HITACHI HA13609ANT

HA13609ANT
Three-Phase Brushless Motor Driver
ADE-207-232 (Z)
1st. Edition
May 1997
Description
The HA13609ANT is a 3-phase brushless motor driver IC with digital speed control. It is designed for use
as a PPC or LBP scanner motor driver and provides the functions and features listed below.
Function
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Power MOS and power bipolar transistor driver circuits
16-bit serial interface
Variable-speed digital speed control circuit
Digital PLL
Digital ready circuit
PWM oscillator circuit
Charge pump circuit
Integrating amplifier circuit
Current limit circuit
Overshoot prevention circuit
Braking function (with braking compete signal)
Forward/reverse direction circuit
Hall open circuit protection
Watchdog timer (LVI, POR, and RST outputs)
Stuck rotor protection
Features
•
•
•
•
•
•
•
•
High breakdown voltage (50V/30mA) power transistor drive circuit
PWM drive
Variable speed control is possible (varying the servo filter constants is not required)
Selectable rotation control method (discriminator control, PLL plus discriminator control)
Selectable feedback type (voltage or current)
Allows both PWM frequency switching and 100% duty operation
Selectable current limiting level
Braking mode selection (reverse braking, regeneration braking)
HA13609ANT
Block Diagram
VSS (5 V)
VPS
C101
VSS = Bip use
C102
10 to 50 V= MOS use
VSS
21
R101
25
Hall amplifier
42
U+
+
U
41
U–
–
U
40
V+
+
V
39
V–
–
38
W+
+
W
37
W–
–
W
Hu
Hv
Hw
VSS
Matrix
Open circuit
protection
R102
R126
R/F
RWD/FWD
20
1.25 V
R127
22
P.O.R
V
FH × 3
Overshoot
preven- OSI
tion
33
32
31
C106
fPWM
–
BRAKE
40 k
+
PWM
comp.
No/8
Counter
Monitor output
7
(Ready: Low)
–
Error
amp
+
27 Current feedback input
17 Error amplifier input
MASK
DATA OUT 4
CLK 1
fMAX = 8 MHz
ENABLE 2
Serial port
(16 bits)
DATA 3
FH × 3
Rotation monitor output 6
VSS
34
Duty 100
L.V.I
BRAKE
35 (Push-pull)
12
PWM OSC
C108
RST 8
36 (Open collector)
1.4 V
MOTOR ON
BRAKE (2 bit)
DUTY 100
READY
O.S.I ON
VRef (2 bit)
MASK
CONTROL
RWD/FWD
D1 (2 bit)
D2 (2 bit)
PLL SEL OR Icp, PC ON
VP (3 bit)
fPWM (2 bit)
MODE SEL
D1
+
AMP
–
29
MR
28
Waveform
shaping
Current
sense
–
VSS
MASK
R106
+
24
VRef
1.1 V
Stuck rotor
protector
Buffer
9
OSC
Ready
Precharge
10
30
R3
15
R7
Charge
pump
PLL
11
16
C3
Discriminator
19
R1
Vp
1M
23
Integral
– +
CONT.
Ready
±4, ±8%
Programmable
discriminator
(1024 to 4095)
D2
–
+
C105
PC
D1
D2
13
Vp
14
R4
R6
20 p
2
8 MHz
MAX
R107
18
VRef
Icp × 2
SPEED CLK 5
(0.2 to 5 kHz)
26
C4
20 p
R5
HA13609ANT
Pin Functions
Pin No.
Pin Name
Function
1
CLK
Serial port reference signal input
2
ENABLE
Serial port data write/latch signal input
3
DATA
Serial port data input
4
DATA OUT
Serial port data transfer complete signal output
5
SPEED CLK
Speed command signal input
6
TACHO OUT
Rotation monitor (MR, Hall ×3) output
7
READY
Ready and braking done (no/8) output (open collector output)
8
RST
Power supply (V SS ) monitor output. High when a reduced power-supply
voltage is detected.
9
OSC IN
Oscillator circuit input. Reference signal for all circuits other than the
serial port.
10
OSC OUT
Oscillator circuit output
11
S-GND
Small-signal ground
12
PWM OSC
Connection for the capacitor that sets the oscillator frequency.
13
PLL OUT
SPEED CLK vs. speed detection signal speed comparison output
14
DIS OUT
SPEED CLK vs. speed detection signal phase comparison output
15
INTEG IN
Integrating amplifier input
16
CP OUT
Charge pump and integrating amplifier output
17
ERROR AMP IN
Error amplifier input
18
BUFFER OUT
Buffer amplifier output. Connect to pin 17 when current feedback is
selected.
19
R1
Charge pump output current and PWM oscillator frequency setting
20
LVI
Reduced voltage detection level setting
21
VSS
Small-signal circuit power supply. 5.5V maximum
22
POR
Power-on reset delay time setting
23
LOCK PRO
Motor rotation constraint mode coil current on/off time setting
24
VRef
Current limit setting
25
VPS
Output driver power supply. 50V maximum
26
C Sense
Motor coil current detection
27
CFB
Current feedback input
28
MR IN –
Speed detection input
29
MR IN +
Speed detection input
30
P-GND
Output driver ground
3
HA13609ANT
Pin Functions (cont)
Pin No.
Pin Name
Function
31, 33, 35
U, V, W
Lower arm driver push-pull output. Driven by a PWM signal. (Connect
power NMOS or NPN transistors.)
32, 34, 36
U, V, W
Upper arm driver open drain output. (Connect a power PMOS or PNP
transistor.)
37 to 42
U+, U–
V+, V–
W+, W–
Hall signal inputs
4
HA13609ANT
Serial Port Input Data Structure
MSB
LSB
A4
A3
A2
Dummy
Dummy
A1
A0 D10 D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Mode control
A0 = 1
Data control
A0 = 0
DATA OUT
DATA
CLK
ENABLE
Serial
port
(16 bits)
A0
Decoder
Mode control register (11 bits)
A0 = 1
Mode control
Data control register (11 bits)
A0 = 0
Data control
Mode Control Register (A0 = 1)
Bit
1
Symbol
MD1
BRAKE 1
MD2
BRAKE 2
MD3
DUTY 100
MOTOR OFF
1
0
1
0
1
1
BRAKE
OFF Brake Brake Brake
1
2
3
DUTY 100%
DUTY
MD4
READY
4%
MD5
O.S.I ON
Active
MD6
VRef 1
MD6
MD7
MD7
VRef 2
VRef
MD8
MASK
×2
MD9
CONTROL
Discriminator
Discriminator + PLL
MD10
R/F
Reverse
Forward
MD0
MOTOR ON
MOTOR ON
MD1
MD2
0
0
0
8%
*1
*2
Non Active
0
0
VRef
×2
1
0
←
×1
0
1
←
×0.75
1
1
←
×0.5
×1
*3
5
HA13609ANT
Data Select Register (A0 = 0)
Symbol
Bit
DD0
D1 A
DD1
D1 B
DD2
D2 A
DD3
D2 B
DD4
PLLSEL1 OR Icp
1
0
DD0
DD1
D1
0
0
1/1
1
0
1/2
0
1
1/4
1
1
1/8
DD2
DD3
D2
0
0
1/1
1
0
1/2
0
1
1/4
1
1
1/8
1
0
1
1
1
0
←
←
←
×100% ×75% ×50% ×25%
0
0
0
1
0
1
0
0
1
0
0
0
0
0
DD5
DD4
DD5
PLLSEL2 OR PC ON PLL OUT(Vp-p)
DD6
VP1
DD7
VP2
DD6
DD7
DD8
DD8
VP3
VP (V)
2.2
+0.15
+0.3
+0.45
DD9
fPWM1
DD9
DD10
0
0
DD10
fPWM2
fPWM
fPWM
×1
1
0
←
×1.4
0
1
←
×1.9
1
1
←
×2.8
*4
1
1
0
1
0
1
0
1
1
1
1
1
+0.6
–0.15
–0.3
–0.45
*5
*6
Notes: 1. Off: The brake function does not operate.
Brake 1: Braking up to No/8.
Brake 2: Braking up to No/8, and then regenerative braking.
Brake 3: Regenerative braking. The No/8 signal is output.
During a braking operation, when the MR frequency when braking completes cannot be detected
in the circuit (During braking, the speed detection signal for under setting is not output over the
2/D1 occurrence. Thus this occurs more easily for lower settings.), reverse rotation may continue
in some cases. Note that this bit is also used to set the rotation monitor output (FH × 3 or the MR
frequency). FH × 3 is only output from the rotation monitor when motor on (MD0 = 1) and brake 3
are selected.
2. The ready setting range has the following manufacturing variation:
4.3% ±25% (@MD4 = 1)
8.6% ±25% (@MD4 = 0)
3. This function masks the current limiter input (pin 27) (incorrect operation due to the recovery
current). See page 20 for details.
4. The PLL output setting indicates a change relative to 3.5 Vp-p. See the electrical characteristics.
This is valid when MD9 = 0 (PLL control). Note that DD4 also functions as the Icp selection in
discriminator control mode.
VR1
Icp =
4 · R1
DD4 = 1 . . . . . Icp × 2
@MD9 = 1
DD4 = 0 . . . . . Icp × 1
6
HA13609ANT
DD5 also controls the PC on function to reduce motor rotation overshoot when MD9 is 1
(discriminator control). This function does not operate when D9 is 0. The precharge voltage (i.e.,
the integrator output voltage initial clamp voltage) can be set by Vp1 to Vp3 (DD6 to DD8). The
figure shows the precharge operation.
MD0 or MD10
Ready lock range
(MD4)
NO
Integrator output Vp
0V
Precharge
5. The Vp setting indicates the change relative to 2.2V. See the electrical characteristics.
6. Indicates the change relative to f PWM. See the setting formula.
7
HA13609ANT
Timing Chart (Forward Mode)
Hu
+
Hv
Hw
Vhys
Hall amplifier input 0
–
VOH1
U output
VOL
VOH1
V output
VOL
VOH1
W output
VOL
VOH
U output
PWM
PWM
VOL
VOH
V output
PWM
PWM
VOL
VOH
W output
PWM
VOL
8
PWM
HA13609ANT
Serial Port Timing Chart
tr, tf < 20 nsec, tsu, th > 20 nsec The tr and tf times are stipulated
tw > 40 nsec
at 10% and 90%, respectively.
th
ENABLE
tsu
th
50%
tsu
CLK
50%
tw
A4
DATA
tsu
th
tw
A3
D1
tsu
50%
D0
tsu
50%
DATA OUT
td1
≤ 50 nsec
td2
≤ 50 nsec
Braking Function
Input and Output Logic
Serial Port Input
Output
MOTOR ON
(MD0)
BRAKE 1
(MD1)
BRAKE 2
(MD2)
R/F
(DD10)
Rotation Direction
Braking
1
*
*
0
Forward
OFF
*
*
1
Reverse
OFF
0
0
*
—
OFF
*2
*
*
0
Reverse
Brake
*3
*
*
1
Forward
0
*1
Notes: 1. OFF: The braking function does not operate.
2. The IC goes to standby mode.
3. See the description of mode control for details on the braking operation.
9
HA13609ANT
Braking set
N1
Braking or
regeneration
braking
Forward
0
Reverse
Regeneration
braking
N2
MDO
(MOTOR ON)
MD10 (R/F)
MD1 (BRAKE1)
to
MD2 (BRAKE2)
*3
tset up
Rotation monitor output set
Braking set
*1
*3
thold
SPEED
CLK input
Monitor output
(open drain)
Rotation monitor
output set
*2
N1
N2
Ready
Ready
*3
tset up
N1
*4
No/8
detection
Ready
Notes: 1. The IC goes to standby mode when MOTOR ON, BRAKE1, and BRAKE2 are all 0.
2. Hold the data values here.
3. thold, tset up >
1
×4
fSPEED CLK
4. The No/8 (braking completion) function does not operate when BRAKE1 and BRAKE2 are 0.
Note that the No/8 detection signal is initialized to the high level in the mode in note 1
(standby mode).
10
HA13609ANT
Basic Application Circuit (Bipolar Transistor Circuit, Discriminator + PLL, Voltage
Feedback, and Hall Elements)
VSS
VPS
C101
VSS
R101
21
25
VSS
VPS
R114
R108
42 U+
Hu
U 36
Q1
D1
41 U–
40 V+
Hv
U 35
R109
Q2
D2
R117
39 V–
R115
38 W+
Hw
R110
37 W–
V 34
R126
20 LVI
R127
V 33
VSS
R102
Q3
R111
Q4
D3
D4
R118
R116
R112
22 P.O.R
C108
W 32
8 RST
W 31
Q5
R113
Q6
D5
D6
R119
7 Monitor output
R120
4 DATA OUT
Current limiter 26
MPU
C107
1 CLK
VSS
C106
2 ENABLE
RNF
PWMOSC 12
R106
3 DATA
VRef 24
R107
C105
5 SPEED CLK
Lock protection 23
VSS
MR
Current feedback
input 27
29 MR IN+
Error amplifier input 17
Buffer amplifier
output 18
Rotation monitor
6 output
Integrator output 16
28 MR IN–
C103
C3
9 OSC IN
X’tal
R105
C104
PLL
30
R7
19
10 OSC OUT
11
R3
Integrator input 15
13
R1
Discriminator
14
R4
R6
C4
R5
11
HA13609ANT
Application Circuits
Application Circuit 1 (Discriminator)
Error amplifier input 17
Buffer amplifier output 18
Integrator output 16
C3
Integrator input 15
PLL
Discriminator
13
14
C1
R2
19
R1
Application Circuit 2 (MOS Transistor Circuit)
VSS
VPS
C101
C102
21
25
VSS
VPS
ZD1
R114
R108
U 36
U 35
M1
R109
M2
D1
D2
R117
ZD2
R115
R110
V 34
V 33
M3
R111
M4
D3
D4
R118
ZD3
R116
R112
W 32
W 31
M5
R113
M6
R119
RNF
12
D5
D6
HA13609ANT
Application Circuit 3 (Current Feedback)
RNF
R125
Current feedback input 27
R121
Error amplifier input 17
C110
Buffer amplifier output 18
Application Circuit 4 (Hall IC input)
VSS
R103
C101
R104
VSS
21
VSS
R122
IC
42 U+
41 U–
R123
IC
40 V+
39 V–
R124
IC
38 W+
37 W–
Application Circuit 5 (External Reset Input)
VSS
R126
20 LVI
External reset input
H: standby
22 P.O.R
C108
8 RST
13
HA13609ANT
External Components
Part No.
Recommended
Value
Purpose
Note
R101, R102
—
Hall element bias current
12
R103, R104
—
Hall IC applications, Hall input voltage
14
R105
1MΩ
Oscillator stabilization
R106, R107
—
Current limiter reference voltage
15
R108 to R113
—
Power transistor base current limiter
16
R114 to R119
—
Power transistor base-emitter resistors (gate-source resistors)
16
R120
≥ 4.7kΩ
Current limiter filter
13
R121
—
Current feedback input filter
9
R122 to R124
—
Hall IC output current
14
R125
—
Current feedback input gain adjustment
10
R126, R127
—
LVI operating voltage, external reset input pull up
11
RNF
—
Current detection
1
R1
≥ 1.5kΩ
Integration constant, PWM carrier frequency
2, 3, 5
R2
—
Integration constant
2
R3 to R7
—
Integration constant
3
C101, C102
≥ 0.1µF
Power supply stabilization
C103, C104
10p to 50pF
Oscillator stabilization
7
C105
—
Lock protection operation time
4
C106
—
PWM carrier frequency
5
C107
—
Current limiter filter
13
C108
—
Power-on reset delay time
11
C110
—
Current feedback input filter
9
C111 to C113
—
Hall output stabilization
8
C1
—
Integration constant
2
C2
—
Integration constant
2
C3, C4
—
Integrator filter
3
ZD1 to ZD3
≈ 20V
MOS power transistor gate destruction protection
8
D1 to D6
—
Fly wheel diodes
8
X’tal
4 to 8MHz
Oscillator
6, 7
Notes: 1. Current limiter operates according to the following formula:
V
Iop = Ref [A]
RNF
Here, V Ref is the value according to the VRef select function.
14
HA13609ANT
2. Use the following formulas as a guideline for setting the integration constant (@MD9 = 1). To
minimize rotation deviation, set R1 to a relatively small value.
2π
ωo ≤
· f · D1
[rad/s]
20 MR
R1 =
9.55 · VR1 · KT · R2
·A
4 · J · ωo · No
[Ω]
However, R1 must be in the range 1.5kΩ ≤ R1 ≤ 15kΩ.
C1 = 1 / (√10 · ωo · R2)
[F]
C2 = 10 · C1
[F]
: Rotation speed
[min–1 ]
: MR frequency
[Hz]
: Divider determined by D1 select
: Charge pump bias voltage 1.16
[V]
: Motor torque constant
[N·m/A]
: Motor moment of inertia
[kg·m2]
: PWM comparator current gain
[A/V]
2Vps – 0.83VE – Vsat
Voltage feedback method: A =
Rm · Vosc
Here, No
f MR
D1
VR1
KT
J
A
Current feedback method: A =
GB
RNF
VPS
: Power system power-supply voltage [V]
VE
: Motor back EMF
[V P-P/T·T]
Vsat : External transistor saturation voltage [V] (See the electrical characteristics)
Rm
: Motor coil resistance
[Ω/T·T]
Vosc : PWM amplitude voltage
[V P-P] (See the electrical characteristics)
GB
: Buffer amplifier gain
[V/V] (See the electrical characteristics)
3. Use the following formulas as guidelines for setting the integrator filter:
First determine the angular frequency of ωP for DIS OUT and PLL OUT.
ωP = 2π · fMR · D1 [rad/s]
Determine the angular frequency of ωM for Motor.
9.55 1
Vref
·
KT ·
– TL [rad/s]
ωM ≈
No J
RNF
Determine the ωo.
ωo = √ωP · ωM [rad/s]
Determine the integrator’s DC gain G(E) .
J · ωo
1
G(E) =
·
9.55 · KT · A
Z
Kø
· D1 · 2π ·
· PLL SEL
ωo
60
Here, Kø
: PLL gain = 0.28
TL
: Rated load torque
PLL SEL : PLL output ratio
Vref : Current limiter reference voltage
Z
: MR pulse per round
[V/rad/s]
[N·m]
[V]
[P/R]
15
HA13609ANT
Set C3 and derive the integration constants from following formulas.
R6 = 0 Ω
1
R3 =
ωP · C3
R5 =
R3
G(E)
1
2 · R5 · ωo
R7 = R5
C4 =
Next, determine R4 to match the phase of PLL OUT.
(3.46 – VP) R3
R4 =
(VP – 1.2) – (1.9 – VP) · R3 / R5
Here, VP
: See the electrical characteristics.
When log ωP/ω M is greater than 2, a phase advance to compensate for this phenomenon is
required. Use the following formula to set the phase advance;
C5 · R8 > 20 · 2
ωP
R4
DIS
R6 R7
R8
PLL
C4
R5
C5
4. The following formulas determine the stuck rotor protect detection time t LP (detects the current
limiter operating time), the output off time t OFF, and the setup time tset. The figures show the
operating waveforms.
tLP = ∆V1 · C105 ≈ 0.09 × 106 · C105
[sec]
Isink
∆V2
tOFF =
· C105 ≈ 0.32 × 106 · C105 [sec]
Isource
V
tset = LH2 · C105 ≈ 0.0005 × 106 · C105
[sec]
Is
See the electrical characteristics for the definitions of ∆V1, ∆V2, Isink, Isource, and Is.
Standby
(MD0k to 2 = Low)
Enable
Current limiter
operation
IRNF
0
Lock VLH1
protect VLH2
pin
VLL
0
∆V1 ∆V2
tLP
tset
tOFF
tLP
Output off
Note that a capacitor with a leakage current sufficiently smaller that Isource must be used for
C105.
16
HA13609ANT
5. The PWM carrier frequency fPWM is determined by the following formula:
1
[Hz]
fPWM = 0.0489
C106 · R1
6. The relationships between the crystal oscillator frequency fOSC and the speed command clock
f CLK , the speed detection signal fMR, and the discriminator resolution (number of counts) C are
shown below.
f CLK = fMR·D1
f OSC = fCLK ·1 / D2·C [Hz]
However, C must be in the range 1024 ≤ C ≤ 4095
Here, D1
: The MR signal divisor determined by D1 select
D2
: The crystal oscillator frequency divisor determined by D2 select.
Configuration of the speed control and phase control blocks when @MD9 = 0
Buffer amplifier
Speed signal
fMR
D1
fMR’
16
C3
R3
– +
SPEED CLK
fCLK
CLK counter
Discriminator
counter setting
X’tal
fOSC
D2
Discriminator
(1024 to 4095)
Charge
pump
15
R7
19
4Icp
PLL
PLL SEL
Discriminator
R1
Vp
Discriminator
output
14
4% pulse
R4
PLL output
13
R5
R6
C4
Note: If possible, Tr and Tf for the SPEED CLK signal should be under 20 ns when using this circuit.
17
HA13609ANT
Timing in phase control mode
fMR'
A
≈ 3.6 V
Discriminator output
≈0V
A
ACC
ACC
A × 4%
ACC
A × 4%
DEC
≈ 3.6 V
PLL output
≈ 1.85 V
≈0V
ACC
ACC
DEC
ACC
∆Vo
Integrator output
Configuration of the speed control block when @MD9 = 1
Speed signal
fMR
D1
SPEED CLK
fCLK
fMR’
Buffer
amplifier
CLK counter
Discriminator
counter setting
X’tal
fOSC
D2
Discriminator
(1024 to 4095)
16
C2
R2
C1
Charge
pump
R1
19
4Icp
R1
Note: If possible, Tr and Tf for the SPEED CLK signal should be under 20 ns when using this circuit.
18
HA13609ANT
7. The table below lists reference values for the stabilization capacitors C103 and C104 for the
crystal oscillator element according to the frequency used.
X’tal (MHz)
C103, C104 (pF)
4 to 6
≈ 20 to 40
6 to 8
≈ 10 to 20
Use a resonance resistance of under 50Ω as a criterion for selecting the crystal element used.
8. Include these components if required.
9. The cutoff frequency of the filter formed by C110 and R121 should be between 3 and 10 times
the PWM oscillator frequency.
10. The gain, GCTL, from the error amplifier input to RNF is given be the following formula:
Rif
GCTL = 1 +
R125
11. The formulas below determine the relationship between capacitor C108, which sets the power on
reset (POR) delay time, and the resistors R126 and R127, which set LVI.
R126
[V]
VLVI = VSD 1 +
R127
However, V LVI > 3V
VHYS = R126 · IHYS
[V]
However, V LVI – VHYS > 2.5V
t POR = 0.052 × 10 6 · C108
[sec]
The time t POR is the time required for the oscillator to reach stability. This time should be 20ms or
longer.
VSD, IHYS: See the electrical characteristics.
VHYS
VLVI
VSS
< 2.0 V
0V
POR
2.0 V
1.3 V
0V
tPOR
tPOR
RST
0V
When using an external reset input to set the IC to the standby state, pin 20 must be set to a low
level that is under 0.4V.
12. When the Hall inputs are common mode input, the open circuit protection circuit makes the
output transistors non-operational. When all the Hall input phases are open, the lower side
output transistors become non-operational.
The output transistors will be disabled if one or two phases are disconnected (become open) only
when the Hall inputs are common mode.
19
HA13609ANT
13. When setting up the current limiter filter consisting of R120 and C107, R120 should be 4.7kΩ or
larger, and C107 and R120 should function as a filter for the recovery current. This filter masks
the recovery current due to internal circuits for the current limiter input (pin 26) and the C107
discharge operation determines the PWM off time (by making the current limiter input a low
impedance). See the figures.
1/fPWM
ON
ON
Output (U to W)
VRNF
C107 discharge
tMASK
tMASK
Current limiter input
voltage (pin 26)
≈0V
For recovery current masking:
48
64
to
fosc
fosc
@MD8 = 1
tMASK =
24
32
to
fosc
fosc
@MD8 = 0
tMASK =
[SEC]
[SEC]
14. Use the formula below as a guideline for determining the values of R103, R104, and R122 to
R124 when a Hall IC is used.
R103 // R104 = R122 to R124 < 20kΩ
15. Take the current limiter input current (see the electrical characteristics) into consideration when
determining the values for R106 and R107.
16. Determine the values of R108 to R119 based on the characteristics of the output power
transistors used and the output driver characteristics (see the electrical characteristics).
17. Design the wiring in applications so that the potential of the pin 11 ground (the small-signal
ground) does not become higher than that of the pin 30 ground (the output stage ground) as
shown in the figure.
VSS
20
11
30
HA13609ANT
Absolute Maximum Ratings
Item
Symbol
Rated Value
Unit
Note
Power-supply voltage
VSS
5.5
V
1
VPS
VSS to 50
V
2
Input voltage
VIN
VSS
V
3
Output voltage
Vout
50
V
4
Output current
Iout
30
mA
5
Allowable power dissipation
PT
0.8
W
Operating temperature
Topr
–20 to 70
°C
Storage temperature
Tstg
–55 to +125
°C
Notes: 1. A surge voltage of 6.0V is allowed for up to 10ms. Note that the operating range is as follows:
VSS = 4.25 to 5.5V
2. The maximum is VSS if bipolar transistors are used as the output transistors.
The maximum is 50 V if bipolar transistors are used as the output transistors.
3. Applies to the logic input pins 1, 2, 3, 5, and 9, and to the analog input pins 17, 20, 24, 26 to 29,
and 37 to 42.
4. Applies to the output pins 32, 34, and 36, and to pin 7, the monitor output pin.
5. Applies to the output pins 31 to 36. The maximum value for the monitor output pin is 10mA.
21
HA13609ANT
Electrical Characteristics
Test
Condition
Applicable
Pins
Notes
mA
MD0 to 2 = 0,
VSS = 5.5V
21
6
25
mA
MD0 to 2 = 1,
VSS = 5.5V
0.13
0.5
mA
MD0 to 2 = 0,
VPS = 50V
25
6
—
2.5
3.5
mA
MD0 to 2 = 1,
no load,
VPS = 50V
IIL
—
–50
–100
µA
Input highlevel current
IIH
—
0
±10
µA
Input lowlevel voltage
VIL
—
—
1.5
V
Input highlevel voltage
VIH
3.5
—
—
V
Clock
frequency
fCLK
4
—
20
MHz
Output highlevel voltage
VOH1
3.5
4.6
—
V
IOH = 0.5mA
Output lowlevel voltage
VOL1
—
0.25
0.4
V
IOL= 0.5mA
Input
resistance
Rh
—
10
±25%
kΩ
Commonmode input
voltage range
Vh
1.5
—
VSS–1.5
V
Differentialmode input
voltage range
Vd
70
—
VSS/2
mV
Hysteresis
VHYS
—
40
—
mV
Rh = 400Ω
Output highlevel voltage
VOH2
VPS–1.8
VPS–1.6
—
V
IOH = 20mA,
VPS = VSS
VOH2
10
12.5
15
V
IOH = 1mA,
VPS = 24V
VOH2
5.5
9.0
—
V
IOH = 1mA,
VPS = 12V
Item
Symbol
Min
Typ
Max
Unit
Current drain
ISSO
—
3.0
6.5
ISS
—
15
IPSO
—
IPS
Input lowlevel current
Logic
inputs
Logic
outputs
Hall
amplifier
Output
drivers
22
1 to 3, 5, 9
9
4, 6, 8, 10
37 to 42
1, 2
31, 33, 35
HA13609ANT
Electrical Characteristics (cont)
Symbol
Min
Typ
Max
Unit
Test
Condition
Applicable
Pins
Output leakage
current
ILEAK
—
—
±100
µA
VOH1 = 50V
32, 34, 36
Output lowlevel voltage
VOL2
—
0.15
0.3
V
IOL = 20mA
31 to 36
Output
response time
TPHI
—
—
1.0
µs
IO = 10mA
TPLH
—
—
1.0
µs
Item
Output
drivers
3
PWM
oscillator
and
Oscillator lowlevel voltage
VL
—
1.1
±10%
V
PWM
comparator
Oscillator highlevel voltage
VH
—
2.8
±10%
V
Oscillator
frequency
range
fPWM
2
—
30
kHz
Oscillator
frequency
precision
ferr1
—
7.7
±10%
kHz
Comparator
hysteresis
VPHYS
—
50
—
mV
Input current
IIN1
—
—
±10
µA
Vi = 0 to 2V
24, 26
Offset voltage
VOFF
–15
–25
–40
mV
Vi = 0.5 to 2V
26
Common-mode
input voltage
range
VCM
1.5
—
VSS
–1.5
V
Differentialmode input
voltage range
VDIFF
60
—
VSS
mVP-P
Gain
Gain
—
32
—
dB
f = 1kHz
Input current
IIN2
—
—
±20
µA
Vi = 1.4V
I28
–146
–95
–62
µA
Vi = 0V
I29
–67
–53
–39
µA
Vi = 0V
Input current
ratio
Iratio
1.45
—
2.25
—
I28 / I29
Input sensitivity
VS
15
—
—
mV
Current
limiter
Speed
detection
amplifier
Notes
12
2
fPWM × 1,
R1 = 6.2kΩ,
C106 =
1000pF
2
28, 29
2
6
2
23
HA13609ANT
Electrical Characteristics (cont)
Symbol
Min
Typ
Max
Unit
Test
Condition
Applicable
Pins
Oscillator
frequency range
fosc
4
—
—
MHz
X’tal
9, 10
Oscillator
frequency
precision
ferr2
—
—
±0.01
%
X’tal = 8MHz
Program
-mable
Count range
N
1024
—
4095
Count
discriminator
Operating
frequency
fdis
—
—
20
MHz
Count error
DC
0
—
1LSB
—
R1 voltage
VR1
—
1.16
±10%
V
R1 = 1.5kΩ
19
Charge current
ICP+
—
190
±10%
µA
R1 = 1.5kΩ,
16
Discharge
current
ICP–
—
190
±10%
µA
Vo = 2.0V
Current ratio
ICP+/ICP–
0.8
1.0
1.2
—
Leakage current
Ioff1
—
—
±100
nA
Clamp voltage
Vclamp
2.8
3.0
—
V
Digital
ready
Lock range
manufacturing
variation
∆N
—
—
±25
%
7
Precharge
Clamp
voltage (1)
Vcp(1)
—
Vp
±10%
V
16
Buffer
amplifier
Internal
reference
voltage
Vref
—
1.15
±10%
V
16
Output
resistance
Ro
9.8
14
18.2
kΩ
18
Maximum output
voltage
VB(MAX)
—
0.7
±10%
V
Voltage gain
GB
–8
–6
–4
dB
Input current
IIN3
—
—
±150
nA
Offset voltage
Voff
—
–25
–50
mV
Voltage gain
Ge
—
60
—
dB
Gain-bandwidth
product
Be
—
0.1
—
MHz
Feedback
resistance
Rif
—
40
±25%
kΩ
Item
Clock
oscillator
Charge
pump
Error
amplifier
24
Notes
2
14, 16
4
Vi = 1.5V
Vi = 1.5V
Vi = 2.5V
17, 27
2
2
VSS = 5V
HA13609ANT
Electrical Characteristics (cont)
Symbol
Min
Typ
Max
Unit
Test
Condition
Applicable
Pins
Internal
reference
voltage
Vp
—
2.2
±10%
V
DD6 to 8 = 0
15, 16
Internal
reference
voltage
difference
∆Vp
—
2.2+∆Vp
±10%
V
Input current
IIN4
—
—
±250
nA
Vi = 1.5V
Output voltage
VOH3
2.75
3.0
—
V
Io = 0.5mA
VOL3
—
—
0.9
V
Io = 0.5mA
Voltage gain
GI
—
60
—
dB
Vi = 2.5V
Gainbandwidth
product
BI
—
0.3
—
MHz
PLL and
offset
Output highlevel voltage
VOH4
—
3.6
±10%
V
discriminator
output
Output lowlevel voltage
VOL4
—
0.1
0.2
V
Monitor
output
Output leakage
current
ILEAK2
—
—
50
Output lowlevel voltage
VOL5
—
0.2
Minimum
detection time
tLP
—
Output off time
tOFF
High-level
Item
Integrating
amplifier
Stuck
rotor
protector
Notes
2
2
Io = 0.1mA
13, 14
µA
VOH = 50V
7
0.4
V
IOL = 10mA
40
±25%
ms
C105 = 0.47µF
—
165
±25%
ms
VLH1
3.0
3.2
—
V
voltage
VLH2
2.5
2.7
—
V
Low-level
voltage
VLL
—
1.4
1.6
V
Potential
∆V1
—
1.9
±10%
V
VLH1–VLL
difference
∆V2
—
1.35
±10%
V
VLH2–VLL
Detection-time
sink current
ISINK
—
25
±30%
µA
Pin 23 voltage
= 2.5V
Output off
source current
ISource
—
5.0
±30%
µA
Pin 23 voltage
= 2.5V
Standby-mode
source current
IS
—
4.7
±35%
mA
Pin 23 voltage
= VLH
23
2
2
25
HA13609ANT
Electrical Characteristics (cont)
Symbol
Min
Typ
Max
Unit
Test
Condition
Applicable
Pins
Internal reference
voltage
Vsd
1.13
1.21
1.29
V
Turn on
20
Hysteresis
current
IHYS
—
50
±25%
µA
Output voltage
maintained range
VLV
2.0
—
—
V
Delay time
tPOR
—
24.5
±25%
ms
Item
LVI
P.O.R
21
C108 = 0.47µF
8, 22
Notes: 1. Timing chart
2. Design target values. These are not tested at delivery time.
3. The figure below stipulates the output response time. This is not tested at delivery time.
90%
10%
TPLH
TPHL
4. Stipulated at the discriminator input frequency.
5. See the timing charts.
6. Stipulated at conditions in which the OSC input is fixed.
26
Notes
HA13609ANT
Reference Data
Current Drain vs. Supply Voltage
Current Drain vs. Supply Voltage
30
4
Tj = 25°C
Current Drain IPS, IPSO (mA)
Current Drain ISS, ISSO (mA)
Tj = 25°C
20
ISS
10
3
IPS
2
1
ISSO
IPSO
0
1.5
2.5
3.5
4.5
0
10
20
30
40
50
Supply Voltage VSS (V)
Supply Voltage VPS (V)
Output Driver Low-Level Voltage vs.
Output Current
Output Driver High-Level Voltage vs.
Output Current
0.4
C
5°
Tj
0.3
=
12
=
°C
25
0.2
Tj
0.1
–
Tj =
20°
C
0
0
0
5.5
10
20
Output Current IO (mA)
30
Output Driver High-Level Voltage VOH (V)
Output Driver Low-Level Voltage VOL (V)
0
15
Tj = 125°C
Tj = 25°C
VPS = 50 V
10
Tj = –20°C
Tj = 125°C
5
Tj = 25°C
VPS = 50 V
Tj = –20°C
0
0
10
20
30
Output Current IO (mA)
27
HA13609ANT
PWM Frequency vs.
Junction Temperature
R1 Voltage vs.
Junction Temperature
1.4
C106 = 1000 pF
R1 = 6.2 kΩ
fPWM × 1
9.0
R1 = 6.2 kΩ
R1 Voltage VR1 (V)
PWM Frequency fPWM (kHz)
10.0
8.0
7.0
–20
10
40
70
100
125
–20
40
70
100
Junction Temperature Tj (°C)
Error Amplifier Rif vs.
Junction Temperature
Integrator vs.
Junction Temperature
125
2.4
Integrator Reference Voltage VP (V)
Error Amplifier Rif (kΩ)
10
Junction Temperature Tj (°C)
60
50
40
30
10
40
70
100
Junction Temperature Tj (°C)
28
1.2
1.1
70
–20
1.3
125
2.3
2.2
2.1
2.0
–20
10
40
70
100
Junction Temperature Tj (°C)
125
HA13609ANT
Monitor Output vs.
Output Current
Lock Protector vs.
Junction Temperature
300
0.3
5°
=
Tj
12
C
0.2
Tj =
0.1
Tj =
25°
C
°C
–20
Lock Protector tLP, tOFF (ms)
Monitor Output VOL (V)
0.4
C105 = 0.47 µ
200
tOFF
100
tLP
0
0
2
4
6
8
0
–20
10
10
40
70
100
Output Current IO (mA)
Junction Temperature Tj (°C)
LVI Reference Voltage vs.
Junction Temperature
POR Delay Time vs.
Junction Temperature
1.4
125
30
POR Delay Time tPOR (ms)
LVI Reference Voltage VSD (V)
C108 = 0.47 µ
1.3
1.2
1.1
–20
10
40
70
100
Junction Temperature Tj (°C)
125
25
20
15
–20
10
40
70
100
125
Junction Temperature Tj (°C)
29
HA13609ANT
Package Dimensions
Unit: mm
37.34
38.0 Max
22
1.0
21
1 0.89
1.78 ± 0.25
0.48 ± 0.10
0.51 Min
1.27 Max
2.54 Min 5.10 Max
13.4
14.6 Max
42
15.24
0.10
0.25 +– 0.05
1° – 13°
Hitachi Code
JEDEC Code
EIAJ Code
Weight
30
DP-42SA
—
SC-551-42
4.42 g
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.