HA13565F Three-Phase Brushless DC Motor Driver IC ADE-207-226A (Z) 2nd. Edition April 1997 Description HA13565F is a 3-phase brushless DC motor driver IC with digital speed control. It is developed for direct drive of the spindle motor of 5V floppy disk drives. It has the following functions and features. Functions • • • • • • 3 sensor 1.0A/phase, 3-phase drive circuit Digital speed control circuit Sensorless index circuit Current limiter circuit Over-temperature shutdown circuit (OTSD) Circuit for switching between 300 and 360rpm speeds Features • Low saturation voltage 0.5V Typ (at 0.7A) • Soft switching drive circuit • Small surface mount package HA13565F U(–)input U(+)input VCC Hall bias Bias(–)pin Bias(+)pin Pin Arrangement V(+)input V(–)input W(+)input W(–)input 20 19 18 21 TAB 17 16 15 14 22 13 23 12 24 11 TAB TAB 25 10 26 9 27 8 28 7 1 2 3 TAB (Top view) 2 4 5 6 Index TC Index output CEB FG(–)input RPM control pin Index PC AGC NC NC FG(+)input Bias output U phase output V phase output Current detection W phase output Phase compensation Charge pump output CLK input HA13565F Pin Function Pin No. Pin Name Function 1 FG (–) input FG amp. (–) input terminal 2 RPM control pin Control terminal for motor rotation speed “H” → 360 rpm, “L” → 300 rpm 3 Index PC Connection for the time constant circuit that adjusts the index circuit Vth level. 4 Index TC Burst setting time constant circuit for index circuit 5 Index output Index signal output terminal (Open collector) 6 CEB Chip enable terminal “H”: disable, “L”: enable 7 CLK input Reference clock input terminal 8 Charge pump output Connection for the time constant circuit that integrates the speed error signal. 9 Phase compensation Connection for the phase compensation capacitor that stabilizes the operation of the control system. 10 W phase output W phase output 11 Current detection Output current detection and terminal which is connected with resistor for current limiter. 12 V phase output V phase output 13 U phase output U phase output 14 Bias output Smoothing circuit for the pumped output circuit 15 Bias (+) pin Output circuit used for bias pumping 16 Bias (–) pin Input circuit used for bias pumping 17 Hall bias Hall element bias input 18 VCC Power supply 19 U phase (+) input U phase (+) input terminal 20 U phase (–) input U phase (–) input terminal 21 V phase (+) input V phase (+) input terminal 22 V phase (–) input V phase (–) input terminal 23 W phase (+) input W phase (+) input terminal 24 W phase (–) input W phase (–) input terminal 25 AGC Smoothing circuit for hall amplifier output amplitude control 26 NC No connection 27 NC No connection 28 FG (–) input Index amp (+) input terminal 3 HA13565F Block Diagram C105 VCC VCC 14 C101 18 R101 19 + 20 – 21 + Hu Hv 22 – 23 + 24 – Hw u Soft switch matrix v w 25 V 12 W 10 16 Rnf AGC 11 Index detection 17 Vref1 0.175V C106 Current control 9 Bias 15 Rt2 13 OTSD C102 C104 U 3 Vref2 0.63V CEB 6 Ct2 Time constant 4 Rt1 Ct1 5 INDEX output RPM select 2 H : 360rpm L : 300rpm Discriminator CLK 7 1MHz Charge pump C1 1.6V FG 60ppr C103 28 + 1 – 4 R2 C2 FG amp. 27 NC 8 26 NC TAB HA13565F Timing Chart Hall Amp. Input vs. Output Voltage and Current U V W + B-EMF 0 – V U W + Hall amp. input 0 – U V W + Output current 0 – U V W Output voltage 0 Note: 1. The input waveforms to the hall amp. should be sine waves with a third harmonic content of less than 20%. 5 HA13565F Input Detection Timing RPM Control Pin = L Magnetization reduced by 30% *1 65 to 200mVpp + U phase hall amp. input Pin 19–Pin 20 0 – Pin 3 Hall amp. output *2 + Index detection input 0 – Index detection output-1 *2 0 Index detection output-2 *2 0 Index detection output-3 *2 0 FG amp. output *2 0 6.67 to 10ms (@300rpm) *3 Index TC Pin 4 3.33ms (@300rpm) Vth2L 0 Burst adjustment Index output Pin 5 0 Note: 1. To generate the index output, one pole of the main magnetization must be reduced so that a difference of at least 30% is assured at the Hall amp. input. 2. These waveforms are shown to indicate the principles of operation, and are not actual measured waveforms. 3. Burst adjustment is started by the fall of the index detector output 3, and then, it ends by the third of fall of FG amp. output. 4. Incorrect pulses may be output immediately after (i.e., within about 200ms of) start-up. 5. If the reduction in the magnetization is inadequate, the index signal may not be generated. Also note that excessive modulation of the Hall amp. input can cause incorrect pulses to be generated. 6 HA13565F External Parts Part No. Recommended Value Purpose Notes R2 — Integration constant 1 R101 — Hall bias Rnf 0.33Ω Spindle current detection and current limitation Rt1 1MΩ Index circuit Vth adjustment Rt2 — Index burst adjustment 5 C1, C2 — Integration constants 1 C101 ≥0.1µF Power supply bypass 3 C102 0.047µF AGC filter 4 C103 0.47µF FG amp. AC coupling C104 ≥0.1µF Bias pumping C105 ≥0.1µF Smoothing for bias pumping C106 0.1µF Control amp. phase compensation Ct1 0.1µF Index circuit Vth adjustment Ct2 — Index burst adjustment 2 6 5 Notes: 1. Use the following formulas as a design target when determining the integration constants for actual systems. ωO ≤ R2 = C1 = 2π fFG (rad/S) 20 1 J ωO NO Rnf 9.55 KT Gctl Icp 1 1 10 ωO R2 C2 = 10 C1 (Ω) (F) (F) where, wO : Time constant of servo loop f FG : FG frequency (Hz) NO : Motor speed (rpm) J : Motor moment of inertia (kg · cm · s) KT : Motor torque constant (kg · cm / A) Rnf : Current detection resistance (Ω) Gctl : Control gain (see Electrical Characteristics) Icp : Charge pump output current (see Electrical Characteristics) 2. The current limiter operates according to the following formula. Vref1 IOMAX = (A) Rnf where, Vref1 is the current limiter reference voltage (see Electrical Characteristics) 7 HA13565F 3. Place as close to the IC as possible. 4. Determine C102 according to the following formulas. 200 C102 ≥ (µF) NO · P C103 ≥ 100 fFG (µF) where, P = Number of motor poles 5. The burst time t1 is defined as follows. (see Electrical Characteristics) t1 H = –Ct2 × Rt2 × ln (1 – Vth2H / Vhb) t1 L = –Ct2 × Rt2 × ln (1 – Vth2L / Vhb) where, Rt2 is resistance inter pin 4 and pin 17. 6. If the circuit is affected by noise, a large capacitance value should be set. 8 HA13565F Absolute Maximum Ratings (Ta = 25°C) Item Symbol Value Unit Notes Power supply voltage VCC 7.0 V 1 Peak output current Iop 1.0 A Normal output current Io 0.7 A Input voltage Vi 0 to V CC + 0.3 V 2 Power dissipation PT 1.5 W 3 Junction temperature Tj +150 °C 1 Storage temperature range Tstg –55 to +125 °C Notes: 1. The operating range is as follows. VCC = 4.25 to 6.5 V Tjop = 0 to +125°C 2. Applied to the logic input pin. 3. Permissible value when Tpin = 113°C and thermal resistance is as follows: θj-pin ≤ 25°C/W θj-a1 ≤ 55°C/W (when mounted on a metal substrate) θj-a2 ≤ 80°C/W (when mounted on a glass epoxy substrate) 9 HA13565F Electrical Characteristics (VCC = 5V, Ta = 25°C) Test conditions Applicable Pins mA CEB=H, VCC=6.5V 18 13 mA CEB=L, VCC=6.5V — ±80 µA VCEB=0 to 5V 6 — — ±100 µA VRPM=0 to 5V 2 I CLK — — ±320 µA Vclk=0 to 5V 7 Input low voltage VIL — — 0.8 V Input high voltage VIH 2.0 — — V Output low voltage VOL — — 0.4 V Io=2mA Leakage current I OH — — ±10 µA V=7.0V Input resistance Rhi — 10 — kΩ Commonmode input voltage Vh 2.0 — VCC – 0.5 V Differential input voltage vh 65 — 200 mVpp Index detection threshold Vth1 80 — 90 % Leakage current I CER –0.1 — 5 mA Vo=7.0V –0.1 — 0.1 mA Vo=0V Vsat1 — 1.15 1.65 V Io=0.7A Vsat2 — 0.6 0.85 V Io=0.35A Item Symbol Min Typ Max Unit Quiscent current I CCO — — 0.45 I CC — 9 Input current (Pin 6) I CEB — Input current (Pin 2) I RPM Input current (Pin 7) Logic input Index output Hall amp. Output amp. Saturation voltage 10 Note 2, 6, 7 5 19 to 24 10, 12, 13 1 HA13565F Electrical Characteristics (VCC = 5V, Ta = 25°C) (cont) Item FG amp. Speed discriminator and charge pump Current control Index circuit Test conditions Symbol Min Typ Max Unit Input voltage range vfg 2 — 20 mVpp Noise margin nd — — 0.5 mVpp Differential noise nc — — 0.5 Vpp Common noise N — 1666.5 — — RPM control pin=L — 1388.5 — — RPM control pin=H Number of counts Note 1, 28 Operating frequency f CLK 0.9 1.0 1.1 MHz Leakage current Ioff — — ±50 nA V8=0.8V Output current Icp+ — 10 — µA Speed reduction full scale Icp– — –10 — µA Acceleration full scale Threshold voltage Vref2 — 0.63 — V (Control start voltage) Voltage gain Gctl — –10 — dB Current limitter voltage Vref1 157 175 193 mV (Rnf=0.33Ω) Index TC input threshold voltage Vth2L — 0.65 × Vhb — V RPM control pin=L Vth2H — 0.58 × Vhb — V RPM control pin=H Itc — — ±2 µA Index TC Input current Applicable Pins 7 8 8 2 11 4 3 11 HA13565F Electrical Characteristics (VCC = 5V, Ta = 25°C) (cont) Item Hall bias OTSD Test conditions Applicable Pins V Ih=10mA, CEB=L 17 ±10 µA CEB=H, Vh=7.0V, VCC=7.0V 150 — °C 25 — °C Symbol Min Typ Max Unit Output voltage vhb 1.9 2.2 2.5 Leakage current Ihoff — — Operating temperature Tsd 125 Hysteresis Thys — 4 Notes: 1. Total of sink and source. 2. Refer to the figure 1. Gctl = ∆Vrnf / ∆vcp. Vrnf Vref1 ∆Vrnf ∆Vcp 10mV 0 Vref2 Figure 1 3. Refer to the timing chart. 4. At the delivery, this characteristics is not tested. 12 Note Vcp HA13565F Characteristics Data Quiescent Current vs. Power Supply Voltage 20 Quiescent Current ICC (mA) 16 12 TBD 8 4 0 2 3 4 5 6 Power Supply Voltage VCC (V) 7 8 Disenable Quiescent Current vs. Power Supply Voltage Disenable Quiescent Current ICCO (mA) 1.0 0.8 0.6 TBD 0.4 0.2 0 2 3 4 5 6 Power Supply Voltage VCC (V) 7 8 13 HA13565F Output Saturation Voltage vs. Output Current Output Saturation Voltage VsatH & VsatL (V) 2.0 1.6 1.2 TBD 0.8 0.4 0 0 0.2 0.4 0.6 Output Current IO (A) 0.8 1.0 1.0 1.2 Current Limiter Voltage vs. Rnf 200 Current Limiter Voltage Vrnf (V) 190 180 TBD 170 160 150 0.2 0.4 0.6 0.8 Rnf (Ω) 14 HA13565F Hall Bias Voltage vs. Hall Bias Current 2.5 Hall Bias Voltage Vhb (V) 2.0 1.5 TBD 1.0 0.5 0 0 4 8 12 Hall Bias Current Ih (mA) 16 20 Current limiter Voltage vs. Junction Temperature 200 Current limiter Voltage Vrnf (V) 190 180 TBD 170 160 150 0 25 50 75 Junction Temperature Tj (°C) 100 125 15 HA13565F Package Dimensions 14 21 28 7 6 0.575 2.25 ± 0.1 0.10 M 1.40 1.7 Max 0.13 0.17 ± 0.05 0.15 ± 0.04 1 0.32 ± 0.08 0.30 ± 0.06 0.09 0.13 +– 0.05 9.0 ± 0.2 9.0 ± 0.2 7.0 20 15 0.65 Unit: mm 1.0 0.575 0 – 8° 0.95 ± 0.10 0.50 ± 0.10 Hitachi Code JEDEC Code EIAJ Code Weight 16 FP-28TB — — 0.19 g Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.