FUJITSU MB54609

FUJITSU SEMICONDUCTOR
DATA SHEET
ASSP
DS04-23509-1E
for Telephone
BIPOLAR
Quadrature Modulator IC
(With 1.0 GHz Up-converter)
MB54609
■ DESCRIPTION
The MB54609 is an intermediate-frequency (IF) quadrature modulator IC incorporating a 1.0-GHz up-converter
optimized for use in digital mobile telecommunication systems such as GSM and PDC (Personal Digital Cellular).
The MB54609 incorporates a quadrature modulator for IF modulation, a transmission up-convert mixer, and a
F/F type phase shifter as well, capable of handing IFs in a broad band.
In addition, the MB54609 operates at a low power supply voltage of 3.0 V and a low power supply current of 18
mA (both as typical values), contributing to saving the power consumption of the device.
■ FEATURES
• Incorporating a high-performance transmission mixer covering the entire frequency band of up to 800 MHz used
for PDC services (Maximum output frequency of 1.1 GHz)
Maximum output frequency: 1.1 GHz, Output level: –9 dBm (typical)
• Externally connecting the quadrature modulator with the transmission mixer, allowing a bandpass filter (BPF)
to be inserted in between
The quadrature modulator output can drive a 50 Ω load.
• Flip-flop phase shifter capable of handling intermediate frequencies in the broad band (100 to 800 MHz)
• Operation at low voltage: 2.7 to 3.0 to 3.3 V
• Low current consumption
During operating: 18.0 mA (typical)
In power save mode: 0.6 mA (typical)
• Operating temperature range: Ta = –20 to +85°C
■ PACKAGE
20-pin Plastic SSOP
(FPT-20P-M03)
1
MB54609
■ PIN ASSIGNMENT
(TOP VIEW)
RFout
1
20
PS
GND
2
19
GND
LO2
3
18
Q
GND
4
17
XQ
XIF
5
16
XQMOD
IF
6
15
QMOD
LO1
7
14
XI
XLO1
8
13
I
GND
9
12
GND
V CC
10
11
V CC
(FPT-20P-M03)
2
MB54609
■ PIN DESCRIPTION
Pin no.
Pin name
Function
1
RFout
Up-converter output pin
2
GND
GND pin
3
LO2
LO input pin for mixer
4
GND
GND pin
5
XIF
6
IF
7
LO1
8
XLO1
LO input complementary pin for quadrature modulator
9
GND
GND pin
10
VCC
Power supply pin
11
VCC
Power supply pin
12
GND
13
I
14
XI
15
QMOD
16
XQMOD
17
XQ
18
Q
19
GND
20
PS
IF input complementary pin for mixer
IF input pin for mixer
LO input pin for quadrature modulator
Power supply voltage must be applied to both pins.
GND pin
Baseband input (I) pin
Baseband input (I) complementary pin
Quadrature modulator IF output pin
Quadrature modulator IF output complementary pin
Baseband input (Q) complementary pin
Baseband input (Q) pin
GND pin
Power save mode control pin
3
MB54609
■ BLOCK DIAGRAM
V CC
GND
IF
QMOD
I
XI
RFout
Q
XQ
PS
90° shifter
LO1
XLO1
XQMOD
XIF
LO2
■ ABSOLUTE MAXIMUM RAGINGS (See WARNING)
Parameter
Symbol
Rating
Unit
Power supply voltage
VCC
–0.5 to 5.0
V
Output voltage
VO
–0.5 to VCC + 0.5
V
Input voltage
VI
–0.5 to VCC + 0.5
V
VOC
VCC ± 0.3
(–0.5 to 5.0)
V
IO
±10
mA
Tstg
–55 to +125
°C
Open collector applied voltage
Output current
Storage temperature
Remarks
RFout pin
Do not leave this pin
open.
WARNING: Exceeding any of the above Absolute Maximum Ratings may cause permanent damage to the LSI.
For normal operation, the device should be used under the recommended operating conditions.
Exceeding any of the recommended conditions may adversely affect LSI reliability.
Note: Although the MB54609 contains an antistatic element to prevent electrostatic breakdown and the circuitry
has been improved in electrostatic protection, observe the following precautions when handling the device:
• When storing or carrying the device, put it in a conductive case.
• Before handling the device, check that the jigs and tools to be used have been uncharged (grounded) as
well as yourself. Use a conductive sheet on the working bench.
• Before fitting the device into or removing it from the socket, turn the power supply off.
• When handling (such as transporting) the MB54609 mounted board, protect the leads with a conductive
sheet.
4
MB54609
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Value
Symbol
Power supply voltage
Input voltage
Open collector applied voltage
Operating temperature
Unit
Min.
Typ.
Max.
VCC
2.7
3.0
3.3
V
VI
GND
—
VCC
V
VOC
VCC – 0.2
—
VCC + 0.2
V
Ta
–20
—
+85
°C
Remarks
RFout pin. Do not leave
this pin open.
■ ELECTRIC CHARACTERISTICS
(VCC = 3.0 V, Ta = +25°C)
Parameter
Symbol
Value
Unit
Remarks
Min.
Typ.
Max.
ICC
—
18.0
23.5
mA
DC current (Input with no AC
signal)
ICCPS
—
0.6
0.9
mA
DC current (Input with no AC
signal)
Operating band
fLO1
100
400
800
MHz
Input level
PLO1
–15
—
–5
dBm
Operating band
fBB
DC
—
10
MHz
Input amplitude
VBB
—
—
1.2
Vpp
Offset voltage
VOS
1.5
1.6
1.7
V
External offset voltage value
Offset current
IOS
—
3.0
—
µA
Input Imp. converted value =
533 kΩ
Mixer input
LO2
Operating band
fLO2
—
750
1100
MHz
Input level
PLO2
—
—
0
dBm
Mixer output
RFout
Operating band
fRF
—
950
1100
Output level
PRF
—
–9
—
dBm
Amplitude deviation
AERR
—
1.3
—
%
RMS
value
Phase deviation
PERR
—
0.82
—
deg.
RMS
value
Vector error
VERR
—
1.9
—
%
RMS
value
CS
—
–40
–30
dBc
Power supply current
Power supply current in power save
mode
Shifter input
LO1
Baseband
input
Modulation
precision
Carrier suppression
MHz fRF = fLO2 ± fLO1/2
—
fLO1 = 400 MHz
(–15 dBm)
fLO2 = 750 MHz
(–5 dBm)
fRF = 950 MHz
output
QMOD/Mix direct
connection
VBB = 1 Vpp
With external offset
unadjusted
5
MB54609
■ EVALUATION BOARD (Reference Example)
• Material: BT resin BT-HL870 (Dielectric constant [1 MHz] = 3.4 to 3.6)
• Thickness: 4 layers, 1.6 mm (Copper thickness: External layer = 18 µm, Internal layer = 70 µm)
• Plating: electroless gold plating
• Layer 1
(front surface)
1
• Layer 2
(Continued)
6
MB54609
(Continued)
• Layer 3
• Layer 4
(rear surface)
7
MB54609
■ MEASUREMENT DATA (Reference Values)
* : Application-common characteristics
• DC characteristics (test circuit 1)
@ Input with no AC signal
30
VCC = 3.3 V
VCC = 3.0 V
ICC
VCC = 2.7 V
20
1.0
10
VCC = 3.3 V
0.8
VCC = 3.0 V
0
0.6
VCC = 2.7 V
ICCPS
0.4
–20
0
20
40
60
80
Power save mode power supply current
ICCPS (mA)
Power supply current ICC (mA)
40
Temperature Ta (°C)
(Continued)
8
MB54609
(Continued)
• Input impedance (Only IC: test circuit 4)
@ Impedance from IC pin end
• LO1
• LO2
CH1 S 11
1: 195.75 Ω
1 U FS
–766.13 Ω
2.0774 pF
CH1 S 11
1 U FS
1: 16.354 Ω
–61.639 Ω
3.2268 pF
800.200 000 MHz
100.000 000 MHz
2:
C2
1 3:
4:
2
3
28.039 Ω
–255.4 Ω
300 MHz
16.055 Ω
–145.7 Ω
500 MHz
12.668 Ω
–77.559 Ω
800 MHz
2:
C2
3:
4
3 2
4
CH2 S 11
log MAG
10 dB/REF 0 dB
4:
1
1:
–.2709 dB
CH2 S
11
log MAG
10 dB/REF 0 dB
1:
100.000 000 MHz
2:
C2
1
–.3559 dB
300 MHz
–.5822 dB
500 MHz
3:
2
3
4
4:
START 100.000 000 MHz
14.877 Ω
–50.018 Ω
900 MHz
13.725 Ω
–39.764 Ω
1 GHz
14.746 Ω
4.8403 Ω
1.6 GHz
2:
C2
3:
1
4:
–1.2776 dB
800 MHz
STOP 2 100.000 000 MHz
–2.2095 dB
800.200 000 MHz
2
START 100.000 000 MHz
3
4
–2.5448 dB
900 MHz
–2.8953 dB
1 GHz
–5.2236 dB
1.6 GHz
STOP 2 100.000 000 MHz
• Output impedance (Only IC: test circuit 4)
@ Impedance from IC pin end
• RFout
CH1 S 22
1 U FS
1: 9.8633 Ω
–124.64 Ω
1.5961 pF
800.000 000 MHz
2:
9.8984 Ω
–106.21 Ω
900 MHz
3:
11.055 Ω
–92.508 Ω
1 GHz
12.137 Ω
–50.846 Ω
1.4 GHz
C2
1
32
4
CH2 S 22
log MAG
4:
10 dB/REF 0 dB
1:
–.4733 dB
800.000 000 MHz
C2
2:
–.6207 dB
900 MHz
3:
–.8619 dB
1 GHz
4:
–2.0524 dB
1.4 GHz
1
2
START 100.000 000 MHz
3
4
STOP 2 100.000 000 MHz
9
MB54609
■ 800-MHz PDC APPLICATION MEASUREMENT DATA (Reference Values)
Parameter
Symbol
Measurement
result
Unit
Condition
Test
circuit
fBB
42
kbps
π/4DQPSK, Root-Nyquist filter (α = 0.5)
—
VBB
1.0
Vpp
Single-end input
—
fLO1
400
MHz
—
—
PLO1
–15
dBm
—
—
fLO2
750
MHz
—
—
PLO2
–5
dBm
—
—
fRF
950
MHz
fRF = fLO2 + fLO1/2
—
PRF
–8.4
dBm
SSB value
1
RLLO1
–17
dB
fLO1 = 400 MHz
RLLO2
–2
dB
fLO2 = 750 MHz
RLRF
–12
dB
fRF = 950 MHz
AERR
1.3
%
RMS Magnitude Error
PERR
0.82
deg.
RMS Phase Error
VERR
1.9
%
RMS Vector Error
CS
–34.5
dBc
Baseband input signal
Shifter input signal LO1
Mixer input signal LO2
Mixer output signal RFout
Return loss
Modulation precision
Carrier suppression
3
2
—
2
• External circuit constants (with the IC mounted on the evaluation board)
V CC
V CC
0.1 µ
6.8 n
V CC
Operation
RFout
LO2
1
RFout
2
GND
PS 20
Power save mode
1.5 p
3
LO2
4
GND
+
GND 19
–
100 µ
1k
Q 18
Q
offset
100 p
from A
5
XIF
6
IF
7
LO1
510 p
from B
XQ 17
1k
+
–
offset
100 µ
to A
XQMOD 16
MB54609
to B
QMOD 15
510 p
LO1
51
XI 14
1000 p
8
XLO1
I 13
1000 p
9
GND
GND 12
V CC
GND
100 µ
1k
100 µ
+ –
offset
offset
I
V CC
10 V CC
0.1 µ
1k
+
–
V CC 11
0.1 µ
(Continued)
10
MB54609
(Continued)
• Modulation precision and output spectrum (test circuit 2)
@ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5
Input signals: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm
Output signal: RFout = 950 MHz
• Modulation precision
• Output spectrum
190
RMS Vector
Peak Vector
RMS Magnitude
Peak Magnitude
RMS Phase
Peak Phase
Carrier Freq
Carrier Phase
Error =
Error =
Error =
Error =
Error =
Error =
Offset =
Offset =
Carrier Leak
Bias Vector
Gravity Center
VG: 5.000e-01 V / Div
Baseband Filter: RtNyq (0.5000) Rectangle Len = 64 OSR = 4.761905
=
=
=
1.927%
4.234%
1.290%
3.364%
0.821 degs
–2.240 degs
8.561e+03 Hz
157.455 degs
–32.429 dB
( 2.305, 0.634)%
(–4.635, 10.356)%
CENTER = 950 MHz
SPAN = 200 kHz
RBW = 3 kHz VBW = 100 Hz SWP = 3 s
ATT = 10 dB
REF = 0 dBm 10 dB / div.
CENTER = 950 MHz
SPAN = 26.2 kHz
RBW = 300 Hz VBW = 300 Hz SWP = 1.3 s
ATT = 10 dB
REF = 0 dBm 10 dB / div.
LO2 (750 MHz)
–27.1 dBm
Image (550 MHz)
–26.9 dBm
–34.5 dBc
• Span = 700 MHz
–38.8 dBc
• Span = 240 kHz
T X (950 MHz)
–10.1 dBm
• Spectrum (test circuit 2)
@ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter α = 0.5
Input signals: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm
Output signal: RFout = 950 MHz
CENTER = 750 MHz
SPAN = 700 MHz
RBW = 1 MHz VBW = 3 kHz SWP = 1.1 s
ATT = 10 dB
REF = 10 dBm 10 dB / div.
(Continued)
11
MB54609
(Continued)
• RF output level dependent on baseband amplitude
(PRF: test circuit 1, Modulation precision: test circuit 2)
@ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5
Input signals of test circuits 1 and 2: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm
Output signal: RFout = 950 MHz
–10
PRF
–20
6
–30
4
VERR
–40
2
0
0.1
1
Modulation precision RMS Vector Error VERR (%)
RF output level PRF (dBm)
0
10
Baseband amplitude VBB (Vpp)
• RF output level dependent on LO1 and LO2 input levels
(PRF: test circuit 1, Modulation precision: test circuit 2)
@ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5
Input signals of test circuits 1 and 2: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm
Output signals of test circuits 1 and 2: RFout = 950 MHz
6
–20
4
–30
VERR
2
–40
0
–20
–15
–10
–5
0
Shifter output level PLO1 (dBm)
5
0
PRF
–10
6
–20
4
–30
VERR
2
–40
0
–20
–15
–10
–5
0
Mixer input level PLO2 (dBm)
5
Modulation precision RMS Vector Error VERR (%)
PRF
–10
• RF output level dependent on LO2 input level
(@PLO1 = –15 dBm)
RF output level PRF (dBm)
RF output level PRF (dBm)
0
Modulation precision RMS Vector Error VERR (%)
• RF output level dependent on LO1 input level
(@PLO2 = –5 dBm)
(Continued)
12
MB54609
(Continued)
• RF output level dependent on temperature (PRF: test circuit 1, Modulation precision: test circuit 2)
@ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5
Input signals of test circuits 1 and 2: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm
Output signals of test circuits 1 and 2: RFout = 950 MHz
0
V CC = 3.3 V
V CC = 3.0 V
V CC = 2.7 V
RF output P RF (dBm)
–20
3
–30
V ERR
V CC = 3.3 V 2
V CC = 3.0 V
V CC = 2.7 V
1
–40
0
–20
0
20
40
60
80
Modulation precision RMS Vector Error V ERR (%)
P RF
–10
Temperature Ta (°C)
• Carrier suppression dependent on temperature (test circuit 2)
@ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter α = 0.5
Input signals: LO1 = 400 MHz, –15 dBm; LO2 = 750 MHz, –5 dBm
Output signal: RFout = 950 MHz
Carrier suppression CS (dBc)
–20
–30
V CC = 3.3 V
V CC = 3.0 V
V CC = 2.7 V
–40
–50
–40
–20
0
20
40
60
80
Temperature Ta (°C)
(Continued)
13
MB54609
(Continued)
• Input impedance (with components mounted: test circuit 3)
@ Impedance including external components and evaluation board
• LO1
CH1 S 11
• LO2
1 U FS
1: 48.992 Ω
–2.7891 Ω
CH1 S 11
570.64 pF
1 U FS
1: 6.7764 Ω
3.2986 Ω
41.787 Ω
–4.8965 Ω
300 MHz
35.598 Ω
1.75 Ω
500 MHz
2:
1
Cor
3:
4
32
CH2 S 11
log MAG
10 dB/REF 0 dB
1:
2:
1
Cor
3
4
3:
2
36.002 Ω
22.75 Ω
800 MHz
4:
4:
CH2 S 11
–30.473 dB
log MAG
10 dB/REF 0 dB
1:
100.000 000 MHz
Cor
1
2
2:
–19.659 dB
300 MHz
3:
–15.42 dB
500 MHz
4:
–10.449 dB
800 MHz
4
3
START 100.000 000 MHz
Cor
1
2
START 100.000 000 MHz
STOP 1 100.000 000 MHz
• RFout
1 U FS
2: 78.953 Ω
–16.762 Ω
9.9949 pF
950.000 000 MHz
40.609 Ω
41.357 Ω
900 MHz
28.776 Ω
–28.809 Ω
1 GHz
12.979 Ω
–4.8784 Ω
1.1 GHz
1:
Cor
1 2
3:
4
4:
3
CH2 S 11
log MAG
10 dB/REF 0 dB
2:
–11.792 dB
950.000 000 MHz
1:
Cor
3:
–7.4163 dB
900 MHz
–7.4
2
1
4:
START 100.000 000 MHz
14
dB
1 GHz
3
–4.5661 dB
1.1 GHz
STOP 1 100.000 000 MHz
7.6133 Ω
9.4209 Ω
800 MHz
10.451 Ω
22.735 Ω
900 MHz
27.307 Ω
58.09 Ω
1.1 GHz
–2.3584 dB
750.00 000 MHz
• Output impedance (with components mounted: test circuit 3)
@ Impedance including external components and evaluation board
CH1 S 11
699.98 pH
750.000 000 MHz
100.000 000 MHz
4
2:
–2.5713 dB
800 MHz
3:
–3.0204 dB
900 MHz
3
4:
4
–3.8098 dB
1.1 GHz
STOP 1 100.000 000 MHz
MB54609
■ 1.5-GHz PDC APPLICATION MEASUREMENT DATA (Reference Values)
• Measurement result
Parameter
Symbol
Measurement
result
Unit
Condition
Test
circuit
fBB
42
kbps
π/4 DQPSK, Root-Nyquist filter (α = 0.5)
—
VBB
1.0
Vpp
Single-end input
—
fLO1
356
MHz
—
—
PLO1
–5
dBm
—
—
fLO2
1619
MHz
—
—
PLO2
–5
dBm
—
—
fRF
1441
MHz
fRF = fLO2 + fLO1/2
—
PRF
–13.4
dBm
SSB value
1
RLLO1
–18
dB
fLO1 = 356 MHz
RLLO2
–6
dB
fLO2 = 1619 MHz
RLRF
–14
dB
fRF = 1441 MHz
AERR
1.6
%
RMS magnitude error
PERR
0.90
deg.
RMS phase error
VERR
2.2
%
RMS vector error
CS
–39.0
dBc
Baseband input signal
Shifter input signal LO1
Mixer input signal LO2
Mixer output signal RFout
Return loss
Modulation precision
Carrier suppression
3
2
—
2
• External circuit constants (with the IC mounted on the evaluation board)
V CC
V CC
0.1 µ
1.8 n
V CC
Operation
RFout
1
RFout
2
GND
PS 20
Power save mode
1.5 p
LO2
3
LO2
4
GND
+
GND 19
–
100 µ
1k
Q 18
Q
offset
100 p
5
from A
XIF
510 p
from B
XQ 17
1k
+
–
offset
100 µ
to A
XQMOD 16
MB54609
6
IF
7
LO1
to B
QMOD 15
510 p
LO1
51
XI 14
1000 p
8
XLO1
9
GND
I 13
1000 p
GND 12
V CC
GND
100 µ
1k
offset
offset
100 µ
+ –
I
V CC
10 V CC
0.1 µ
1k
+
–
V CC 11
0.1 µ
(Continued)
15
MB54609
(Continued)
• Modulation precision and output spectrum (test circuit 2)
@ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5
Input signals: LO1 = 356 MHz, –5 dBm; LO2 = 1619 MHz, –5 dBm
Output signal: RFout = 1441 MHz
• Modulation precision
• Output spectrum
148
RMS Vector
Peak Vector
RMS Magnitude
Peak Magnitude
RMS Phase
Peak Phase
Carrier Freq
Carrier Phase
Carrier Leak
Bias Vector
Gravity Center
VG : 7.000e-02 V / Div
Baseband Filter: RtNyq (0.500) Rectangle Len = 64 OSR = 4.761905
Error =
Error =
Error =
Error =
Error =
Error =
Offset =
Offset =
=
2.243%
4.552%
1.597%
3.756%
0.902 degs
–1.977 degs
–1.454e+03 Hz
7.417 degs
–33.001 dB
= ( 1.839,
= ( –1.295,
1.275) %
0.833) %
CENTER = 1441 MHz
SPAN = 200 kHz
RBW = 3 kHz VBW = 3 kHz SWP = 100 ms AVG = 128
ATT = 10 dB
REF = –10 dBm 10 dB / div.
CENTER = 1441 MHz
SPAN = 26.2 kHz
RBW = 300 Hz VBW = 100 Hz SWP = 4 s
ATT = 10 dB
REF = –10 dBm 10 dB/div.
LO2 (1619 MHz)
–17.4 dBm
T X (1441 MHz)
–15.6 dBm
–39.0 dBc
• Span = 500 MHz
–38.4 dBc
• Span = 26.2 kHz
Image (1797 MHz)
–20.6 dBm
• Spectrum (test circuit 2)
@ Baseband signal: π/4 DQPSK, 42 kbps, 1.0 Vpp, 0000, Root-Nyquist filter α = 0.5
Input signals: LO1 = 356 MHz, –5 dBm; LO2 = 1619 MHz, –5 dBm
Output signal: RFout = 1441 MHz
CENTER = 1619 MHz
SPAN = 500 MHz
RBW = 1 MHz VBW = 1 kHz SWP = 3 s
ATT = 10 dB
REF = –10 dBm 10 dB/div.
(Continued)
16
MB54609
(Continued)
• RF output level dependent on baseband amplitude
(PRF: test circuit 1, Modulation precision: test circuit 2)
@ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5
Input signals of test circuits 1 and 2: LO1 = 356 MHz, –5 dBm; LO2 = 1619 MHz, –5 dBm
Output signals of test circuits 1 and 2: RFout = 1441 MHz
–10
–20
6
PRF
–30
4
VERR
–40
2
0
0.1
1
Modulation precision RMS Vector Error VERR (%)
RF output level PRF (dBm)
0
10
Base band amplitude VBB (Vpp)
• RF output level dependent on LO1 and LO2 input levels
(PRF: test circuit 1, Modulation precision: test circuit 2)
@ Baseband signal of test circuit 2: π/4 DQPSK, 42 kbps, 1.0 Vpp, PN 15, Root-Nyquist filter α = 0.5
Input signals of test circuits 1 and 2: LO1 = 356 MHz, –5 dBm; LO2 = 1619 MHz, –5 dBm
Output signals of test circuits 1 and 2: RFout = 1441 MHz
P RF
6
–20
4
–30
2
V ERR
–40
0
–20
–15
–10
–5
0
Shifter output level P LO1 (dBm)
5
0
–10
P RF
6
–20
4
–30
2
V ERR
–40
0
–20
–15
–10
–5
0
Mixer input level P LO2 (dBm)
5
Modulation precision RMS Vector Error V ERR (%)
–10
RF output level P RF (dBm)
0
• RF output level dependent on LO2 input level
(@PLO1 = –5 dBm)
Modulation precision RMS Vector Error V ERR (%)
RF output level P RF (dBm)
• RF output level dependent on LO1 input level
(@PLO2 = –5 dBm)
(Continued)
17
MB54609
(Continued)
• Input impedance (with components mounted: test circuit 3)
@ Impedance including external components and evaluation board
• LO1
CH1 S 11
• LO2
1 U FS
1: 48.992 Ω
–2.7891 Ω
570.64 pF
CH1 S
11
1 U FS
4 : 36.615 Ω
–51.574 Ω
100.000 000 MHz
41.787 Ω
–4.8965 Ω
300 MHz
35.598 Ω
1.75 Ω
500 MHz
2:
1
Cor
4
3:
32
CH2 S 11
log MAG
10 dB/REF 0 dB
1:
1:
1
2
Cor
4
36.002 Ω
22.75 Ω
800 MHz
4:
–30.473 dB
CH2 S 11
log MAG
Cor
1
2
START 100.000 000 MHz
10 dB / REF 0 dB
3:
–15.42 dB
500 MHz
4:
–10.449 dB
800 MHz
STOP 1 100.000 000 MHz
• RFout
1 U FS
2: 74.918 Ω
–5.0469 Ω
21.884 pF
1 441.000 000 MHz
1
4
2
Cor
1:
22.76 Ω
56.336 Ω
1.2 GHz
3:
58.35 Ω
5.0293 Ω
1.48 GHz
58.844 Ω
42.438 Ω
1.6 GHz
3
4:
CH2 S 11
log MAG
10 dB/REF 0 dB
2:
–13.853 dB
1 441.000 000 MHz
Cor
1:
–3.35 dB
1.2 GHz
3:
–20.927 dB
1.48 GHz
4:
–8.6101 dB
1.6 GHz
2
1
4
3
START 100.000 000 MHz
18
STOP 2 100.000 000 MHz
15.662 Ω
38.445 Ω
1 GHz
60.707 Ω
87.941 Ω
1.2 GHz
174.97 Ω
–100.9 Ω
1.4 GHz
4 : –5.5383 dB
1 600.000 000 MHz
1 : –3.3828 dB
1 GHz
Cor
4
1
START 100.000 000 MHz
• Output impedance (with components mounted: test circuit 3)
@ Impedance including external components and evaluation board
CH1 S 11
3:
–19.659 dB
300 MHz
4
3
2:
3
100.000 000 MHz
2:
1.9287 pF
1 600.000 000 MHz
2
3
2 : –4.0604 dB
1.2 GHz
3 : –3.7229 dB
1.4 GHz
STOP 2 100.000 000 MHz
MB54609
■ TEST CIRCUITS (Reference Examples)
SG
(50 Ω)
• Test circuit 1
(for SSB measurement)
SG
(50 Ω)
VCC
LO2
LO1
VCC = 3.0 V
VBB*cos (2 π ft)
I
D.U.T
RFout
Spectrum analyzer (50 Ω)
Synchronized
Q
VOS
VOS = 1.6 V
SG
(50 Ω)
VOS
GND
offset
VOS
VOS
SG
(50 Ω)
V CC
LO2
V CC = 3.0 V
LO1
• Test circuit 2
(for modulation precision
measurement)
offset
offset
VBB = 1.0 Vpp
f = 600 kHz
offset
VBB*sin (2 π ft)
I
Baseband
signal
generator
D.U.T
RFout
Modulation precision
analyzer (50 Ω)
V OS = 1.6 V
V OS
V OS
V OS
GND
offset
offset
offset
offset
Q
V OS
(Continued)
19
MB54609
(Continued)
• Test circuit 3 (for impedance measurement with components mounted)
Network analyzer (50 Ω)
N.C.
VCC
LO2
LO1
VCC = 3.0 V
I
RFout
D.U.T
VOS = 1.6 V
VOS
VOS
VOS
GND
offset
offset
offset
Q
offset
N.C.
Network analyzer (50 Ω)
VOS
• Test circuit 4 (for measurement of impedance of only IC)
Network analyzer
PORT-1
PORT-2
VCC = 3.0 V (applied to PORT-2 internal bias tee)
VCC
1
RFout
PS
20
2
GND
GND
19
3
LO2
Q
18
4
GND
XQ
17
5
XIF
XQMOD
16
6
IF
QMOD
15
7
L O1
XI
14
8
XL01
I
13
Operation
Power save mode
1k
1k
MB54609
1k
1k
9
GND
10
VCC
GND
12
VCC
11
VCC
VCC
0.1 µ
20
0.1 µ
VOS = 1.6 V
MB54609
■ ORDERING INFORMATION
Part number
MB54609PFV
Package
Remarks
20-pin Plastic SSOP
(FPT-20P-M03)
21
MB54609
■ PACKAGE DIMENSION
20-pin Plastic SSOP
(FPT-20P-M03)
*: These dimensions do not include resin protrusion.
+0.20
* 6.50±0.10(.256±.004)
1.25 –0.10
+.008
.049 –.004
(Mounting height)
0.10(.004)
INDEX
*4.40±0.10 6.40±0.20
(.173±.004) (.252±.008)
0.65±0.12
(.0256±.0047)
5.85(.230)REF
C
22
1994 FUJITSU LIMITED F20012S-2C-4
+0.10
0.22 –0.05
+.004
.009 –.002
"A"
5.40(.213)
NOM
+0.05
0.15 –0.02
+.002
.006 –.001
Details of "A" part
0.10±0.10(.004±.004)
(STAND OFF)
0
10°
0.50±0.20
(.020±.008)
Dimensions in mm (inches)
MB54609
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a
means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.
The information contained in this document has been carefully
checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.
The information contained in this document does not convey any
license under the copyrights, patent rights or trademarks claimed
and owned by Fujitsu.
Fujitsu reserves the right to change products or specifications
without notice.
No part of this publication may be copied or reproduced in any
form or by any means, or transferred to any third party without
prior written consent of Fujitsu.
The information contained in this document are not intended for
use with equipments which require extremely high reliability
such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.
F9702
 FUJITSU LIMITED Printed in Japan
24