FREESCALE MRF5S9100MBR1

Freescale Semiconductor
Technical Data
Document Number: MRF5S9100
Rev. 3, 7/2005
RF Power Field Effect Transistors
MRF5S9100NR1
MRF5S9100NBR1
MRF5S9100MR1
MRF5S9100MBR1
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for broadband commercial and industrial applications with
frequencies up to 1000 MHz. The high gain and broadband performance of
these devices make them ideal for large - signal, common - source amplifier
applications in 26 volt base station equipment.
• Typical Single - Carrier N - CDMA Performance @ 880 MHz, VDD = 26 Volts,
IDQ = 950 mA, Pout = 20 Watts Avg., IS - 95 CDMA (Pilot, Sync, Paging,
Traffic Codes 8 Through 13) Channel Bandwidth = 1.2288 MHz. PAR =
9.8 dB @ 0.01% Probability on CCDF.
Power Gain — 19.5 dB
Drain Efficiency — 28%
ACPR @ 750 kHz Offset — - 46.8 dBc @ 30 kHz Bandwidth
• Capable of Handling 10:1 VSWR, @ 26 Vdc, 880 MHz, 100 Watts CW
Output Power
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Qualified Up to a Maximum of 32 VDD Operation
• Integrated ESD Protection
• N Suffix Indicates Lead - Free Terminations
• 200°C Capable Plastic Package
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
880 MHz, 20 W AVG., 26 V
SINGLE N - CDMA
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 1486 - 03, STYLE 1
TO - 270 WB - 4
PLASTIC
MRF5S9100NR1(MR1)
CASE 1484 - 02, STYLE 1
TO - 272 WB - 4
PLASTIC
MRF5S9100NBR1(MBR1)
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain- Source Voltage
VDSS
- 0.5, +68
Vdc
Gate- Source Voltage
VGS
- 0.5, + 15
Vdc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
336
1.92
W
W/°C
Storage Temperature Range
Tstg
- 65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Value (1,2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 20 W CW
RθJC
0.52
°C/W
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access
the MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
 Freescale Semiconductor, Inc., 2005. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
1
Table 3. ESD Protection Characteristics
Test Conditions
Class
Human Body Model (per JESD22 - A114)
1C (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 68 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
µAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 26 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
µAdc
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
µAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 400 µA)
VGS(th)
2
2.8
3.5
Vdc
Gate Quiescent Voltage
(VDS = 26 Vdc, ID = 950 mAdc)
VGS(Q)
—
3.7
—
Vdc
Drain- Source On - Voltage
(VGS = 10 Vdc, ID = 2.0 Adc)
VDS(on)
—
0.21
0.3
Vdc
gfs
—
7
—
S
Output Capacitance
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
70
—
pF
Reverse Transfer Capacitance
(VDS = 26 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
2.2
—
pF
Off Characteristics
On Characteristics
Forward Transconductance
(VDS = 10 Vdc, ID = 6 Adc)
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ = 950 mA, Pout = 20 W Avg. N - CDMA, f = 880 MHz,
Single- Carrier N - CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Bandwidth @ ±750 kHz Offset. PAR = 9.8 dB
@ 0.01% Probability on CCDF
Power Gain
Gps
18
19.5
—
dB
Drain Efficiency
ηD
26
28
—
%
ACPR
—
- 46.8
- 45
dBc
IRL
—
- 19
-9
dB
Adjacent Channel Power Ratio
Input Return Loss
1. Part is internally input matched.
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
2
RF Device Data
Freescale Semiconductor
B1
VBIAS
+
C22
+
C21
+
C20
C19
VSUPPLY
C17
C18
C6
C8
DUT
Z1
Z2
C1
Z3
Z4
Z5
C3
C4
Z6
Z7
+
+
C15
+
C13
C14
L2
L1
RF
INPUT
C16
Z9
RF
OUTPUT
C10
Z11
Z10
Z12
Z13
Z15
Z14
Z8
C12
C2
Z1, Z15
Z2
Z3
Z4
Z5
Z6, Z11
Z7
C7
C5
0.200″ x 0.080″ Microstrip
0.105″ x 0.080″ Microstrip
0.954″ x 0.080″ Microstrip
0.115″ x 0.220″ Microstrip
0.375″ x 0.220″ Microstrip
0.200″ x 0.220″ x 0.620″ Taper
0.152″ x 0.620″ Microstrip
Z8
Z9
Z10
Z12
Z13
Z14
PCB
C9
C11
0.163″ x 0.620″ Microstrip
0.238″ x 0.620″ Microstrip
0.077″ x 0.620″ Microstrip
0.381″ x 0.220″ Microstrip
0.114″ x 0.220″ Microstrip
1.052″ x 0.080″ Microstrip
Arlon GX0300, 0.030″, εr = 2.55
Figure 1. MRF5S9100NR1(NBR1)/MR1(MBR1) Test Circuit Schematic
Table 6. MRF5S9100NR1(NBR1)/MR1(MBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
Ferrite Bead, Surface Mount
2743019447
Fair- Rite
C1, C12, C18
18 pF Chip Capacitors
100B180JP 500X
ATC
C2
0.6- 4.5 pF Variable Capacitor, Gigatrim
27271SL
Johanson Dielectrics
C3, C11
0.8- 8.0 pF Variable Capacitors, Gigatrim
27291SL
Johanson Dielectrics
C4
6.2 pF Chip Capacitor
100B6R2JP 500X
ATC
C5, C6
12 pF Chip Capacitors
100B120JP 500X
ATC
C7, C8
11 pF Chip Capacitors
100B110JP 500X
ATC
C9, C10
5.1 pF Chip Capacitors
100B5R1JP 500X
ATC
C13
470 mF, 63 V Electrolytic Capacitor
NACZF471M63V
Nippon
C14, C15
22 mF, 50 V Tantalum Capacitors
T491X226K035AS
Kemet
C16, C17, C19
0.56 mF, 50 V Chip Capacitors
C1825C564J5GAC
Kemet
C20, C21
47 mF, 16 V Tantalum Capacitors
T491D4T6K016AS
Kemet
C22
100 mF, 50 V Electrolytic Capacitor
515D107M050BB6A
Multicomp
L1
7.15 nH Inductor
1606- 7
CoilCraft
L2
22 nH Inductor
B07T- 5
CoilCraft
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
RF Device Data
Freescale Semiconductor
3
C15 C14
C21 C20
VGG
C13
C22
B1
C18
C19
C16
C6
C8
VDD
C17
C10
C2
C3
C5
WB2
WB1
C4
L1
CUT OUT AREA
C1
C12
L2
C9
C7
C11
MRF9100M
Rev 2
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor
signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have
no impact on form, fit or function of the current product.
Figure 2. MRF5S9100NR1(NBR1)/MR1(MBR1) Test Circuit Component Layout
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
Gps
40
18
ηD
30
VDD = 26 Vdc, Pout = 20 W (Avg.), IDQ = 950 mA
N−CDMA IS−95 (Pilot, Sync, Paging, Traffic
Codes 8 through 13)
16
14
IRL
12
ACPR
6
830
−30
−40
10
8
20
−50
ALT
840
−60
850
860
870
880
890
900
910
−70
920
−10
−15
−20
−25
−30
IRL, INPUT RETURN LOSS (dB)
20
ηD , DRAIN
EFFICIENCY (%)
50
ACPR (dBc), ALT (dBc)
G ps , POWER GAIN (dB)
22
f, FREQUENCY (MHz)
18
16
8
Gps
6
ηD
VDD = 26 Vdc, Pout = 2 W (Avg.), IDQ = 950 mA
N−CDMA IS−95 (Pilot, Sync, Paging, Traffic
Codes 8 through 13)
14
IRL
12
10
−40
−50
ACPR
−60
8
6
830
4
−70
ALT
840
850
860
870
880
890
900
910
−80
920
−10
−15
−20
−25
−30
IRL, INPUT RETURN LOSS (dB)
G ps , POWER GAIN (dB)
20
10
ACPR (dBc), ALT (dBc)
22
ηD , DRAIN
EFFICIENCY (%)
Figure 3. IS - 95 Broadband Performance @ Pout = 20 Watts Avg.
f, FREQUENCY (MHz)
Figure 4. IS - 95 Broadband Performance @ Pout = 2 Watts Avg.
G ps , POWER GAIN (dB)
20
−20
IDQ = 1425 mA
1150 mA
950 mA
19
700 mA
18
17
16
0.1
475 mA
VDD = 26 Vdc, f1 = 880 MHz, f2 = 880.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
1
10
100
1000
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
21
−25
−30
1425 mA
−35
IDQ = 475 mA
−40
−45
1150 mA
−50
950 mA
−55
700 mA
−60
VDD = 26 Vdc, f1 = 880 MHz, f2 = 880.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−65
−70
0.1
1
10
100
1000
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 5. Two - Tone Power Gain versus
Output Power
Figure 6. Third Order Intermodulation Distortion
versus Output Power
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
RF Device Data
Freescale Semiconductor
5
0
58
Ideal
57
Pout, OUTPUT POWER (dBm)
−10
−20
3rd Order
−30
5th Order
−40
7th Order
−50
P3dB = 51.58 dBm (143 W)
56
55
54
P1dB = 50.71 dBm (117 W)
53
52
Actual
51
50
−60
VDD = 26 Vdc, Pout = 96 W (PEP), IDQ = 950 mA
Two−Tone Measurements, Center Frequency = 880 MHz
−70
0.1
VDD = 26 Vdc, IDQ = 950 mA
Pulsed CW, 8 µsec(on), 1 msec(off)
Center Frequency = 880 MHz
49
48
1
28
100
10
29
30
31
32
33
34
35
36
37
Pin, INPUT POWER (dBm)
Figure 7. Intermodulation Distortion Products
versus Tone Spacing
Figure 8. Pulse CW Output Power versus
Input Power
50
−30
VDD = 26 Vdc, IDQ = 950 mA, f = 880 MHz
N−CDMA IS−95 (Pilot, Sync, Paging,
Traffic Codes 8 through 13)
45
40
−35
−40
35
−45
30
−50
ACPR
25
−55
Gps
20
−60
15
−65
10
−70
ηD
5
−75
ALT1
0
−80
1
100
10
38
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
ALT1, CHANNEL POWER (dBm)
TWO−TONE SPACING (MHz)
ηD , DRAIN EFFICIENCY (%) G , POWER GAIN (dB)
ps
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
Pout, OUTPUT POWER (WATTS) AVG.
Figure 9. Single - Carrier N - CDMA ACPR, Power
Gain, Efficiency and ALT1 versus Output Power
1010
IDQ = 950 mA
f = 880 MHz
G ps , POWER GAIN (dB)
19.5
19
18.5
20 V
24 V
18
32 V
16 V
17.5
MTTF FACTOR (HOURS x AMPS2)
20
109
108
VDD = 12 V
17
0
30
60
90
120
150
180
107
80
100
Figure 10. Power Gain versus Output Power
120
140
160
180
200
220
TJ, JUNCTION TEMPERATURE (°C)
Pout, OUTPUT POWER (WATTS) CW
This above graph displays calculated MTTF in hours x ampere2
drain current. Life tests at elevated temperatures have correlated to
better than ±10% of the theoretical prediction for metal failure. Divide
MTTF factor by ID2 for MTTF in a particular application.
Figure 11. MTTF Factor versus Junction Temperature
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
6
RF Device Data
Freescale Semiconductor
f = 895 MHz
Zload
f = 865 MHz
f = 865 MHz
f = 895 MHz
Zsource
Zo = 5 Ω
VDD = 26 Vdc, IDQ = 950 mA, Pout = 20 W Avg.
Zload
Ω
f
MHz
Zsource
Ω
865
3.0 - j1.8
1.4 - j0.7
880
2.8 - j1.9
1.5 - j0.6
895
2.7 - j1.7
1.5 - j0.5
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under Test
Input
Matching
Network
Z
source
Z
load
Figure 12. Series Equivalent Source and Load Impedance
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
RF Device Data
Freescale Semiconductor
7
NOTES
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
8
RF Device Data
Freescale Semiconductor
NOTES
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
RF Device Data
Freescale Semiconductor
9
PACKAGE DIMENSIONS
E1
B
A
2X
E3
GATE LEAD
DRAIN LEAD
D
D1
4X
e
4X
aaa
b1
C A
M
2X
2X
D2
c1
E
H
DATUM
PLANE
F
ZONE J
A
A1
2X
A2
E2
NOTE 7
E5
E4
4
D3
3
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
ÇÇÇÇÇÇ
E5
BOTTOM VIEW
C
SEATING
PLANE
PIN 5
NOTE 8
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT THE TOP OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE TOP OF THE PARTING LINE.
4. DIMENSIONS “D" AND “E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 PER SIDE. DIMENSIONS “D" AND “E1" DO
INCLUDE MOLD MISMATCH AND ARE DETER−
MINED AT DATUM PLANE −H−.
5. DIMENSION “b1" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE .005 TOTAL IN EXCESS
OF THE “b1" DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. DATUMS −A− AND −B− TO BE DETERMINED AT
DATUM PLANE −H−.
7. DIMENSION A2 APPLIES WITHIN ZONE “J" ONLY.
8. HATCHING REPRESENTS THE EXPOSED AREA
OF THE HEAT SLUG.
1
2
CASE 1486 - 03
ISSUE C
TO - 270 WB - 4
PLASTIC
MRF5S9100NR1(MR1)
DIM
A
A1
A2
D
D1
D2
D3
E
E1
E2
E3
E4
E5
F
b1
c1
e
aaa
INCHES
MIN
MAX
.100
.104
.039
.043
.040
.042
.712
.720
.688
.692
.011
.019
.600
−−−
.551
.559
.353
.357
.132
.140
.124
.132
.270
−−−
.346
.350
.025 BSC
.164
.170
.007
.011
.106 BSC
.004
STYLE 1:
PIN 1.
2.
3.
4.
5.
MILLIMETERS
MIN
MAX
2.54
2.64
0.99
1.09
1.02
1.07
18.08
18.29
17.48
17.58
0.28
0.48
15.24
−−−
14
14.2
8.97
9.07
3.35
3.56
3.15
3.35
6.86
−−−
8.79
8.89
0.64 BSC
4.17
4.32
0.18
0.28
2.69 BSC
0.10
DRAIN
DRAIN
GATE
GATE
SOURCE
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
10
RF Device Data
Freescale Semiconductor
E1
r1
aaa M C A B
2X
A
B
GATE LEAD
E2
DRAIN LEAD
3
D D2
D1
4X
e
4
b1
aaa M C A
4X
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
ÉÉÉÉÉÉ
H
ZONE J
A
A1
A2
7
Y
E3
1
2
NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES PER
ASME Y14.5M−1994.
3. DATUM PLANE −H− IS LOCATED AT TOP OF LEAD
AND IS COINCIDENT WITH THE LEAD WHERE THE
LEAD EXITS THE PLASTIC BODY AT THE TOP OF
THE PARTING LINE.
4. DIMENSIONS "D" AND "E1" DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS .006 PER SIDE. DIMENSIONS "D" AND "E1" DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE −H−.
5. DIMENSION "b1" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE .005 TOTAL IN EXCESS
OF THE "b1" DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. DATUMS −A− AND −B− TO BE DETERMINED AT
DATUM PLANE −H−.
7. DIMENSION A2 APPLIES WITHIN ZONE "J" ONLY.
8. HATCHING REPRESENTS THE EXPOSED AREA OF
THE HEAT SLUG.
F
DATUM
PLANE
NOTE 8
E3
VIEW Y - Y
E
c1
PIN 5
Y
C
SEATING
PLANE
STYLE 1:
PIN 1.
2.
3.
4.
5.
CASE 1484 - 02
ISSUE B
TO - 272 WB - 4
PLASTIC
MRF5S9100NBR1(MBR1)
DRAIN
DRAIN
GATE
GATE
SOURCE
DIM
A
A1
A2
D
D1
D2
E
E1
E2
E3
F
b1
c1
r1
e
aaa
INCHES
MIN
MAX
.100
.104
.039
.043
.040
.042
.928
.932
.810 BSC
.600
−−−
.551
.559
.353
.357
.270
−−−
.346
.350
.025 BSC
.164
.170
.007
.011
.063
.068
.106 BSC
.004
MILLIMETERS
MIN
MAX
2.54
2.64
0.99
1.09
1.02
1.07
23.57
23.67
20.57 BSC
15.24
−−−
14
14.2
8.97
9.07
6.86
−−−
8.79
8.89
0.64 BSC
4.17
4.32
.18
.28
1.60
1.73
2.69 BSC
.10
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
RF Device Data
Freescale Semiconductor
11
How to Reach Us:
Home Page:
www.freescale.com
E - mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1 - 800- 521- 6274 or +1 - 480- 768- 2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800- 441- 2447 or 303 - 675- 2140
Fax: 303 - 675- 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
 Freescale Semiconductor, Inc. 2005. All rights reserved.
MRF5S9100NR1 MRF5S9100NBR1 MRF5S9100MR1 MRF5S9100MBR1
Document Number: MRF5S9100
Rev. 3, 7/2005
12
RF Device Data
Freescale Semiconductor