FAIRCHILD ILC6377SO50

www.fairchildsemi.com
ILC6376/77
0.5A, 300kHz, SO-8 PWM/PFM Step Down Converter with
Shutdown
Features
Description
•
•
•
•
•
•
•
•
•
•
The ILC6376/77 is a 95% efficient, 300kHz step-down DCDC converter in an SO-8 package; capable of delivering
500mA output current. The device is also capable of driving
an external FET for higher output current applications.
±2.5% accurate output voltages
Guaranteed 500mA output current
95% efficiency
55µA no load battery input current (ILC6377)
1.5µA shutdown current
Built in short circuit and overcurrent protection
Undervoltage lockout and soft-start
External transistor drive available for higher IOUT
300kHz operation
Automatic switchover to PFM mode at low currents for
longest battery life (ILC6377)
• Fixed 3.3V or 5V or adjustable output
• SO-8 package
Applications
•
•
•
•
Cellular Phones
Palmtops and PDAs
Portable Instrumentation
Buck Converter for Industrial / Networking Applications
The ILC6376/77 uses a unique p-channel architecture with
built-in charge pump to maintain low on-resistance, even at
low input voltages. The ILC6376 operates in PWM mode
with 300kHz switching frequency. The ILC6377 does the
same at high and medium load currents. When the load
current drops and the device hits approximately 25% duty
cycle, ILC6377 automatically switches over to PFM or pulse
skipping mode. PFM (pulse frequency modulation) mode of
operation extends efficiency at light loads.
Start-up is controlled via an external soft-start capacitor. The
device will automatically re-enter start-up mode when an
output current overload condition is sensed; thus providing
automatic short-circuit protection. Voltage lockout prevents
faulty operation below the minimum operating voltage level.
In shutdown, the ILC6376/77 consumes only 1.5µA current.
The ILC6376/77SOXX offers fixed 3.3V or 5V output while
ILC6376/77SOADJ allows adjustable output. Both versions
of ILC6376/77 are available in an SO-8 surface mount
package.
Typical Applications
SD1
VIN
1
*CIN
S/D
10µF
8
+
2
ILC6376/77
3
4
CSS
(TOP VIEW)
L
22µH
7
6
VOUT
5
+
CL
47µF
Fig 1. Typical step-down DC-DC
converter application
SD1: SS12 Schottky Diode (FAIRCHILD)
CL: 10V/47µF Tantalum Capacitor (NICHICON, F93)
CSS: 4700pF Ceramic Capacitor
CIN: 16V / 10µF Tantalum Capacitor (NICHICON, F93)
Rev. 1.5 November 2001
©2001 Fairchild Semiconductor Corporation
ILC6376/77
Pin Assignments
VIN
1
8
LX
VIN
1
EXT2
2
7
EXT1
EXT2
2
P_BST
3
6
GND
P_BST
3
S/D,
CSS
4
5
VOUT
S/D,
CSS
4
ILC6376/77
(TOP VIEW)
ILC6376/77 SOXX
SO-8 Package
ILC6376/77
(TOP VIEW)
8
LX
7
EXT1
6
GND
5
FB
ILC6376/77 SOADJ
SO-8 Package
Pin Definitions
Pin
Symbol
1
VIN
Function
2
EXT2
External gate drive pin (low when P-Ch FET is ON)
3
P-BST
P-Ch gate boost
4
S/D,
Power Supply
Shutdown, also soft-start capacitor pin and VREFoutput
Softstart, VREF
5
VOUT / FB
6
GND
7
EXT1
8
LX
Output voltage sense pin for ILC6376/77SO-XX; 1V feedback pin for
ILC6376/77SO-ADJ
Ground connection
External gate drive pin (low when P-Ch FET is ON)
Inductor Switch Pin
Internal Block Diagram
VIN
VOUT
8 LX
1
5
7 EXT1
+
Error
Amp
-
S/D, 4
Softstart,
Vref
S/D,
Vref
with
Softstart
+
PWM
Comp
-
GATE
DRIVER
2 EXT2
3 P_BST
Protection
PWM/PFM
CONTROLLER
RAMP WAVE
GENERATOR,
OSCILLATOR
6 GND
©2001 Fairchild Semiconductor Corporation
2
ILC6376/77
Absolute Maximum Ratings (TA=25°C)
Parameter
VIN Input Voltage Pin
Symbol
Ratings
Units
VIN
-0.3 to +12
V
VOUT
VFB
-0.3 to +12
-0.3 to VIN +0.3
V
Voltage on LX pin
VLX
VIN - VLX = -0.3 to +12
V
Peak Switch Current on LX pin
ILX
700
mA
VDP_BST
VIN - VP_BST = -0.3 to +12
V
VOUT Pin (ILC6376/77SOXX)
FB Pin (ILC6376/77SOADJ)
Voltage on P_BST pin
Current EXT1, EXT2 pins
IEXT1, IEXT2
±50
mA
Voltage on all other pins
~
-0.3 to VIN + 0.3
V
PD
300
mW
Operating Ambient Temperature
TOPR
-30~+80
°C
Storage Temperature
TSTG
-40~+125
°C
Continuous Total Power Dissipation
Electrical Characteristics ILC6376/77SO33
VOUT = 3.3V, VIN = 4V, FOSC=300kHz, IOUT = 130mA, TA = 25°C, unless otherwise specified. Circuit configuration figure 1.
Parameter
Output Voltage
Input Voltage
Output Maximum Current
Input Current Supply
Symbol
VOUT
VIN
IOUT(MAX)
IIN
Shutdown Current
LX Switch On - Resistance
IS/D
Rds(on)
LX Switch Leakage Current
ILXL
Oscillator Frequency
FOSC
Max Duty Cycle
PFM Duty Cycle
Efficiency
Undervoltage Lockout
MAXDTY
PFMDTY
EFFI
VUVLO
Soft-Start Time
Shutdown Input Voltage
EXT1, EXT2 Hi OnResistance
EXT1, EXT2 Low OnResistance
TSS
VSD
REXtHI
REXtLOW
Conditions
VIN 3.5V, No Loads
Min.
3.218
Typ.
3.300
500
600
1480
50
1.5
0.64
ILC6376
ILC6377
VS/D = 0V
Open Loop Measurement, VS/D =
VIN, VLX = VIN - 0.2V, VOUT = 3V
Open Loop Measurement, VOUT =
VIN, VLX = 0V
Measurement Waveform at EXT pin
VIN = 3.6V IOUT = 20mA
Max.
3.383
10
2190
86
2.5
0.85
µA
µA
Ω
2.0
µA
kHz
255
300
345
No Load (ILC6377)
15
100
25
95
35
Minimum VIN when Vref does not
start up
VREF rises to 0V from 0.9V
High = Regulator “ON”
Low = Regulator “OFF”
3V applied to VOUT with no external
components
3.6V applied to VOUT with no
external components
0.9
6.0
0.65
Units
V
V
mA
1.8
%
%
%
V
10.0
16.0
msec
V
35
0.2
47
Ω
29
37
Ω
©2001 Fairchild Semiconductor Corporation
3
ILC6376/77
Electrical Characteristics ILC6376/77SO50
Unless Otherwise specified all limits are at VOUT = 5.0V, VIN = 6V, FOSC=300kHz, IOUT = 200mA, TA = 25°C. Circuit configuration figure 1.
Parameter
Output Voltage
Input Voltage
Output Maximum Current
Symbol
Conditions
Units
V
10
V
3740
ILC6377
71
110
VS/D = 0V
1.5
2.5
µA
Open Loop Measurement, VS/D = VIN,
VLX =VIN - 0.2V, VOUT = 4.5V
0.44
0.58
Ω
2.0
µA
345
kHz
IS/D
ILXL
FOSC
Max Duty Cycle
MAXDTY
PFM Duty Cycle
PFMDTY
Efficiency
EFFI
Undervoltage Lockout
VUVLO
Open Loop Measurement, VOUT =
VIN, VLX = 0V
Measure Waveform at EXT pin VIN =
5.3V
IOUT = 20mA
255
No Load (ILC6377)
15
Minimum VIN when VREF does not
start up
0.9
25
VREF rises to 0V from 0.9V
6.0
Shutdown Input Voltage
VS/D
High = Regulator “ON”
Low = Regulator “OFF”
0.65
10.0
µA
%
35
95
TSS
EXT1, EXT2 Low OnResistance
300
100
Soft-Start Time
EXT1, EXT2 Hi OnResistance
mA
2540
Shutdown Current
Rds(on)
600
ILC6376
VIN 5.25V, No Load
Oscillator Frequency
Max.
5.125
500
IOUT(MAX)
IIN
LX Switch Leakage Current
Typ.
4.875 5.000
VIN
Input Supply Current
LX Switch On-Resistance
Min.
VOUT
%
%
1.8
V
16
msec
V
0.2
REXtHI
Open Loop Measurement
24
32
Ω
REXtLOW
Open Loop Measurement
20
26
Ω
©2001 Fairchild Semiconductor Corporation
4
ILC6376/77
Electrical Characteristics ILC6376/77SOADJ
Unless Otherwise specified all limits are at VOUT programmed to 5.0V, VIN = 6V, FOSC=300kHz, IOUT = 200mA, TA = 25°C.
Circuit configuration figure 1.
Parameter
Feedback Voltage (pin 5)
Output Voltage
Output Maximum Current
Symbol
Conditions
VFB
VOUT
RFB1 + RFB2 < 2MΩ
Min.
Typ.
Max.
Units
.995
1.000
1.015
V
1.5
500
IOUT(MAX)
6
600
V
mA
Input Supply Current
IIN
VIN 5.25V, No Load
71
110
µA
Shutdown Current
IS/D
VS/D = 0V
1.5
2.5
µA
Open Loop Measurement, VS/D = VIN,
VLX = VIN - 0.2V, VOUT = 4.5V
0.44
0.58
Ω
2.0
µA
345
kHz
LX Switch On-Resistance
LX Leak Current
Oscillator Frequency
Rds(on)
ILXL
FOSC
Max Duty Cycle
MAXDTY
PFM Duty Cycle
PFMDTY
Efficiency
EFFI
Undervoltage Lockout
VUVLO
Open Loop Measurement, VOUT =
VIN, VLX = 0V
Measure Waveform at EXT pin VIN =
5.3V IOUT = 20mA
255
100
No Load (ILC6377)
15
Minimum VIN when VREF does not
start up
0.9
TSS
VREF rises to 0V from 0.9V
6.0
Shutdown Input Voltage
VS/D
High = Regulator “ON”
Low = Regulator “OFF”
0.65
EXT1, EXT2 Low OnResistance
25
%
35
95
Soft-Start Time
EXT1, EXT2 Hi OnResistance
300
10.0
%
%
1.8
V
16.0
msec
V
0.2
REXtHI
Open Loop Measurement
24
32
Ω
REXtLOW
Open Loop Measurement
20
26
Ω
©2001 Fairchild Semiconductor Corporation
5
ILC6376/77
SD1
VIN
1
*CIN
S/D
10µF
8
+
2
ILC6376/77
3
(TOP VIEW)
4
CSS
L
22µH
7
6
VOUT
5
+
CL
47µF
Fig 1. Typical step-down DC-DC
converter application
SD1: SS12 Schottky Diode (FAIRCHILD)
CL: 10V/47µF Tantalum Capacitor (NICHICON, F93)
CSS: 4700pF Ceramic Capacitor
CIN: 16V / 10µF Tantalum Capacitor (NICHICON, F93)
Figure 1 shows a typical fixed output voltage step-down DC-DC
converter application circuit for ILC6376/77SOXX.
External component selection
Over-current and short-circuit protection
Proper selection of external components is important for
achieving high performance. The output inductor selected
should have low DC resistance on the order of 0.2Ω or less
and saturation current rating of 1A or higher. Recommended
inductors are Sumida CD54 (22µH, 0.18Ω max DC resistance) or Coilcraft DO3308P-223 (22µH, 0.18Ω max DC
resistance) or equivalent.
In the event of an over-current or short-circuit condition, the
ILC6376/77 cycles the soft-start pin in a hiccup mode to provide fault protection. When the output voltage decreases due
to overload, the ILC6376/77 will operate continuously at the
maximum duty cycle. If the period of maximum duty cycle
operation exceeds TPRO (typically 5 msec), pin 4 will be
pulled low; thus discharging the external soft-start capacitor
CSS. This action inhibits the regulator’s PWM action. Next,
the ILC6376/77’s soft-start circuitry starts recharging CSS
and initiates a controlled start-up. If the overload condition
continues to exist, the above sequence of events will repeat;
thus continuing to cycle the soft-start function.
The catch diode should be a schottky diode with low forward
drop and rated at 1A or greater current, SS12 or it’s equivalent is recommended.
Input and output capacitors should be tantalum capacitors
with low equivalent series resistance (ESR) and voltage rating higher than the actual application.
Soft-start
Pin 4 of ILC6376/77 functions as the soft-start pin as well as
the shutdown pin. A soft-start capacitor (from pin 4 to
ground) controls the rate at which the power supply starts up;
thus preventing large overshoots at the output as well as
large in-rush current. The value for CSS should be 100pF or
greater.
Shutdown
The ILC6376/77 is placed in shutdown mode by taking pin 4
to ground. In shutdown, the quiescent current of the device is
under 2µA. When using the shutdown feature, pin 4 must be
driven from an open collector or open drain output without
employing an external pull-up resistor, as shown in figure 2.
Note that very little power is dissipated with this method of
fault protection versus constant current limit protection.
Even though the internal power MOSFET is pulsed on and
off at high peak current, the DC current is low; thus leading
to low power dissipation even under short-circuit conditions.
Keep in mind that the duration of maximum duty cycle
condition is used to trigger the ILC6376/77’s fault protection circuit. As such, a small input-output (V IN - VOUT)
differential voltage may trigger the device’s fault protection circuitry even at low output current.
Undervoltage Lockout
The undervoltage lockout feature prevents faulty operation
by disabling the operation of the regulator when input voltage is below the minimum operating voltage, VUVLO.
When the input voltage is lower than VUVLO the device
disables the internal P-channel MOSFET and provides
“high” output at both EXT1 and EXT2 outputs.
©2001 Fairchild Semiconductor Corporation
6
ILC6376/77
To pin 8
EXT1
SD1
VIN
*CIN
1
+
2
S/D
VOUT
8
ILC6376/77
3
(TOP VIEW)
4
6
L
7
CFB
RFB1
5
6
RFB2
VOUT
5
+
CSS
CL
Fig.2 1Amp output current application
using external MOSFET
The EXT1 and EXT2 pins are provided so as to drive external transistors; thus allowing design flexibility. The EXT1
output drive signal has the same timing as the gate drive to
the internal P-channel MOSFET i.e. EXT1 output is low as
long as the internal MOSFET is on. Both EXT1 and EXT2
pins are capable of driving 1000pF gate capacitance. For
example, a high output current application circuit using an
external P-channel MOSFET is shown in figure 2.
RFB1 + RFB2 < 2MW
1
C FB chosen so that 1kHz < 2 x π x CFB x RFB1 < 20kHz
Fig.4 Adjustable output using ILC6376/77SOADJ
(Note: rest of circuit is same as Fig.1)
Adjustable Output (ILC6376/77SOADJ)
For adjustable output voltage ILC6376/77SOADJ should be
used. All connections to the ILC6376/77SOADJ are the
same as ILC6376/77SOXX, except for the feedback voltage
divider network shown in figure 4. The output voltage,
VOUT, can be calculated from the following equation:
VOUT = VFB (1 + RFB1/RFB2), where VFB is approximately
1V and RFB1 + RFB2 < 2MΩ
1
CBST
2200pF
2
3
8
ILC6376/77
(TOP VIEW)
4
SD2
MBR0520L
Schottky
7
6
5
Voltage between Vin and
P_BST must be less than 10V.
Figure 3. P-Channel Negative
Boost Circuit
P-Channel Boost Circuit
The ILC6376/77 includes a unique P-Channel MOSFET
architecture with built-in charge pump to maintain low onresistance even at low input voltages. As shown in figure 3, a
2200pF ceramic capacitor and a schottky diode (MBR0520L
or equivalent) allows the gate voltage of the internal P-Channel MOSFET to be driven negative; thus reducing the switch
on-resistance. This technique can be employed to increase
efficiency at low input voltages and high output currents.
Note that the voltage between VIN and P_BST should not
exceed 10V, otherwise damage to the device may occur. For
high input voltage applications the schottky diode should be
replaced by a low voltage zener diode so that the P_BST pin
is clamped to a safe negative voltage.
The feedback compensation capacitor should be chosen such
that the pole frequency f is between 1kHz and 20kHz:
1
1kHz < 2 x π x CFB x RFB1 < 20kHz
The pole frequency should generally be set at 5kHz. The
value of CFB calculated from the above equation may require
some adjustment depending on the output inductor (L) and
output capacitor (CL) values chosen.
Example for 3V output:
RFB1 = 400kΩ
RFB2 = 200kΩ
CFB = 100pF
PC Board Layout
As with all switching DC-DC converter designs, good PC
board layout is critical for optimum performance. The heavy
lines indicated in figure 1 schematic should be wide
printed circuit board traces and should be kept as short
as is practical. A large ground plane with as much copper
area as is allowable should be used. All external components
should be mounted as close to the IC as possible. For
ILC6376/77SOADJ, the feedback resistors and their associated wiring should be kept away from the inductor location
and the vicinity of inductive flux.
©2001 Fairchild Semiconductor Corporation
7
ILC6376/77
Typical Performance Characteristics
General conditions for all curves: Circuit 1; L = 20µH (Sumida, CD54), CIN = 47µF (tantalum) with 0.1µF (ceramic),
CL = 47µH (tantalum) SS12 schottky diode, CSS = 4700pF (ceramic), TA = 25°C unless otherwise noted.
Output Voltage vs. Output Current
Output Voltage vs. Output Current
ILC6377SO33
L = 22µH (CD54)
3.5
3.4
5.0V
VIN = 3.96
3.3
8.0V
3.2
3.1
OUTPUT VOLTAGE: VOUT(V)
OUTPUT VOLTAGE: VOUT(V)
3.5
10.0V
3.4
3.3
VIN = 3.96V, 5.0V,8.0V
3.2
3.1
3.0
3.0
0.1
1
10
0.1
1000
100
5.0V
VIN = 3.96
3.3
8.0V
3.2
3.1
3.5
OUTPUT VOLTAGE: VOUT(V)
OUTPUT VOLTAGE: VOUT(V)
L = 10µH (CD54)
3.4
0.1
ILC6377SO-33
L = 47µH (CD105)
3.4
5.0V
VIN = 4.0V
3.3
3.2
8.0V
3.1
1
10
100
0.1
1000
Output Voltage vs. Output Current
10.0V
OUTPUT VOLTAGE: VOUT(V)
5.4
5.2
10
1000
100
Output Voltage vs. Output Current
L = 22µH (CD54)
ILC6377SO50
1
OUTPUT CURRENT: IOUT(mA)
OUTPUT CURRENT: IOUT(mA)
OUTPUT VOLTAGE: VOUT(V)
1000
100
3.0
3.0
5.4
10
Output Voltage vs. Output Current
Output Voltage vs. Output Current
ILC6377SO33
1
OUTPUT CURRENT: IOUT(mA)
OUTPUT CURRENT: IOUT(mA)
3.5
L = 22µH (CD54)
ILC6376SO33
6.0V
5.0
8.0V
4.8
4.6
ILC6376SO50
L =22µH (CD54)
5.2
10.0V
5.0
6.0V
8.0V
4.8
4.6
4.4
4.4
0.1
1
10
100
OUTPUT CURRENT: IOUT(mA)
1000
0.1
1
10
100
1000
OUTPUT CURRENT: IOUT(mA)
©2001 Fairchild Semiconductor Corporation
8
ILC6376/77
Typical Performance Characteristics
General conditions for all curves: Circuit 1; L = 20µH (Sumida, CD54), CIN = 47µF (tantalum) with 0.1µF (ceramic),
CL = 47µH (tantalum) SS12 schottky diode, CSS = 4700pF (ceramic), TA = 25°C unless otherwise noted.
Efficiency vs. Output Current
Efficiency vs. Output Current
L = 22µH (CD54)
ILC6377SO33
100
100
ILC6376SO33
EFFICIENCY: EFFI(%)
EFFICIENCY: EFFI(%)
VIN = 4.0V
80
5.0V
8.0V
60
40
20
0
0.1
1
10
VIN = 4.0V
10.0V
60
8.0V
40
20
1
10
1000
100
OUTPUT CURRENT: IOUT(mA)
OUTPUT CURRENT: IOUT(mA)
Efficiency vs. Output Current
Efficiency vs. Output Current
L = 10µH (CD54)
ILC6377SO33
100
80
0
0.1
1000
100
L = 22µH (CD54)
5.0V
100
L = 47µH (CD105)
ILC6377SO33
80
EFFICIENCY: EFFI(%)
EFFICIENCY: EFFI(%)
VIN = 3.96V
5.0V
8.0V
60
40
20
0
0.1
1
10
5.0V
60
40
20
L = 22µH (CD54)
100
EFFICIENCY: EFFI(%)
EFFICIENCY: EFFI(%)
100
1000
L = 22µH (CD54)
ILC6376SO50
5.0V
80
10.0
8.0V
VIN = 6.0V
60
40
20
0
0.1
10
Efficiency vs. Output Current
Efficiency vs. Output Current
ILC6377SO50
1
OUTPUT CURRENT: IOUT(mA)
OUTPUT CURRENT: IOUT(mA)
100
8.0V
VIN = 4.0V
0
0.1
1000
100
80
1
10
100
OUTPUT CURRENT: IOUT(mA)
1000
80
VIN = 3.96V
8.0V
10.0V
60
40
20
0
0.1
1
10
100
1000
OUTPUT CURRENT: IOUT(mA)
©2001 Fairchild Semiconductor Corporation
9
ILC6376/77
Typical Performance Characteristics
General conditions for all curves: Circuit 1; L = 20µH (Sumida, CD54), CIN = 47µF (tantalum) with 0.1µF (ceramic),
CL = 47µH (tantalum) SS12 schottky diode, CSS = 4700pF (ceramic), TA = 25°C unless otherwise noted.
Output vs. Ambient Temperature
3.40
ILC6377SO33
100
SUPPLY CURRENT: IIN(µA)
OUTPUT VOLTAGE (V)
Stand-by Current vs. Ambient Temperature
ILC6377SO33
3.35
3.30
3.26
3.20
-40
-20
0
20
40
60
80
60
40
20
0
-40
80
-20
Output Voltage vs.
Ambient Temperature
60
80
On Resistance vs. Ambient Temperature
ILC6377SO33
ILC6377SO33
SWITCH RESISTANCE: RDS(ON)(Ω)
STAND-BY CURRENT (µA)
40
AMBIENT TEMP.: TA (˚C)
AMBIENT TEMP.: TA (˚C)
3.40
20
0
3.35
3.30
3.25
3.20
1.2
1.0
0.8
0.6
0.4
0.2
-40
-20
0
20
40
60
-40
80
-20
AMBIENT TEMP.: TA (˚C)
60
80
ILC6377SO33
3.40
PFM DUTY RATIO: PFMDTY(%)
OSCILLATION FREQUENCY: FOSC(kHz)
ILC6377SO33
350
300
250
200
-40
40
PFM Duty Ration vs.
Ambient Temperature
Oscillation Frequency vs.
Ambient Temperature
400
20
0
AMBIENT TEMP.: TA (˚C)
-20
0
20
40
AMBIENT TEMP.: TA (˚C)
60
80
3.35
3.30
3.25
3.20
-40
-20
0
20
40
60
80
AMBIENT TEMP.: TA (˚C)
©2001 Fairchild Semiconductor Corporation
10
ILC6376/77
Typical Performance Characteristics
General conditions for all curves: Circuit 1; L = 20µH (Sumida, CD54), CIN = 47µF (tantalum) with 0.1µF (ceramic),
CL = 47µH (tantalum) SS12 schottky diode, CSS = 4700pF (ceramic), TA = 25°C unless otherwise noted.
Minimum Operating Voltage vs.
Ambient Temperature
Efficiency vs. Ambient Temperature
ILC6377SO33
ILC6377SO33
MIN. OPERATING VOLTAGE: VOUT(V)
EFFICIENCY: EFFI(%)
100
90
80
70
60
50
-40
-20
0
20
40
60
1.8
1.6
1.4
1.2
1.0
0.8
80
-40
-20
AMBIENT TEMP.: TA (˚C)
0
20
40
60
80
AMBIENT TEMP.: TA (˚C)
Soft-Start Time vs. Ambient Temperature
CE "H" Voltage vs. Ambient Temperature
ILC6377SO33
ILC6377SO33
16
CE "H" VOLTAGE: VCEL(V)
SOFT-START TIME: TSS(ms)
1.0
12
8
4
0
-40
-20
0
20
40
60
80
AMBIENT TEMP.: TA (˚C)
0.8
0.6
0.4
0.2
0
-40
-20
0
20
40
60
80
AMBIENT TEMP.: TA (˚C)
CE "L" Voltage vs.
Ambient Temperature
ILC6377SO33
CE "L" VOLTAGE: VCEL(V)
1.0
0.8
0.6
0.4
0.2
0.8
-40
-20
0
20
40
60
80
AMBIENT TEMP.: TA (˚C)
©2001 Fairchild Semiconductor Corporation
11
ILC6376/77
Ordering Information
ILC6376SO33
3.3V, 300kHz step-down PWM converter
ILC6376SO50
5V, 300kHz step-down PWM converter
ILC6376ADJ
Adjustable, 300kHz step-down PWM converter
ILC6377SO33
3.3V, 300kHz step-down PWM/PFM converter
ILC6377SO50
5V, 300kHz step-down PWM/PFM converter
ILC6377SOADJ
Adjustable, 300kHz step-down PWM/PFM converter
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO
ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME
ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
11/21/01 0.0m 001
Stock#DSxxxxxxxx
2001 Fairchild Semiconductor Corporation