A -7.50A -1.00 -2.94A -4.78A -0.80 -0.20A -2.07A -0.60 -1.89mA -96.41mA -0.40 -85.69uA -0.50mA -0.20 -27.91uA -14.61uA -0.00 -87.50nA -88.83nA 0.20 18.71uA 7.31uA 0.40 29.18uA 10.24uA 0.60 32.49uA 10.66uA 0.80 33.06uA 10.78uA 1.00 33.29uA 10.85uA 1.20 33.44uA 10.91uA 1.40 33.56uA 10.96uA 1.60 33.66uA 11.01uA 1.80 33.76uA 11.06uA 2.00 33.85uA 11.10uA 2.20 33.94uA 11.12uA 2.40 33.99uA 11.13uA 2.60 34.01uA 11.14uA 114 5.00pF 5.00pF 0.12k 3.00V 0.000V 4.50V 0.000V 0.000 3.60V 0.000V 5.50V 0.000V I(max) -66.41A -63.21A -60.01A -56.81A -53.61A -50.41A -47.21A -44.01A -40.81A -37.61A -34.41A -31.22A -28.02A -24.82A -21.62A -18.42A -15.22A -12.03A -8.83A -5.63A -2.43A -64.21mA -4.91mA -0.24mA -42.88uA -0.10uA 32.27uA 54.12uA 65.78uA 69.33uA 70.16uA 70.54uA 70.78uA 70.98uA 71.15uA 71.30uA 71.44uA 71.59uA 71.74uA DSP56371 Technical Data Freescale Semiconductor IBIS Model 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 34.02uA 34.03uA 34.04uA 34.06uA 34.08uA 34.10uA 34.12uA 34.14uA 34.16uA 34.18uA 34.20uA 34.22uA | [POWER_clamp] | voltage I(typ) | -5.00 48.19uA -4.90 47.87uA -4.80 47.55uA -4.70 47.23uA -4.60 46.91uA -4.50 46.59uA -4.40 46.27uA -4.30 45.95uA -4.20 45.63uA -4.10 45.31uA -4.00 44.99uA -3.90 44.67uA -3.80 44.35uA -3.70 44.03uA -3.60 43.71uA -3.50 43.39uA -3.40 43.07uA -3.30 42.75uA -3.20 42.43uA -3.10 42.11uA -3.00 41.79uA -2.90 41.47uA -2.80 41.15uA -2.70 40.83uA -2.60 40.51uA -2.50 40.19uA -2.40 39.87uA -2.30 39.55uA -2.20 39.23uA -2.10 38.91uA -2.00 38.59uA -1.90 38.27uA -1.80 37.95uA -1.70 37.63uA -1.60 37.31uA Freescale Semiconductor 11.15uA 11.16uA 11.25uA 11.17uA 11.09uA 11.01uA 10.93uA 10.85uA 10.77uA 10.69uA 10.61uA 10.53uA 71.82uA 71.84uA 71.85uA 71.87uA 71.89uA 71.91uA 71.93uA 71.95uA 71.97uA 71.99uA 72.01uA 72.03uA I(min) I(max) 16.29uA 16.17uA 16.05uA 15.93uA 15.81uA 15.69uA 15.57uA 15.45uA 15.33uA 15.21uA 15.09uA 14.97uA 14.85uA 14.73uA 14.61uA 14.49uA 14.37uA 14.25uA 14.13uA 14.01uA 13.89uA 13.77uA 13.65uA 13.53uA 13.41uA 13.29uA 13.17uA 13.05uA 12.93uA 12.81uA 12.69uA 12.57uA 12.45uA 12.33uA 12.22uA 95.53uA 95.03uA 94.53uA 94.03uA 93.53uA 93.03uA 92.53uA 92.03uA 91.53uA 91.03uA 90.53uA 90.03uA 89.53uA 89.03uA 88.53uA 88.03uA 87.53uA 87.03uA 86.53uA 86.03uA 85.53uA 85.03uA 84.53uA 84.03uA 83.53uA 83.03uA 82.53uA 82.03uA 81.53uA 81.03uA 80.53uA 80.03uA 79.53uA 79.03uA 78.53uA DSP56371 Technical Data 115 IBIS Model -1.50 -1.40 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 36.99uA 36.68uA 36.38uA 36.11uA 35.86uA 35.63uA 35.41uA 35.22uA 35.05uA 34.90uA 34.77uA 34.65uA 34.55uA 34.47uA 34.40uA 34.34uA 12.11uA 12.01uA 11.92uA 11.84uA 11.76uA 11.69uA 11.63uA 11.57uA 11.52uA 11.48uA 11.44uA 11.41uA 11.38uA 11.35uA 11.33uA 11.31uA 78.03uA 77.53uA 77.03uA 76.53uA 76.03uA 75.53uA 75.06uA 74.63uA 74.24uA 73.89uA 73.58uA 73.30uA 73.06uA 72.86uA 72.68uA 72.54uA | | End [Model] pdddgz | |************************************************************************ | Model pdudgz |************************************************************************ | [Model] pdudgz Model_type Input Polarity Non-Inverting Vinl = 0.000V Vinh = 3.30V C_comp 5.00pF 5.00pF 5.00pF | | [Temperature Range] 25.00 0.12k 0.000 [Pullup Reference] 3.30V 3.00V 3.60V [Pulldown Reference] 0.000V 0.000V 0.000V [POWER Clamp Reference] 5.00V 4.50V 5.50V [GND Clamp Reference] 0.000V 0.000V 0.000V [GND_clamp] | voltage I(typ) I(min) I(max) | -5.00 -64.63A -59.13A -66.41A -4.80 -61.55A -56.41A -63.21A -4.60 -58.47A -53.69A -60.01A -4.40 -55.39A -50.97A -56.81A -4.20 -52.31A -48.25A -53.61A -4.00 -49.23A -45.53A -50.41A -3.80 -46.15A -42.81A -47.21A -3.60 -43.07A -40.09A -44.01A -3.40 -39.99A -37.37A -40.81A -3.20 -36.91A -34.65A -37.61A -3.00 -33.82A -31.94A -34.41A -2.80 -30.73A -29.22A -31.22A 116 DSP56371 Technical Data Freescale Semiconductor IBIS Model -2.60 -2.40 -2.20 -2.00 -1.80 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 -27.64A -24.56A -21.47A -18.38A -15.29A -12.20A -9.12A -6.03A -2.94A -0.20A -1.85mA -83.24uA -60.52uA -60.40uA -60.32uA -60.23uA -60.11uA -59.96uA -59.74uA -59.32uA -58.35uA -56.47uA -53.57uA -49.55uA -43.70uA -3.73uA 0.10uA 0.12uA 0.13uA 0.14uA 0.15uA 0.16uA 0.17uA 0.18uA 0.18uA 0.19uA 0.20uA 0.21uA 0.22uA | [POWER_clamp] | voltage I(typ) | -5.00 0.61uA -4.90 0.60uA -4.80 0.59uA -4.70 0.59uA -4.60 0.58uA -4.50 0.57uA -4.40 0.56uA -4.30 0.56uA Freescale Semiconductor -26.51A -23.79A -21.08A -18.36A -15.64A -12.93A -10.21A -7.50A -4.78A -2.07A -96.40mA -0.50mA -36.82uA -35.33uA -35.27uA -35.20uA -35.13uA -35.03uA -34.87uA -34.50uA -33.59uA -31.92uA -29.25uA -7.60uA -16.78nA 0.10uA 0.11uA 0.12uA 0.13uA 0.20uA 0.15uA 96.30nA 43.50nA -9.30nA 62.10nA -0.11uA -0.17uA -0.22uA -0.27uA I(min) 0.59uA 0.58uA 0.58uA 0.57uA 0.56uA 0.56uA 0.55uA 0.54uA -28.02A -24.82A -21.62A -18.42A -15.22A -12.03A -8.83A -5.63A -2.43A -64.17mA -4.85mA -0.23mA -86.29uA -85.95uA -85.85uA -85.73uA -85.57uA -85.37uA -85.08uA -84.56uA -83.44uA -81.36uA -78.20uA -73.89uA -68.43uA 61.70uA 51.99uA -2.43uA 0.13uA 0.14uA 0.15uA 0.16uA 0.17uA 0.18uA 0.19uA 0.20uA 0.21uA 0.22uA 0.23uA I(max) 0.65uA 0.65uA 0.64uA 0.63uA 0.63uA 0.62uA 0.61uA 0.60uA DSP56371 Technical Data 117 IBIS Model -4.20 -4.10 -4.00 -3.90 -3.80 -3.70 -3.60 -3.50 -3.40 -3.30 -3.20 -3.10 -3.00 -2.90 -2.80 -2.70 -2.60 -2.50 -2.40 -2.30 -2.20 -2.10 -2.00 -1.90 -1.80 -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.55uA 0.54uA 0.54uA 0.53uA 0.52uA 0.52uA 0.51uA 0.50uA 0.50uA 0.49uA 0.48uA 0.48uA 0.47uA 0.46uA 0.46uA 0.45uA 0.44uA 0.44uA 0.43uA 0.42uA 0.42uA 0.41uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.33uA 0.32uA 0.31uA 0.31uA 0.30uA 0.29uA 0.29uA 0.28uA 0.27uA 0.27uA 0.54uA 0.53uA 0.52uA 0.52uA 0.51uA 0.50uA 0.50uA 0.49uA 0.48uA 0.48uA 0.47uA 0.46uA 0.46uA 0.45uA 0.44uA 0.44uA 0.43uA 0.42uA 0.41uA 0.41uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.33uA 0.32uA 0.31uA 0.31uA 0.30uA 0.29uA 0.29uA 0.28uA 0.27uA 0.27uA 0.26uA 0.25uA 0.60uA 0.59uA 0.58uA 0.58uA 0.57uA 0.56uA 0.56uA 0.55uA 0.54uA 0.53uA 0.53uA 0.52uA 0.51uA 0.51uA 0.50uA 0.49uA 0.49uA 0.48uA 0.47uA 0.46uA 0.46uA 0.45uA 0.44uA 0.44uA 0.43uA 0.42uA 0.42uA 0.41uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.32uA 0.32uA 0.31uA 0.30uA | | End [Model] pdudgz | |************************************************************************ | Model pdidgz |************************************************************************ | [Model] pdidgz 118 DSP56371 Technical Data Freescale Semiconductor IBIS Model Model_type Input Polarity Non-Inverting Vinl = 0.000V Vinh = 3.30V C_comp 5.00pF | | [Temperature Range] 25.00 [Pullup Reference] 3.30V [Pulldown Reference] 0.000V [POWER Clamp Reference] 5.00V [GND Clamp Reference] 0.000V [GND_clamp] | voltage I(typ) I(min) | -5.00 -64.63A -59.13A -4.80 -61.55A -56.41A -4.60 -58.47A -53.69A -4.40 -55.39A -50.97A -4.20 -52.31A -48.25A -4.00 -49.23A -45.53A -3.80 -46.15A -42.81A -3.60 -43.07A -40.09A -3.40 -39.99A -37.37A -3.20 -36.91A -34.65A -3.00 -33.82A -31.94A -2.80 -30.73A -29.22A -2.60 -27.64A -26.51A -2.40 -24.56A -23.79A -2.20 -21.47A -21.08A -2.00 -18.38A -18.36A -1.80 -15.29A -15.64A -1.60 -12.20A -12.93A -1.40 -9.12A -10.21A -1.20 -6.03A -7.50A -1.00 -2.94A -4.78A -0.80 -0.20A -2.07A -0.60 -1.79mA -96.39mA -0.40 -22.83uA -0.47mA -0.20 -0.15uA -1.56uA -0.00 -88.71nA -89.34nA 0.20 -72.38nA -68.50nA 0.40 -56.11nA -52.12nA 0.60 -39.84nA -35.76nA 0.80 -23.57nA -19.40nA 1.00 -7.31nA -3.04nA 1.20 8.94nA 13.32nA 1.40 25.19nA 29.68nA 1.60 41.42nA 46.03nA 1.80 57.64nA 62.39nA 2.00 73.83nA 78.74nA Freescale Semiconductor 5.00pF 5.00pF 0.12k 3.00V 0.000V 4.50V 0.000V 0.000 3.60V 0.000V 5.50V 0.000V I(max) -66.41A -63.21A -60.01A -56.81A -53.61A -50.41A -47.21A -44.01A -40.81A -37.61A -34.41A -31.22A -28.02A -24.82A -21.62A -18.42A -15.22A -12.03A -8.83A -5.63A -2.43A -64.14mA -4.77mA -0.14mA -0.37uA -0.11uA -88.30nA -71.55nA -54.82nA -38.12nA -21.42nA -4.73nA 11.97nA 28.68nA 45.42nA 62.20nA DSP56371 Technical Data 119 IBIS Model 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.60 4.80 5.00 89.95nA 0.11uA 0.12uA 0.13uA 0.14uA 0.15uA 0.15uA 0.16uA 0.17uA 0.18uA 0.20uA 0.20uA 0.21uA 0.22uA | [POWER_clamp] | voltage I(typ) | -5.00 0.60uA -4.90 0.60uA -4.80 0.59uA -4.70 0.58uA -4.60 0.58uA -4.50 0.57uA -4.40 0.56uA -4.30 0.56uA -4.20 0.55uA -4.10 0.54uA -4.00 0.54uA -3.90 0.53uA -3.80 0.52uA -3.70 0.52uA -3.60 0.51uA -3.50 0.50uA -3.40 0.49uA -3.30 0.49uA -3.20 0.48uA -3.10 0.47uA -3.00 0.47uA -2.90 0.46uA -2.80 0.45uA -2.70 0.45uA -2.60 0.44uA -2.50 0.43uA -2.40 0.43uA -2.30 0.42uA -2.20 0.41uA -2.10 0.41uA -2.00 0.40uA -1.90 0.39uA -1.80 0.39uA 120 94.86nA 0.11uA 0.12uA 0.13uA 0.14uA 0.21uA 0.15uA 0.10uA 47.20nA -5.80nA -0.11uA -0.16uA -0.22uA -0.27uA I(min) 0.59uA 0.58uA 0.58uA 0.57uA 0.56uA 0.56uA 0.55uA 0.54uA 0.54uA 0.53uA 0.52uA 0.52uA 0.51uA 0.50uA 0.50uA 0.49uA 0.48uA 0.48uA 0.47uA 0.46uA 0.46uA 0.45uA 0.44uA 0.43uA 0.43uA 0.42uA 0.41uA 0.41uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 79.06nA 96.02nA 0.11uA 0.13uA 0.14uA 0.15uA 0.16uA 0.17uA 0.18uA 0.18uA 0.20uA 0.21uA 0.22uA 0.23uA I(max) 0.65uA 0.64uA 0.64uA 0.63uA 0.62uA 0.62uA 0.61uA 0.60uA 0.59uA 0.59uA 0.58uA 0.57uA 0.57uA 0.56uA 0.55uA 0.55uA 0.54uA 0.53uA 0.53uA 0.52uA 0.51uA 0.51uA 0.50uA 0.49uA 0.48uA 0.48uA 0.47uA 0.46uA 0.46uA 0.45uA 0.44uA 0.44uA 0.43uA DSP56371 Technical Data Freescale Semiconductor IBIS Model -1.70 -1.60 -1.50 -1.40 -1.30 -1.20 -1.10 -1.00 -0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.38uA 0.37uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.33uA 0.32uA 0.31uA 0.31uA 0.30uA 0.29uA 0.29uA 0.28uA 0.28uA 0.27uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.33uA 0.32uA 0.31uA 0.31uA 0.30uA 0.29uA 0.29uA 0.28uA 0.27uA 0.27uA 0.26uA 0.26uA 0.42uA 0.42uA 0.41uA 0.40uA 0.39uA 0.39uA 0.38uA 0.37uA 0.37uA 0.36uA 0.35uA 0.35uA 0.34uA 0.33uA 0.33uA 0.32uA 0.31uA 0.31uA | | End [Model] pdidgz Freescale Semiconductor DSP56371 Technical Data 121 IBIS Model NOTES 122 DSP56371 Technical Data Freescale Semiconductor IBIS Model NOTES Freescale Semiconductor DSP56371 Technical Data 123 How to Reach Us: Home Page: www.freescale.com USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 1-800-521-6274 or 480-768-2130 Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0063 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong 852-26668334 For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved. DSP56371 Rev. 3 1/2005