FUJITSU SEMICONDUCTOR DATA SHEET ASSP DS04-23509-1E for Telephone BIPOLAR Quadrature Modulator IC (With 1.0 GHz Up-converter) MB54609 ■ DESCRIPTION The MB54609 is an intermediate-frequency (IF) quadrature modulator IC incorporating a 1.0-GHz up-converter optimized for use in digital mobile telecommunication systems such as GSM and PDC (Personal Digital Cellular). The MB54609 incorporates a quadrature modulator for IF modulation, a transmission up-convert mixer, and a F/F type phase shifter as well, capable of handing IFs in a broad band. In addition, the MB54609 operates at a low power supply voltage of 3.0 V and a low power supply current of 18 mA (both as typical values), contributing to saving the power consumption of the device. ■ FEATURES • Incorporating a high-performance transmission mixer covering the entire frequency band of up to 800 MHz used for PDC services (Maximum output frequency of 1.1 GHz) Maximum output frequency: 1.1 GHz, Output level: –9 dBm (typical) • Externally connecting the quadrature modulator with the transmission mixer, allowing a bandpass filter (BPF) to be inserted in between The quadrature modulator output can drive a 50 Ω load. • Flip-flop phase shifter capable of handling intermediate frequencies in the broad band (100 to 800 MHz) • Operation at low voltage: 2.7 to 3.0 to 3.3 V • Low current consumption During operating: 18.0 mA (typical) In power save mode: 0.6 mA (typical) • Operating temperature range: Ta = –20 to +85°C ■ PACKAGE 20-pin Plastic SSOP (FPT-20P-M03) 1 MB54609 ■ PIN ASSIGNMENT (TOP VIEW) RFout 1 20 PS GND 2 19 GND LO2 3 18 Q GND 4 17 XQ XIF 5 16 XQMOD IF 6 15 QMOD LO1 7 14 XI XLO1 8 13 I GND 9 12 GND V CC 10 11 V CC (FPT-20P-M03) 2 MB54609 ■ PIN DESCRIPTION Pin no. Pin name Function 1 RFout Up-converter output pin 2 GND GND pin 3 LO2 LO input pin for mixer 4 GND GND pin 5 XIF 6 IF 7 LO1 8 XLO1 LO input complementary pin for quadrature modulator 9 GND GND pin 10 VCC Power supply pin 11 VCC Power supply pin 12 GND 13 I 14 XI 15 QMOD 16 XQMOD 17 XQ 18 Q 19 GND 20 PS IF input complementary pin for mixer IF input pin for mixer LO input pin for quadrature modulator Power supply voltage must be applied to both pins. GND pin Baseband input (I) pin Baseband input (I) complementary pin Quadrature modulator IF output pin Quadrature modulator IF output complementary pin Baseband input (Q) complementary pin Baseband input (Q) pin GND pin Power save mode control pin 3 MB54609 ■ BLOCK DIAGRAM V CC GND IF QMOD I XI RFout Q XQ PS 90° shifter LO1 XLO1 XQMOD XIF LO2 ■ ABSOLUTE MAXIMUM RAGINGS (See WARNING) Parameter Symbol Rating Unit Power supply voltage VCC –0.5 to 5.0 V Output voltage VO –0.5 to VCC + 0.5 V Input voltage VI –0.5 to VCC + 0.5 V VOC VCC ± 0.3 (–0.5 to 5.0) V IO ±10 mA Tstg –55 to +125 °C Open collector applied voltage Output current Storage temperature Remarks RFout pin Do not leave this pin open. WARNING: Exceeding any of the above Absolute Maximum Ratings may cause permanent damage to the LSI. For normal operation, the device should be used under the recommended operating conditions. Exceeding any of the recommended conditions may adversely affect LSI reliability. Note: Although the MB54609 contains an antistatic element to prevent electrostatic breakdown and the circuitry has been improved in electrostatic protection, observe the following precautions when handling the device: • When storing or carrying the device, put it in a conductive case. • Before handling the device, check that the jigs and tools to be used have been uncharged (grounded) as well as yourself. Use a conductive sheet on the working bench. • Before fitting the device into or removing it from the socket, turn the power supply off. • When handling (such as transporting) the MB54609 mounted board, protect the leads with a conductive sheet. 4 MB54609 ■ RECOMMENDED OPERATING CONDITIONS Parameter Value Symbol Power supply voltage Input voltage Open collector applied voltage Operating temperature Unit Min. Typ. Max. VCC 2.7 3.0 3.3 V VI GND — VCC V VOC VCC – 0.2 — VCC + 0.2 V Ta –20 — +85 °C Remarks RFout pin. Do not leave this pin open. ■ ELECTRIC CHARACTERISTICS (VCC = 3.0 V, Ta = +25°C) Parameter Symbol Value Unit Remarks Min. Typ. Max. ICC — 18.0 23.5 mA DC current (Input with no AC signal) ICCPS — 0.6 0.9 mA DC current (Input with no AC signal) Operating band fLO1 100 400 800 MHz Input level PLO1 –15 — –5 dBm Operating band fBB DC — 10 MHz Input amplitude VBB — — 1.2 Vpp Offset voltage VOS 1.5 1.6 1.7 V External offset voltage value Offset current IOS — 3.0 — µA Input Imp. converted value = 533 kΩ Mixer input LO2 Operating band fLO2 — 750 1100 MHz Input level PLO2 — — 0 dBm Mixer output RFout Operating band fRF — 950 1100 Output level PRF — –9 — dBm Amplitude deviation AERR — 1.3 — % RMS value Phase deviation PERR — 0.82 — deg. RMS value Vector error VERR — 1.9 — % RMS value CS — –40 –30 dBc Power supply current Power supply current in power save mode Shifter input LO1 Baseband input Modulation precision Carrier suppression MHz fRF = fLO2 ± fLO1/2 — fLO1 = 400 MHz (–15 dBm) fLO2 = 750 MHz (–5 dBm) fRF = 950 MHz output QMOD/Mix direct connection VBB = 1 Vpp With external offset unadjusted 5 MB54609 ■ EVALUATION BOARD (Reference Example) • Material: BT resin BT-HL870 (Dielectric constant [1 MHz] = 3.4 to 3.6) • Thickness: 4 layers, 1.6 mm (Copper thickness: External layer = 18 µm, Internal layer = 70 µm) • Plating: electroless gold plating • Layer 1 (front surface) 1 • Layer 2 (Continued) 6 MB54609 (Continued) • Layer 3 • Layer 4 (rear surface) 7 MB54609 ■ MEASUREMENT DATA (Reference Values) * : Application-common characteristics • DC characteristics (test circuit 1) @ Input with no AC signal 30 VCC = 3.3 V VCC = 3.0 V ICC VCC = 2.7 V 20 1.0 10 VCC = 3.3 V 0.8 VCC = 3.0 V 0 0.6 VCC = 2.7 V ICCPS 0.4 –20 0 20 40 60 80 Power save mode power supply current ICCPS (mA) Power supply current ICC (mA) 40 Temperature Ta (°C) (Continued) 8 MB54609 (Continued) • Input impedance (Only IC: test circuit 4) @ Impedance from IC pin end • LO1 • LO2 CH1 S 11 1: 195.75 Ω 1 U FS –766.13 Ω 2.0774 pF CH1 S 11 1 U FS 1: 16.354 Ω –61.639 Ω 3.2268 pF 800.200 000 MHz 100.000 000 MHz 2: C2 1 3: 4: 2 3 28.039 Ω –255.4 Ω 300 MHz 16.055 Ω –145.7 Ω 500 MHz 12.668 Ω –77.559 Ω 800 MHz 2: C2 3: 4 3 2 4 CH2 S 11 log MAG 10 dB/REF 0 dB 4: 1 1: –.2709 dB CH2 S 11 log MAG 10 dB/REF 0 dB 1: 100.000 000 MHz 2: C2 1 –.3559 dB 300 MHz –.5822 dB 500 MHz 3: 2 3 4 4: START 100.000 000 MHz 14.877 Ω –50.018 Ω 900 MHz 13.725 Ω –39.764 Ω 1 GHz 14.746 Ω 4.8403 Ω 1.6 GHz 2: C2 3: 1 4: –1.2776 dB 800 MHz STOP 2 100.000 000 MHz –2.2095 dB 800.200 000 MHz 2 START 100.000 000 MHz 3 4 –2.5448 dB 900 MHz –2.8953 dB 1 GHz –5.2236 dB 1.6 GHz STOP 2 100.000 000 MHz • Output impedance (Only IC: test circuit 4) @ Impedance from IC pin end • RFout CH1 S 22 1 U FS 1: 9.8633 Ω –124.64 Ω 1.5961 pF 800.000 000 MHz 2: 9.8984 Ω –106.21 Ω 900 MHz 3: 11.055 Ω –92.508 Ω 1 GHz 12.137 Ω –50.846 Ω 1.4 GHz C2 1 32 4 CH2 S 22 log MAG 4: 10 dB/REF 0 dB 1: –.4733 dB 800.000 000 MHz C2 2: –.6207 dB 900 MHz 3: –.8619 dB 1 GHz 4: –2.0524 dB 1.4 GHz 1 2 START 100.000 000 MHz 3 4 STOP 2 100.000 000 MHz 9 MB54609 ■ 800-MHz PDC APPLICATION MEASUREMENT DATA (Reference Values) Parameter Symbol Measurement result Unit Condition Test circuit fBB 42 kbps π/4DQPSK, Root-Nyquist filter (α = 0.5) — VBB 1.0 Vpp Single-end input — fLO1 400 MHz — — PLO1 –15 dBm — — fLO2 750 MHz — — PLO2 –5 dBm — — fRF 950 MHz fRF = fLO2 + fLO1/2 — PRF –8.4 dBm SSB value 1 RLLO1 –17 dB fLO1 = 400 MHz RLLO2 –2 dB fLO2 = 750 MHz RLRF –12 dB fRF = 950 MHz AERR 1.3 % RMS Magnitude Error PERR 0.82 deg. RMS Phase Error VERR 1.9 % RMS Vector Error CS –34.5 dBc Baseband input signal Shifter input signal LO1 Mixer input signal LO2 Mixer output signal RFout Return loss Modulation precision Carrier suppression 3 2 — 2 • External circuit constants (with the IC mounted on the evaluation board) V CC V CC 0.1 µ 6.8 n V CC Operation RFout LO2 1 RFout 2 GND PS 20 Power save mode 1.5 p 3 LO2 4 GND + GND 19 – 100 µ 1k Q 18 Q offset 100 p from A 5 XIF 6 IF 7 LO1 510 p from B XQ 17 1k + – offset 100 µ to A XQMOD 16 MB54609 to B QMOD 15 510 p LO1 51 XI 14 1000 p 8 XLO1 I 13 1000 p 9 GND GND 12 V CC GND 100 µ 1k 100 µ + – offset offset I V CC 10 V CC 0.1 µ 1k + – V CC 11 0.1 µ (Continued) 10 MB54609 (Continued) • Modulation precision and output spectrum (test circuit 2) @ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5 Input signals: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm Output signal: RFout = 950 MHz • Modulation precision • Output spectrum 190 RMS Vector Peak Vector RMS Magnitude Peak Magnitude RMS Phase Peak Phase Carrier Freq Carrier Phase Error = Error = Error = Error = Error = Error = Offset = Offset = Carrier Leak Bias Vector Gravity Center VG: 5.000e-01 V / Div Baseband Filter: RtNyq (0.5000) Rectangle Len = 64 OSR = 4.761905 = = = 1.927% 4.234% 1.290% 3.364% 0.821 degs –2.240 degs 8.561e+03 Hz 157.455 degs –32.429 dB ( 2.305, 0.634)% (–4.635, 10.356)% CENTER = 950 MHz SPAN = 200 kHz RBW = 3 kHz VBW = 100 Hz SWP = 3 s ATT = 10 dB REF = 0 dBm 10 dB / div. CENTER = 950 MHz SPAN = 26.2 kHz RBW = 300 Hz VBW = 300 Hz SWP = 1.3 s ATT = 10 dB REF = 0 dBm 10 dB / div. LO2 (750 MHz) –27.1 dBm Image (550 MHz) –26.9 dBm –34.5 dBc • Span = 700 MHz –38.8 dBc • Span = 240 kHz T X (950 MHz) –10.1 dBm • Spectrum (test circuit 2) @ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter α = 0.5 Input signals: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm Output signal: RFout = 950 MHz CENTER = 750 MHz SPAN = 700 MHz RBW = 1 MHz VBW = 3 kHz SWP = 1.1 s ATT = 10 dB REF = 10 dBm 10 dB / div. (Continued) 11 MB54609 (Continued) • RF output level dependent on baseband amplitude (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5 Input signals of test circuits 1 and 2: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm Output signal: RFout = 950 MHz –10 PRF –20 6 –30 4 VERR –40 2 0 0.1 1 Modulation precision RMS Vector Error VERR (%) RF output level PRF (dBm) 0 10 Baseband amplitude VBB (Vpp) • RF output level dependent on LO1 and LO2 input levels (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5 Input signals of test circuits 1 and 2: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm Output signals of test circuits 1 and 2: RFout = 950 MHz 6 –20 4 –30 VERR 2 –40 0 –20 –15 –10 –5 0 Shifter output level PLO1 (dBm) 5 0 PRF –10 6 –20 4 –30 VERR 2 –40 0 –20 –15 –10 –5 0 Mixer input level PLO2 (dBm) 5 Modulation precision RMS Vector Error VERR (%) PRF –10 • RF output level dependent on LO2 input level (@PLO1 = –15 dBm) RF output level PRF (dBm) RF output level PRF (dBm) 0 Modulation precision RMS Vector Error VERR (%) • RF output level dependent on LO1 input level (@PLO2 = –5 dBm) (Continued) 12 MB54609 (Continued) • RF output level dependent on temperature (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5 Input signals of test circuits 1 and 2: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm Output signals of test circuits 1 and 2: RFout = 950 MHz 0 V CC = 3.3 V V CC = 3.0 V V CC = 2.7 V RF output P RF (dBm) –20 3 –30 V ERR V CC = 3.3 V 2 V CC = 3.0 V V CC = 2.7 V 1 –40 0 –20 0 20 40 60 80 Modulation precision RMS Vector Error V ERR (%) P RF –10 Temperature Ta (°C) • Carrier suppression dependent on temperature (test circuit 2) @ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter α = 0.5 Input signals: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm Output signal: RFout = 950 MHz Carrier suppression CS (dBc) –20 –30 V CC = 3.3 V V CC = 3.0 V V CC = 2.7 V –40 –50 –40 –20 0 20 40 60 80 Temperature Ta (°C) (Continued) 13 MB54609 (Continued) • Input impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board • LO1 CH1 S 11 • LO2 1 U FS 1: 48.992 Ω –2.7891 Ω CH1 S 11 570.64 pF 1 U FS 1: 6.7764 Ω 3.2986 Ω 41.787 Ω –4.8965 Ω 300 MHz 35.598 Ω 1.75 Ω 500 MHz 2: 1 Cor 3: 4 32 CH2 S 11 log MAG 10 dB/REF 0 dB 1: 2: 1 Cor 3 4 3: 2 36.002 Ω 22.75 Ω 800 MHz 4: 4: CH2 S 11 –30.473 dB log MAG 10 dB/REF 0 dB 1: 100.000 000 MHz Cor 1 2 2: –19.659 dB 300 MHz 3: –15.42 dB 500 MHz 4: –10.449 dB 800 MHz 4 3 START 100.000 000 MHz Cor 1 2 START 100.000 000 MHz STOP 1 100.000 000 MHz • RFout 1 U FS 2: 78.953 Ω –16.762 Ω 9.9949 pF 950.000 000 MHz 40.609 Ω 41.357 Ω 900 MHz 28.776 Ω –28.809 Ω 1 GHz 12.979 Ω –4.8784 Ω 1.1 GHz 1: Cor 1 2 3: 4 4: 3 CH2 S 11 log MAG 10 dB/REF 0 dB 2: –11.792 dB 950.000 000 MHz 1: Cor 3: –7.4163 dB 900 MHz –7.4 2 1 4: START 100.000 000 MHz 14 dB 1 GHz 3 –4.5661 dB 1.1 GHz STOP 1 100.000 000 MHz 7.6133 Ω 9.4209 Ω 800 MHz 10.451 Ω 22.735 Ω 900 MHz 27.307 Ω 58.09 Ω 1.1 GHz –2.3584 dB 750.00 000 MHz • Output impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board CH1 S 11 699.98 pH 750.000 000 MHz 100.000 000 MHz 4 2: –2.5713 dB 800 MHz 3: –3.0204 dB 900 MHz 3 4: 4 –3.8098 dB 1.1 GHz STOP 1 100.000 000 MHz MB54609 ■ 1.5-GHz PDC APPLICATION MEASUREMENT DATA (Reference Values) • Measurement result Parameter Symbol Measurement result Unit Condition Test circuit fBB 42 kbps π/4 DQPSK, Root-Nyquist filter (α = 0.5) — VBB 1.0 Vpp Single-end input — fLO1 356 MHz — — PLO1 –5 dBm — — fLO2 1619 MHz — — PLO2 –5 dBm — — fRF 1441 MHz fRF = fLO2 + fLO1/2 — PRF –13.4 dBm SSB value 1 RLLO1 –18 dB fLO1 = 356 MHz RLLO2 –6 dB fLO2 = 1619 MHz RLRF –14 dB fRF = 1441 MHz AERR 1.6 % RMS magnitude error PERR 0.90 deg. RMS phase error VERR 2.2 % RMS vector error CS –39.0 dBc Baseband input signal Shifter input signal LO1 Mixer input signal LO2 Mixer output signal RFout Return loss Modulation precision Carrier suppression 3 2 — 2 • External circuit constants (with the IC mounted on the evaluation board) V CC V CC 0.1 µ 1.8 n V CC Operation RFout 1 RFout 2 GND PS 20 Power save mode 1.5 p LO2 3 LO2 4 GND + GND 19 – 100 µ 1k Q 18 Q offset 100 p 5 from A XIF 510 p from B XQ 17 1k + – offset 100 µ to A XQMOD 16 MB54609 6 IF 7 LO1 to B QMOD 15 510 p LO1 51 XI 14 1000 p 8 XLO1 9 GND I 13 1000 p GND 12 V CC GND 100 µ 1k offset offset 100 µ + – I V CC 10 V CC 0.1 µ 1k + – V CC 11 0.1 µ (Continued) 15 MB54609 (Continued) • Modulation precision and output spectrum (test circuit 2) @ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5 Input signals: LO1 = 356 MHz, –5 dBm; LO2 = 1619 MHz, –5 dBm Output signal: RFout = 1441 MHz • Modulation precision • Output spectrum 148 RMS Vector Peak Vector RMS Magnitude Peak Magnitude RMS Phase Peak Phase Carrier Freq Carrier Phase Carrier Leak Bias Vector Gravity Center VG : 7.000e-02 V / Div Baseband Filter: RtNyq (0.500) Rectangle Len = 64 OSR = 4.761905 Error = Error = Error = Error = Error = Error = Offset = Offset = = 2.243% 4.552% 1.597% 3.756% 0.902 degs –1.977 degs –1.454e+03 Hz 7.417 degs –33.001 dB = ( 1.839, = ( –1.295, 1.275) % 0.833) % CENTER = 1441 MHz SPAN = 200 kHz RBW = 3 kHz VBW = 3 kHz SWP = 100 ms AVG = 128 ATT = 10 dB REF = –10 dBm 10 dB / div. CENTER = 1441 MHz SPAN = 26.2 kHz RBW = 300 Hz VBW = 100 Hz SWP = 4 s ATT = 10 dB REF = –10 dBm 10 dB/div. LO2 (1619 MHz) –17.4 dBm T X (1441 MHz) –15.6 dBm –39.0 dBc • Span = 500 MHz –38.4 dBc • Span = 26.2 kHz Image (1797 MHz) –20.6 dBm • Spectrum (test circuit 2) @ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter α = 0.5 Input signals: LO1 = 356 MHz, –5 dBm; LO2 = 1619 MHz, –5 dBm Output signal: RFout = 1441 MHz CENTER = 1619 MHz SPAN = 500 MHz RBW = 1 MHz VBW = 1 kHz SWP = 3 s ATT = 10 dB REF = –10 dBm 10 dB/div. (Continued) 16 MB54609 (Continued) • RF output level dependent on baseband amplitude (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5 Input signals of test circuits 1 and 2: LO1 = 356 MHz, –5 dBm; LO2 = 1619 MHz, –5 dBm Output signals of test circuits 1 and 2: RFout = 1441 MHz –10 –20 6 PRF –30 4 VERR –40 2 0 0.1 1 Modulation precision RMS Vector Error VERR (%) RF output level PRF (dBm) 0 10 Base band amplitude VBB (Vpp) • RF output level dependent on LO1 and LO2 input levels (PRF: test circuit 1, Modulation precision: test circuit 2) @ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5 Input signals of test circuits 1 and 2: LO1 = 356 MHz, –5 dBm; LO2 = 1619 MHz, –5 dBm Output signals of test circuits 1 and 2: RFout = 1441 MHz P RF 6 –20 4 –30 2 V ERR –40 0 –20 –15 –10 –5 0 Shifter output level P LO1 (dBm) 5 0 –10 P RF 6 –20 4 –30 2 V ERR –40 0 –20 –15 –10 –5 0 Mixer input level P LO2 (dBm) 5 Modulation precision RMS Vector Error V ERR (%) –10 RF output level P RF (dBm) 0 • RF output level dependent on LO2 input level (@PLO1 = –5 dBm) Modulation precision RMS Vector Error V ERR (%) RF output level P RF (dBm) • RF output level dependent on LO1 input level (@PLO2 = –5 dBm) (Continued) 17 MB54609 (Continued) • Input impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board • LO1 CH1 S 11 • LO2 1 U FS 1: 48.992 Ω –2.7891 Ω 570.64 pF CH1 S 11 1 U FS 4 : 36.615 Ω –51.574 Ω 100.000 000 MHz 41.787 Ω –4.8965 Ω 300 MHz 35.598 Ω 1.75 Ω 500 MHz 2: 1 Cor 4 3: 32 CH2 S 11 log MAG 10 dB/REF 0 dB 1: 1: 1 2 Cor 4 36.002 Ω 22.75 Ω 800 MHz 4: –30.473 dB CH2 S 11 log MAG Cor 1 2 START 100.000 000 MHz 10 dB / REF 0 dB 3: –15.42 dB 500 MHz 4: –10.449 dB 800 MHz STOP 1 100.000 000 MHz • RFout 1 U FS 2: 74.918 Ω –5.0469 Ω 21.884 pF 1 441.000 000 MHz 1 4 2 Cor 1: 22.76 Ω 56.336 Ω 1.2 GHz 3: 58.35 Ω 5.0293 Ω 1.48 GHz 58.844 Ω 42.438 Ω 1.6 GHz 3 4: CH2 S 11 log MAG 10 dB/REF 0 dB 2: –13.853 dB 1 441.000 000 MHz Cor 1: –3.35 dB 1.2 GHz 3: –20.927 dB 1.48 GHz 4: –8.6101 dB 1.6 GHz 2 1 4 3 START 100.000 000 MHz 18 STOP 2 100.000 000 MHz 15.662 Ω 38.445 Ω 1 GHz 60.707 Ω 87.941 Ω 1.2 GHz 174.97 Ω –100.9 Ω 1.4 GHz 4 : –5.5383 dB 1 600.000 000 MHz 1 : –3.3828 dB 1 GHz Cor 4 1 START 100.000 000 MHz • Output impedance (with components mounted: test circuit 3) @ Impedance including external components and evaluation board CH1 S 11 3: –19.659 dB 300 MHz 4 3 2: 3 100.000 000 MHz 2: 1.9287 pF 1 600.000 000 MHz 2 3 2 : –4.0604 dB 1.2 GHz 3 : –3.7229 dB 1.4 GHz STOP 2 100.000 000 MHz MB54609 ■ TEST CIRCUITS (Reference Examples) SG (50 Ω) • Test circuit 1 (for SSB measurement) SG (50 Ω) VCC LO2 LO1 VCC = 3.0 V VBB*cos (2 π ft) I D.U.T RFout Spectrum analyzer (50 Ω) Synchronized Q VOS VOS = 1.6 V SG (50 Ω) VOS GND offset VOS VOS SG (50 Ω) V CC LO2 V CC = 3.0 V LO1 • Test circuit 2 (for modulation precision measurement) offset offset VBB = 1.0 Vpp f = 600 kHz offset VBB*sin (2 π ft) I Baseband signal generator D.U.T RFout Modulation precision analyzer (50 Ω) V OS = 1.6 V V OS V OS V OS GND offset offset offset offset Q V OS (Continued) 19 MB54609 (Continued) • Test circuit 3 (for impedance measurement with components mounted) Network analyzer (50 Ω) N.C. VCC LO2 LO1 VCC = 3.0 V I RFout D.U.T VOS = 1.6 V VOS VOS VOS GND offset offset offset Q offset N.C. Network analyzer (50 Ω) VOS • Test circuit 4 (for measurement of impedance of only IC) Network analyzer PORT-1 PORT-2 VCC = 3.0 V (applied to PORT-2 internal bias tee) VCC 1 RFout PS 20 2 GND GND 19 3 LO2 Q 18 4 GND XQ 17 5 XIF XQMOD 16 6 IF QMOD 15 7 L O1 XI 14 8 XL01 I 13 Operation Power save mode 1k 1k MB54609 1k 1k 9 GND 10 VCC GND 12 VCC 11 VCC VCC 0.1 µ 20 0.1 µ VOS = 1.6 V MB54609 ■ ORDERING INFORMATION Part number MB54609PFV Package Remarks 20-pin Plastic SSOP (FPT-20P-M03) 21 MB54609 ■ PACKAGE DIMENSION 20-pin Plastic SSOP (FPT-20P-M03) *: These dimensions do not include resin protrusion. +0.20 * 6.50±0.10(.256±.004) 1.25 –0.10 +.008 .049 –.004 (Mounting height) 0.10(.004) INDEX *4.40±0.10 6.40±0.20 (.173±.004) (.252±.008) 0.65±0.12 (.0256±.0047) 5.85(.230)REF C 22 1994 FUJITSU LIMITED F20012S-2C-4 +0.10 0.22 –0.05 +.004 .009 –.002 "A" 5.40(.213) NOM +0.05 0.15 –0.02 +.002 .006 –.001 Details of "A" part 0.10±0.10(.004±.004) (STAND OFF) 0 10° 0.50±0.20 (.020±.008) Dimensions in mm (inches) MB54609 FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 All Rights Reserved. Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given. The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies. The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu. Fujitsu reserves the right to change products or specifications without notice. No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu. The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support. F9702 FUJITSU LIMITED Printed in Japan 24