FUJITSU SEMICONDUCTOR DATA SHEET DS04-27300-2E ASSP VOLTAGE DETECTOR MB3761 VOLTAGE DETECTOR Designed for voltage detector applications, the Fujitsu MB3761 is a dual comparator with a built-in high precision reference voltage generator. Outputs are open-collector outputs and enable use of the OR-connection between both channels. Both channels have hysteresis control outputs. PLASTIC PACKAGE SIP-08P-M03 PLASTIC PACKAGE DIP-08P-M01 Because of a wide power supply voltage range and a low power supply current, the MB3761 is suitable for power supply monitors and battery backup systems. PLASTIC PACKAGE FPT-08P-M01 • Wide power supply voltage range: 2.5 V to 40 V • Low power and small voltage dependency supply current: 250 µA typical. • Built-in stable low voltage generator: 1.20 V typical. • Easy-to-add hysteresis characteristics. • Package: 8-pin Plastic SIP Package (Suffix: -PS) 8-pin Plastic DIP Package (Suffix: -P) 8-pin Plastic FPT Package (Suffix: -PF) ABSOLUTE MAXIMUM RATINGS (See NOTE) Rating Symbol Value VCC 41 V Output Voltage VO 41 V Output Current IO 50 mA Input Voltage VIN -0.3 to +6.5 V Power Dissipation PD 350 (TA ≤ 70°C) mW -55 to 125 °C TSTG (FRONT VIEW) B (+) + — (—) Unit Power Supply Voltage Storage Temperature PIN ASSIGNMENT A (—) 8 VCC 7 HYS-B 6 OUT-B 5 GND 4 OUT-A 3 IN-A 2 HYS-A 1 IN-B — + (+) (TOP VIEW) (+) NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. IN-B HYS-A 1 + B — 2 8 VCC 7 HYS-B 6 OUT-B 5 GND (—) (+) IN-A 3 + OUT-A 4 (—) A — This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. 1 MB3761 Figure 1. MB3761 Equivalent Circuit 8 V CC 2 HYS-A 7 4 HYS-B OUT-A V REF ∼ 1.2V 5 GND ■ 3 1 6 IN-A IN-B OUT-B RECOMMENDED OPERATING CONDITIONS Parameter 2 Symbol Value Unit Power Supply Voltage VCC 2.5 to 40 V Operating Temperature TA -20 to 75 °C Output Current at pin 4 IO4 4.5 mA Output Current at pin 6 IO6 3.0 mA MB3761 ■ ELECTRICAL CHARACTERISTICS TA=25°C, VCC=5V Parameter Power Supply Voltage Threshold Voltage Deviation of Threshold Voltage Offset Voltage between Outputs Designator Conditions Values Min Typ Max Unit ICCL VCC=40 V, VIL=1.0 V - 250 400 µA ICCH VCC=40 V, VIH =1.5 V - 400 600 µA VTH IO =2 mA, VO=1 V 1.15 1.20 1.25 V 2.5 V ≤ VCC ≤ 5.5 V - 3 12 mV 4.5 V ≤ VCC ≤ 40 V - 10 40 mV VOOSA IOA= 4.5 mA, VOA=2 V IHA= 20 mA, VHA=3 V - 2.0 - mV VOSSB IOB=3 mA, VOB=2 V IHB=3 mA, VHB=2 V - 2.0 - mV -20°C ≤ TA ≤ 70°C - ±0.05 - mV/°C -10 - -10 mV ∆VTH1 ∆VTH2 Temperature Coefficient of Threshold Voltage α Difference Voltage on Threshold Voltage between Channel ∆VTHAB IIL VIL=1.0 V - 5 IIH VIH=1.5 V - 100 500 nA Output Leakage Current IOH VO=40 V, VIL=1.0 V - - 1 µA Hysteresis Output Leakage Current IHLA VCC=40 V, VHA=0 V, VIL=1.0 V - - 0.1 µA IHHB VHB=40 V, VIH=1.5 V - - 1 µA IOLA VO=1.0 V, VIH=1.5 V 6 12 - mA IOLB VO=1.0 V, VIH=1.5 V 4 10 - mA IHHA VH=0 V, VIH=1.5 V 40 80 - µA IHLB VH=1.0 V,VIL =1.0 V 4 10 - mA VOLA IO= 4.5 mA, VIH =1.5 V - 120 400 mV VOLB IO= 3.0 mA, VIH=1.5 V - 120 400 mV VHHA IH= 20 µA, VIH=1.5 V - 50 200 mV VHLB IH= 3.0 mA, VIL=1.0 V - 120 400 mV tPHL RL=5 KΩ - 2 - µs tPLH RL=5 KΩ - 3 - µs Input Current Output Sink Current Hysteresis Current Output Saturation Voltage Hysteresis Saturation Output Delay Time nA 3 MB3761 Figure 2. Operational Definitions V OA V IN V CC R4 R6 RL R1 1 RL 8 V ILA R5 V HB 2 V IHA V IN V HB 7 HYS-B R3 3 6 4 5 OUT-B V OB VOB V IN R2 V OA OUT-A V IN GND V ILB V IHB NOTE) 4 VIHA =(1+ R1 )V R R2 VILA =(1+ R1 R 2 // R 3 )V R - R1 V R 3 CC V IHB =(1+ R4 R 5 // R V ILB =(1+ R4 )V R R5 6 )V R VR ∼ VTH ( ∼ 1.20V) R 2 // R 3 = R2 R3 R2 + R 3 R 5 // R 6 = R5 R6 R5 + R 6 MB3761 ■ TYPICAL PERFORMANCE CHARACTERISTICS Fig. 3 Power Supply Current ICC (µA) Power Supply Current vs Power Supply Voltage Hysteresis (A) Current vs Power Supply Voltage Hysteresis 150 (A) Current IHHA ( µA) 500 70°C 25°C 400 Fig. 4 - 70°C 120 25°C -20°C VIH = 1.5V 70°C 300 -20°C 90 25°C 200 VIH=1.5V 60 -20°C VIL=1.0V 100 30 0 0 0 10 20 30 Power Supply Voltage VCC Output (A) Voltage VOLA (V) 1.0 Fig. 6 - 0.8 30 40 (V) 25°C 70°C -20°C VCC=5V VIH=1.5V 70°C 0.6 0.4 0.4 0.2 0.2 0 0 0 5 10 15 20 25 0 5 Output (A) Current IOLA (mA) Threshold 1.22 Voltage VTH (V) 1.21 20 Output (B) Voltage vs. Output (B) Current Output 1.0 (B) Voltage VOLB (V) 0.8 -20°C 25°C VCC=5V VIH=1.5V 10 Power Supply Voltage VCC (V) Fig. 5 - Output (A) Voltage vs. Output (A) Current 0.6 0 40 10 15 20 25 Output (B) Current IOLB (mA) Fig. 7 - Threshold Voltage vs. Power Supply Voltage Fig. 8 Threshold Voltage VTH (V) 1.22 Threshold Voltage vs. Temperature 1.21 1.20 1.20 TA=25°C 1.19 1.19 VCC=5V 1.18 1.17 1.18 0 10 20 30 Power Supply Voltage VCC (V) 40 1.17 -20 0 20 40 60 80 Temperature TA (°C) 5 MB3761 ■ APPLICATION EXAMPLES Figure 9. Addition of Hysteresis VOA VCC (VIN) R1 R2 1 8 2 7 3 6 4 5 RL VOA VIH (VCC) VILA R3 VIHA =(1+ GND R1 + R2 )V R3 VIHA VILA =(1+ R2 )VR R3 IN VCC R1 R R2 R3 VHB L 1 8 2 7 VHB 3 6 VOB 4 5 C1 VIH VOB GND VIH VILB Note: 6 All calculations occur with the output voltage at 0. The hysteresis values are adjusted for load condition and saturation voltage. VIHB = (1 + R1 )V R R2 VIHB V ILB =(1+ R1 R2 + R3 )VR MB3761 ■ APPLICATION EXAMPLES (Continued) Figure 10. Voltage Detection for Alarm VCC VO R3 R1 R2 1 8 2 7 3 6 4 5 RL VO VCCL R4 VCCH = (1+ GND VCC VCCH R1 )VR R2 VCCL = (1+ R3 R4 )VR VCCL ≥ 2.5 V For hysteresis, a positive feedback from pin 2 or 7 is required. Figure 11. Voltage Detection for Alarm VCC VO R3 R1 R2 R4 1 8 2 7 3 6 4 5 RL VO VCC VCCL GND VCCH = (1 + R3 )VR R4 VCCH VCCL = (1 + R1 )VR R2 VCCL ≥ 2.5 V 7 MB3761 ■ APPLICATION EXAMPLES (Continued) Figure 12. Programmable Zener VCC R2 VZ ∼ (1+ R3 ) VR R1 VZ R2 + R3 1 8 2 7 3 6 4 5 VZ ≤ R2 +R3 VCC - VZ R1 GND Channel B can be used independently. Figure 13. Recovery Reset Circuit VCC = 5 V R1 R2 3.3 KΩ 6.8 KΩ R3 15 KΩ 330 KΩ R4 1 8 2 7 3 6 4 5 OUT R5 6.8 KΩ 0.1µF C1 OUT 8 GND ≤ 6mA MB3761 ■ TYPICAL CHARACTERISTICS Figure 14. DC Characteristics Figure 15. Response Characteristics VO (V) 6 VCC 5 VCCL VCC 4 VCCH (V) 0 VO 4.4 2 VO (V) tRST 0 0 0 • 1 3 VCC (V) 4 5 6 ∼ 30 ms Voltage Threshold Levels (VCCL and VCCH) and Hysteresis Width can be changed by the resistors (R1 through R4). R1 + R2 + R3 VCCL = VTH R3 VCCH • 2 = VCCL + R1 (R2 + R3 ) VTH R3 R4 Power-On Reset Time is provided by the following approximate equation: VTH R1 tRST = -C1 R4 • In { 1 (1 + VCC R2 + R3 • The recommended value of hFE of the external transistor is from 50 to 200. • In the case of an instant power fail, the remaining charge in C1 effects tRST. • If necessary, the reversed output is provided on HYS terminal )} 9 MB3761 ■ PACKAGE DIMENSIONS (Continued) 8 pin, Plastic SIP (SIP-08P-M03) 3.26±0.25 (.128±.010) +0.15 19.65 –0.35 +.006 .774 –.014 INDEX-1 6.20±0.25 (.244±.010) 8.20±0.30 (.323±.012) INDEX-2 +0.30 0.99 –0 4.00±0.30 (.157±.012) +.012 .039 –0 2.54(.100) TYP C 10 1994 FUJITSU LIMITED S08010S-3C-2 +0.30 1.52 –0 +.012 .060 –0 0.50±0.08 (.020±.003) 0.25±0.05 (.010±.002) Dimensions in mm (inches). MB3761 ■ PACKAGE DIMENSIONS (Continued) 8 pin, Plastic DIP (DIP-08P-M01) +0.40 9.40 –0.30 +.016 .370 –.012 6.20±0.25 (.244±.010) 1 PIN INDEX 0.51(.020)MIN 4.36(.172)MAX 0.25±0.05 (.010±.002) 3.00(.118)MIN +0.30 0.99 –0 .039 0.89 .035 C +.012 –0 +0.35 –0.30 +.014 –.012 1994 FUJITSU LIMITED D08006S-2C-3 0.46±0.08 (.018±.003) +0.30 1.52 –0 +.012 –0 .060 2.54(.100) TYP 7.62(.300) TYP 15°MAX Dimensions in mm (inches). 11 MB3761 ■ PACKAGE DIMENSIONS (Continued) 8 pin, Plastic SOP (FPT-08P-M01) 2.25(.089)MAX +0.25 +.010 6.35 –0.20 .250 –.008 0.05(.002)MIN (STAND OFF) 5.30±0.30 (.209±.012) INDEX 1.27(.050) TYP 0.45±0.10 (.018±.004) 3.81(.150)REF +0.40 6.80 –0.20 +.016 .268 –.008 7.80±0.40 (.307±.016) +0.05 Ø0.13(.005) M 0.15 –0.02 +.002 .006 –.001 0.50±0.20 (.020±.008) Details of "A" part 0.20(.008) 0.50(.020) "A" 0.18(.007)MAX 0.10(.004) C 12 1994 FUJITSU LIMITED F08002S-4C-4 0.68(.027)MAX Dimensions in mm(inches). FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan. F9703 FUJITSU LIMITED Printed in Japan 24