HITACHI HA13565F

HA13565F
Three-Phase Brushless DC Motor Driver IC
ADE-207-226A (Z)
2nd. Edition
April 1997
Description
HA13565F is a 3-phase brushless DC motor driver IC with digital speed control. It is developed for direct
drive of the spindle motor of 5V floppy disk drives. It has the following functions and features.
Functions
•
•
•
•
•
•
3 sensor 1.0A/phase, 3-phase drive circuit
Digital speed control circuit
Sensorless index circuit
Current limiter circuit
Over-temperature shutdown circuit (OTSD)
Circuit for switching between 300 and 360rpm speeds
Features
• Low saturation voltage 0.5V Typ (at 0.7A)
• Soft switching drive circuit
• Small surface mount package
HA13565F
U(–)input
U(+)input
VCC
Hall bias
Bias(–)pin
Bias(+)pin
Pin Arrangement
V(+)input
V(–)input
W(+)input
W(–)input
20 19 18
21
TAB
17 16 15
14
22
13
23
12
24
11
TAB
TAB
25
10
26
9
27
8
28
7
1 2 3
TAB
(Top view)
2
4
5 6
Index TC
Index output
CEB
FG(–)input
RPM control pin
Index PC
AGC
NC
NC
FG(+)input
Bias output
U phase output
V phase output
Current detection
W phase output
Phase compensation
Charge pump output
CLK input
HA13565F
Pin Function
Pin No.
Pin Name
Function
1
FG (–) input
FG amp. (–) input terminal
2
RPM control pin
Control terminal for motor rotation speed
“H” → 360 rpm, “L” → 300 rpm
3
Index PC
Connection for the time constant circuit that adjusts the index circuit Vth
level.
4
Index TC
Burst setting time constant circuit for index circuit
5
Index output
Index signal output terminal (Open collector)
6
CEB
Chip enable terminal “H”: disable, “L”: enable
7
CLK input
Reference clock input terminal
8
Charge pump output
Connection for the time constant circuit that integrates the speed error
signal.
9
Phase compensation
Connection for the phase compensation capacitor that stabilizes the
operation of the control system.
10
W phase output
W phase output
11
Current detection
Output current detection and terminal which is connected with resistor
for current limiter.
12
V phase output
V phase output
13
U phase output
U phase output
14
Bias output
Smoothing circuit for the pumped output circuit
15
Bias (+) pin
Output circuit used for bias pumping
16
Bias (–) pin
Input circuit used for bias pumping
17
Hall bias
Hall element bias input
18
VCC
Power supply
19
U phase (+) input
U phase (+) input terminal
20
U phase (–) input
U phase (–) input terminal
21
V phase (+) input
V phase (+) input terminal
22
V phase (–) input
V phase (–) input terminal
23
W phase (+) input
W phase (+) input terminal
24
W phase (–) input
W phase (–) input terminal
25
AGC
Smoothing circuit for hall amplifier output amplitude control
26
NC
No connection
27
NC
No connection
28
FG (–) input
Index amp (+) input terminal
3
HA13565F
Block Diagram
C105
VCC
VCC
14
C101
18
R101
19
+
20
–
21
+
Hu
Hv
22
–
23
+
24
–
Hw
u
Soft
switch
matrix
v
w
25
V
12
W
10
16
Rnf
AGC
11
Index
detection
17
Vref1
0.175V
C106
Current
control
9
Bias
15
Rt2
13
OTSD
C102
C104
U
3
Vref2
0.63V
CEB 6
Ct2
Time
constant
4
Rt1
Ct1
5 INDEX output
RPM select
2 H : 360rpm
L : 300rpm
Discriminator
CLK 7
1MHz
Charge
pump
C1
1.6V
FG
60ppr
C103
28
+
1
–
4
R2
C2
FG amp.
27
NC
8
26
NC
TAB
HA13565F
Timing Chart
Hall Amp. Input vs. Output Voltage and Current
U
V
W
+
B-EMF
0
–
V
U
W
+
Hall amp.
input
0
–
U
V
W
+
Output
current
0
–
U
V
W
Output
voltage
0
Note: 1. The input waveforms to the hall amp. should be sine waves with a third harmonic content
of less than 20%.
5
HA13565F
Input Detection Timing
RPM Control Pin = L
Magnetization reduced
by 30% *1
65 to 200mVpp
+
U phase hall
amp. input
Pin 19–Pin 20
0
–
Pin 3
Hall amp. output *2
+
Index detection
input
0
–
Index detection
output-1 *2
0
Index detection
output-2 *2
0
Index detection
output-3 *2
0
FG amp.
output *2
0
6.67 to 10ms
(@300rpm) *3
Index TC
Pin 4
3.33ms
(@300rpm)
Vth2L
0
Burst adjustment
Index output
Pin 5
0
Note: 1. To generate the index output, one pole of the main magnetization must be reduced so that
a difference of at least 30% is assured at the Hall amp. input.
2. These waveforms are shown to indicate the principles of operation, and are not actual
measured waveforms.
3. Burst adjustment is started by the fall of the index detector output 3, and then, it ends by
the third of fall of FG amp. output.
4. Incorrect pulses may be output immediately after (i.e., within about 200ms of) start-up.
5. If the reduction in the magnetization is inadequate, the index signal may not be generated.
Also note that excessive modulation of the Hall amp. input can cause incorrect pulses to be
generated.
6
HA13565F
External Parts
Part No.
Recommended Value
Purpose
Notes
R2
—
Integration constant
1
R101
—
Hall bias
Rnf
0.33Ω
Spindle current detection and current limitation
Rt1
1MΩ
Index circuit Vth adjustment
Rt2
—
Index burst adjustment
5
C1, C2
—
Integration constants
1
C101
≥0.1µF
Power supply bypass
3
C102
0.047µF
AGC filter
4
C103
0.47µF
FG amp. AC coupling
C104
≥0.1µF
Bias pumping
C105
≥0.1µF
Smoothing for bias pumping
C106
0.1µF
Control amp. phase compensation
Ct1
0.1µF
Index circuit Vth adjustment
Ct2
—
Index burst adjustment
2
6
5
Notes: 1. Use the following formulas as a design target when determining the integration constants for
actual systems.
ωO ≤
R2 =
C1 =
2π fFG
(rad/S)
20
1
J ωO NO Rnf
9.55
KT Gctl Icp
1
1
10 ωO R2
C2 = 10 C1
(Ω)
(F)
(F)
where,
wO
: Time constant of servo loop
f FG
: FG frequency (Hz)
NO
: Motor speed (rpm)
J
: Motor moment of inertia (kg · cm · s)
KT
: Motor torque constant (kg · cm / A)
Rnf : Current detection resistance (Ω)
Gctl : Control gain (see Electrical Characteristics)
Icp
: Charge pump output current (see Electrical Characteristics)
2. The current limiter operates according to the following formula.
Vref1
IOMAX =
(A)
Rnf
where, Vref1 is the current limiter reference voltage (see Electrical Characteristics)
7
HA13565F
3. Place as close to the IC as possible.
4. Determine C102 according to the following formulas.
200
C102 ≥
(µF)
NO · P
C103 ≥
100
fFG
(µF)
where,
P = Number of motor poles
5. The burst time t1 is defined as follows. (see Electrical Characteristics)
t1 H = –Ct2 × Rt2 × ln (1 – Vth2H / Vhb)
t1 L = –Ct2 × Rt2 × ln (1 – Vth2L / Vhb)
where, Rt2 is resistance inter pin 4 and pin 17.
6. If the circuit is affected by noise, a large capacitance value should be set.
8
HA13565F
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Value
Unit
Notes
Power supply voltage
VCC
7.0
V
1
Peak output current
Iop
1.0
A
Normal output current
Io
0.7
A
Input voltage
Vi
0 to V CC + 0.3
V
2
Power dissipation
PT
1.5
W
3
Junction temperature
Tj
+150
°C
1
Storage temperature range
Tstg
–55 to +125
°C
Notes: 1. The operating range is as follows.
VCC = 4.25 to 6.5 V
Tjop = 0 to +125°C
2. Applied to the logic input pin.
3. Permissible value when Tpin = 113°C and thermal resistance is as follows:
θj-pin ≤ 25°C/W
θj-a1 ≤ 55°C/W (when mounted on a metal substrate)
θj-a2 ≤ 80°C/W (when mounted on a glass epoxy substrate)
9
HA13565F
Electrical Characteristics (VCC = 5V, Ta = 25°C)
Test
conditions
Applicable
Pins
mA
CEB=H,
VCC=6.5V
18
13
mA
CEB=L,
VCC=6.5V
—
±80
µA
VCEB=0 to 5V
6
—
—
±100
µA
VRPM=0 to 5V
2
I CLK
—
—
±320
µA
Vclk=0 to 5V
7
Input low
voltage
VIL
—
—
0.8
V
Input high
voltage
VIH
2.0
—
—
V
Output
low
voltage
VOL
—
—
0.4
V
Io=2mA
Leakage
current
I OH
—
—
±10
µA
V=7.0V
Input
resistance
Rhi
—
10
—
kΩ
Commonmode
input
voltage
Vh
2.0
—
VCC –
0.5
V
Differential
input
voltage
vh
65
—
200
mVpp
Index
detection
threshold
Vth1
80
—
90
%
Leakage
current
I CER
–0.1
—
5
mA
Vo=7.0V
–0.1
—
0.1
mA
Vo=0V
Vsat1
—
1.15
1.65
V
Io=0.7A
Vsat2
—
0.6
0.85
V
Io=0.35A
Item
Symbol
Min
Typ
Max
Unit
Quiscent current
I CCO
—
—
0.45
I CC
—
9
Input
current
(Pin 6)
I CEB
—
Input
current
(Pin 2)
I RPM
Input
current
(Pin 7)
Logic
input
Index
output
Hall
amp.
Output
amp.
Saturation
voltage
10
Note
2, 6, 7
5
19 to 24
10, 12, 13
1
HA13565F
Electrical Characteristics (VCC = 5V, Ta = 25°C) (cont)
Item
FG amp.
Speed
discriminator
and
charge
pump
Current
control
Index
circuit
Test
conditions
Symbol
Min
Typ
Max
Unit
Input
voltage
range
vfg
2
—
20
mVpp
Noise
margin
nd
—
—
0.5
mVpp
Differential
noise
nc
—
—
0.5
Vpp
Common
noise
N
—
1666.5
—
—
RPM control
pin=L
—
1388.5
—
—
RPM control
pin=H
Number of
counts
Note
1, 28
Operating
frequency
f CLK
0.9
1.0
1.1
MHz
Leakage
current
Ioff
—
—
±50
nA
V8=0.8V
Output
current
Icp+
—
10
—
µA
Speed
reduction full
scale
Icp–
—
–10
—
µA
Acceleration
full scale
Threshold
voltage
Vref2
—
0.63
—
V
(Control start
voltage)
Voltage
gain
Gctl
—
–10
—
dB
Current
limitter
voltage
Vref1
157
175
193
mV
(Rnf=0.33Ω)
Index TC
input
threshold
voltage
Vth2L
—
0.65 ×
Vhb
—
V
RPM control
pin=L
Vth2H
—
0.58 ×
Vhb
—
V
RPM control
pin=H
Itc
—
—
±2
µA
Index TC
Input
current
Applicable
Pins
7
8
8
2
11
4
3
11
HA13565F
Electrical Characteristics (VCC = 5V, Ta = 25°C) (cont)
Item
Hall bias
OTSD
Test
conditions
Applicable
Pins
V
Ih=10mA,
CEB=L
17
±10
µA
CEB=H,
Vh=7.0V,
VCC=7.0V
150
—
°C
25
—
°C
Symbol
Min
Typ
Max
Unit
Output
voltage
vhb
1.9
2.2
2.5
Leakage
current
Ihoff
—
—
Operating
temperature
Tsd
125
Hysteresis
Thys
—
4
Notes: 1. Total of sink and source.
2. Refer to the figure 1. Gctl = ∆Vrnf / ∆vcp.
Vrnf
Vref1
∆Vrnf
∆Vcp
10mV
0
Vref2
Figure 1
3. Refer to the timing chart.
4. At the delivery, this characteristics is not tested.
12
Note
Vcp
HA13565F
Characteristics Data
Quiescent Current vs. Power Supply Voltage
20
Quiescent Current ICC (mA)
16
12
TBD
8
4
0
2
3
4
5
6
Power Supply Voltage VCC (V)
7
8
Disenable Quiescent Current vs. Power Supply Voltage
Disenable Quiescent Current ICCO (mA)
1.0
0.8
0.6
TBD
0.4
0.2
0
2
3
4
5
6
Power Supply Voltage VCC (V)
7
8
13
HA13565F
Output Saturation Voltage vs. Output Current
Output Saturation Voltage VsatH & VsatL (V)
2.0
1.6
1.2
TBD
0.8
0.4
0
0
0.2
0.4
0.6
Output Current IO (A)
0.8
1.0
1.0
1.2
Current Limiter Voltage vs. Rnf
200
Current Limiter Voltage Vrnf (V)
190
180
TBD
170
160
150
0.2
0.4
0.6
0.8
Rnf (Ω)
14
HA13565F
Hall Bias Voltage vs. Hall Bias Current
2.5
Hall Bias Voltage Vhb (V)
2.0
1.5
TBD
1.0
0.5
0
0
4
8
12
Hall Bias Current Ih (mA)
16
20
Current limiter Voltage vs. Junction Temperature
200
Current limiter Voltage Vrnf (V)
190
180
TBD
170
160
150
0
25
50
75
Junction Temperature Tj (°C)
100
125
15
HA13565F
Package Dimensions
14
21
28
7
6
0.575
2.25 ± 0.1
0.10
M
1.40
1.7 Max
0.13
0.17 ± 0.05
0.15 ± 0.04
1
0.32 ± 0.08
0.30 ± 0.06
0.09
0.13 +– 0.05
9.0 ± 0.2
9.0 ± 0.2
7.0
20
15
0.65
Unit: mm
1.0
0.575
0 – 8°
0.95 ± 0.10
0.50 ± 0.10
Hitachi Code
JEDEC Code
EIAJ Code
Weight
16
FP-28TB
—
—
0.19 g
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.