IRF IR2304PBF

Data Sheet No. PD60201 Rev.D
IR2301(S) & (PbF)
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Packages
Fully operational to +600V
Tolerant to negative transient voltage dV/dt immune
Gate drive supply range from 5 to 20V
Undervoltage lockout for both channels
3.3V, 5V and 15V input logic compatible
Matched propagation delay for both channels
Logic and power ground +/- 5V offset.
Lower di/dt gate driver for better noise immunity
Outputs in phase with inputs
Also available LEAD-FREE (PbF)
Description
8 Lead PDIP
IR2301
8 Lead SOIC
IR2301S
2106/2301//2108//2109/2302/2304 Feature Comparison
The IR2301(S) are high voltage, high speed
power MOSFET and IGBT drivers with indepen!#!
$
!"!
dent high and low side referenced output
%&'%*&
channels. Proprietary HVIC and latch immune
'
!
%&4
'
CMOS technologies enable ruggedized mono%&7
!94
'
:!
lithic construction. The logic input is compatible
##;!<94=9µ
%&74
'
with standard CMOS or LSTTL output, down to
%&>'%*%
!94
'
:!
3.3V logic. The output drivers feature a high
##;!<94=9µ
%&>4
'
pulse current buffer stage designed for minimum
:!
!&
'
%*4
driver cross-conduction. The floating channel
can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to
600 volts.
Typical Connection
(Refer to Lead
Assignments for
correct pin configuration). This/
T h e s e
diagram(s)
show electrical
connections
only. Please refer to our Application Notes
and DesignTips
for proper circuit
board layout.
IR2301
www.irf.com
1
IR2301(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
VB
High side floating absolute voltage
VS
Min.
Max.
-0.3
625
Units
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage
COM - 0.3
VCC + 0.3
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
—
50
(8 lead PDIP)
—
1.0
(8 lead SOIC)
—
0.625
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
150
TJ
Junction temperature
—
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
Definition
Min.
Max.
VB
High side floating supply absolute voltage
VS + 5
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VS
VB
5
20
VHO
High side floating output voltage
VCC
Low side and logic fixed supply voltage
VLO
Low side output voltage
VIN
Logic input voltage
TA
Ambient temperature
0
VCC
COM
VCC
-40
150
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
2
www.irf.com
IR2301(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF, TA = 25°C.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
toff
Turn-on propagation delay
—
220
300
VS = 0V
Turn-off propagation delay
—
200
280
VS = 0V or 600V
MT
Delay matching, HS & LS turn-on/off
—
0
50
tr
Turn-on rise time
—
130
220
VS = 0V
tf
Turn-off fall time
—
50
80
VS = 0V
nsec
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V, and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to
COM and are applicable to the respective input leads. The VO, IO and Ron parameters are referenced to COM and are
applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage
2.9
—
—
VIL
Logic “0” input voltage
—
—
0.8
VCC = 10V to 20V
VOH
High level output voltage, VBIAS - VO
—
0.8
1.4
VOL
Low level output voltage, VO
—
0.3
0.6
IO = 20 mA
ILK
Offset supply leakage current
—
—
50
VB = VS = 600V
IQBS
Quiescent VBS supply current
20
60
100
IQCC
50
120
190
IIN+
Quiescent VCC supply current
Logic “1” input bias current
—
5
20
VIN = 5V
IIN-
Logic “0” input bias current
—
—
2
VIN = 0V
VCCUV+
VCC and VBS supply undervoltage positive
3.3
4.1
5
VBSUV+
going threshold
VCCUV-
VCC and VBS supply undervoltage negative
3
3.8
4.7
VBSUV-
negative going threshold
VCCUVH
Hysteresis
0.1
0.3
—
IO+
Output high short circuit pulsed current
120
200
—
IO-
Output low short circuit pulsed current
250
350
—
V
VCC = 10V to 20V
IO = 20 mA
VIN = 0V or 5V
µA
VIN = 0V or 5V
V
VBSUVH
www.irf.com
mA
VO = 0V,
PW ≤ 10 µs
VO = 15V,
PW ≤ 10 µs
3
IR2301(S) & (PbF)
Functional Block Diagrams
VB
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
HIN
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
VSS/COM
LEVEL
SHIFT
LIN
DELAY
LO
COM
Lead Definitions
Symbol Description
HIN
Logic input for high side gate driver output (HO), in phase
LIN
Logic input for low side gate driver output (LO), in phase
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
4
www.irf.com
IR2301(S) & (PbF)
Lead Assignments
1
VCC
VB
8
1
VCC
VB
8
2
HIN
HO
7
2
HIN
HO
7
LIN
VS
6
LIN
VS
6
COM
LO
5
COM
LO
5
3
4
3
4
8 Lead PDIP
8 Lead SOIC
IR2301
IR2301S
9]
9]
^^
>]
Figure 1. Input/Output Timing Diagram
&]
^
>]
&]
Figure 2. Switching Time Waveform Definitions
9]
9]
&]
>]
Figure 3. Delay Matching Waveform Definitions
www.irf.com
5
IR2301(S) & (PbF)
800
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
500
400
300
M ax.
200
Typ.
100
0
-50
700
M ax.
600
500
400
Typ.
300
200
100
-25
0
25
50
75
100
125
5
10
o
Supply Voltage (V)
Figure 4A. Turn-on Propagation Delay
vs. Temperature
Figure 4B. Turn-on Propagation Delay
vs. Supply Voltage
700
Turn-off Propagation Delay (ns)
Turn-off Propagation Delay (ns)
500
400
300
M ax.
200
Typ.
0
-50
600
M ax.
500
400
300
Typ.
200
100
-25
0
25
50
75
100
o
Temperature ( C)
Figure 5A. Turn-off Propagation Delay
vs. Temperature
6
20
Temperature ( C)
600
100
15
125
5
10
15
20
Supply Voltage (V)
Figure 5B. Turn-off Propagation Delay
vs. Supply Voltage
www.irf.com
IR2301(S) & (PbF)
700
500
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
600
400
300
200
M ax.
100
400
300
Typ.
200
100
Typ.
0
-50
M ax.
500
0
-25
0
25
50
75
100
125
5
10
o
Temperature ( C)
20
Supply Voltage (V)
Figure 6A. Turn-on Rise Time
vs. Temperature
Figure 6B. Turn-on Rise Time
vs. Supply Voltage
200
200
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
15
150
100
M ax.
50
150
M ax.
100
Typ.
50
Typ.
0
-50
0
-25
0
25
50
75
o
Temperature ( C)
Figure 7A. Turn-off Fall Time
vs. Temperature
www.irf.com
100
125
5
10
15
20
Supply Voltage (V)
Figure 7B. Turn-off Fall Time
vs. Supply Voltage
7
6
6
5
5
Logic "1" Input Voltage (V)
Logic "1" Input Voltage (V)
IR2301(S) & (PbF)
4
M ax.
3
2
1
0
-50
4
M ax.
3
2
1
0
-25
0
25
50
75
100
125
5
o
Temperature ( C)
5
5
Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
6
4
3
2
M in.
4
3
2
M in.
1
0
-25
0
25
50
75
100
Temperature (oC)
Figure 9A. Logic “0” Input Voltage
vs. Temperature
8
20
Figure 8B. Logic “1” Input Voltage
vs. Supply Voltage
6
0
-50
15
Supply Voltage (V)
Figure 8A. Logic “1” Input Voltage
vs. Temperature
1
10
125
5
10
15
20
Supply Voltage (V)
Figure 9B. Logic “0” Input Voltage
vs. Supply Voltage
www.irf.com
IR2301(S) & (PbF)
6
High Level Output Voltage (V)
High Level Output Voltage (V)
4
3
2
M ax.
1
5
M ax.
4
3
2
Typ.
1
Typ.
0
0
-50
-25
0
25
50
75
100
5
125
10
Figure 10B. High Level Output Voltage
vs. Supply Voltage
2.0
Low Level Output Voltage (V)
2.0
Low Level Output Voltage (V)
20
Supply Voltage (V)
Temperature (oC)
Figure 10A. High Level Output Voltage
vs. Temperature
1.5
1.0
0.5
15
M ax.
1.5
M ax.
1.0
0.5
Typ.
Typ.
0.0
-50
0.0
-25
0
25
50
75
100
o
Temperature ( C)
Figure 11A. Low Level Output Voltage
vs. Temperature
www.irf.com
125
5
10
15
20
Supply Voltage (V)
Figure 11B. Low Level Output Voltage
vs. Supply Voltage
9
500
500
Offset Supply Leakage Current ( A)
Offset Supply Leakage Current ( A)
IR2301(S) & (PbF)
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
400
300
200
100
M ax.
0
100
200
Temperature (oC)
Figure 12A. Offset Supply Leakage Current
vs. Temperature
500
600
200
Quiescent VBS Supply Current ( A)
Quiescent V BS Supply Current ( A)
400
Figure 12B. Offset Supply Leakage Current
vs. Supply Voltage
200
150
100
M ax.
Typ.
50
M in.
0
-50
150
100
M ax.
50
Typ.
M in.
0
-25
0
25
50
75
100
Temperature (oC)
Figure 13A. Quiescent VBS Supply Current
vs. Temperature
10
300
Offset Supply Voltage (V)
125
5
10
15
20
VBS Supply Voltage (V)
Figure 13B. Quiescent VBS Supply Current
vs. Supply Voltage
www.irf.com
IR2301(S) & (PbF)
400
Quiescent VCC Supply Current ( A)
Quiescent VCC Supply Current ( A)
400
300
M ax.
200
Typ.
100
M in.
0
-50
-25
0
25
50
75
100
Typ.
M in.
5
10
15
Temperature (oC)
VCC Supply Voltage (V)
Figure 14A. Quiescent VCC Supply Current
vs. Temperature
Figure 14B. Quiescent VCC Supply Current
vs. VCC Supply Voltage
20
50
Logic "1" Input Bias Current ( A)
Logic "1" Input Bias Current ( A)
M ax.
100
125
50
40
30
20
M ax.
Typ.
0
-50
200
0
60
10
300
40
30
M ax.
20
10
Typ.
0
-25
0
25
50
75
100
o
Temperature ( C)
Figure 15A. Logic “1” Input Bias Current
vs. Temperature
www.irf.com
125
5
10
15
20
Supply Voltage (V)
Figure 15B. Logic “1” Input Bias Current
vs. Supply Voltage
11
IR2301(S) & (PbF)
5
Logic "0" Input Bias Current ( A)
Logic "0" Input Bias Current ( A)
5
4
3
M ax.
2
1
0
-50
4
3
M ax.
2
1
0
-25
0
25
50
75
100
125
5
10
Figure 16A. Logic “0” Input Bias Current
vs. Temperature
Figure 16B. Logic “0” Input Bias Currentt
vs. Supply Voltage
M ax.
5
Typ.
4
M in.
3
-25
0
25
50
75
100
125
Temperature ( C)
Figure 17. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
V CC and VBS Undervoltage Threshold (-) (V)
V CC and VBS Undervoltage Threshold (+) (V)
6
o
12
20
Supply Voltage (V)
C)
2
-50
15
Temperature (o
6
5
M ax.
Typ.
4
M in.
3
2
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 18. VCC and VBS Undervoltage Threshold (-)
vs. Temperature
www.irf.com
IR2301(S) & (PbF)
400
Output Source Current (mA)
Output Source Current (mA)
400
300
Typ.
200
M in.
100
300
200
100
Typ.
M in.
0
0
-50
-25
0
25
50
75
100
5
125
10
20
Supply Voltage (V)
Temperature (oC)
Figure 19A. Output Source Current
vs. Temperature
Figure 19B. Output Source Current
vs. Supply Voltage
600
600
500
500
Output Sink Current (mA)
Output Sink Current (mA)
15
Typ.
400
300
M in.
200
100
400
300
200
Typ.
100
M in.
0
-50
0
-25
0
25
50
75
100
o
Temperature ( C)
Figure 20A. Output Sink Current
vs. Temperature
www.irf.com
125
5
10
15
20
Supply Voltage (V)
Figure 20B. Output Sink Current
vs. Supply Voltage
13
IR2301(S) & (PbF)
140
Typ.
120
-2
Temprature (oC)
Maximum VS Negative Offset (V)
0
-4
-6
-8
100
80
140V
70V
60
0V
40
-10
20
-12
5
10
15
1
20
1000
Figure 22. IR2301 vs. Frequency (IRFBC20),
Rgate=33Ω , VCC=15V
Figure 21. Maximum VS Negative Offset
vs. VBS Floating Supply Voltage
140
140
120
120
100
140V
80
70V
0V
Temperature (oC)
Temperature (oC)
100
Frequency (KHz)
VBS Floating Supply Voltage (V)
60
10
100
140V
80
70V
0V
60
40
40
20
20
1
1
10
100
10
100
1000
1000
Frequency (KHz)
Frequency (KHz)
Figure 23. IR2301 vs. Frequency (IRFBC30),
Rgate=22W, Vcc=15V
14
Figure 24. IR2301 vs. Frequency (IRFBC40),
Rgate=15Ω , VCC=15V
www.irf.com
IR2301(S) & (PbF)
0V
120
Temperature (oC)
120
Temperature (oC)
140
140V 70V
140
100
80
60
100
80
40
20
20
10
100
70V
60
40
1
140V
0V
1
1000
100
1000
Frequency (KHz)
Frequency (KHz)
Figure 26. IR2301S vs. Frequency (IRFBC20),
Rgate=33Ω , VCC=15V
Figure 25. IR2301 vs. Frequency (IRFPE50),
Rgate=10Ω , VCC=15V
140
140V 70V
140
120
120
140V
100
70V
0V
80
60
Temperature (oC)
Temperature (oC)
10
0V
100
80
60
40
40
20
20
1
10
100
1000
1
10
100
1000
Frequency (KHz)
Frequency (KHz)
Figure 27. IR2301S vs. Frequency (IRFBC30),
Rgate=22Ω , VCC=15V
Figure 28. IR2301S vs. Frequency (IRFBC40),
Rgate=15Ω , VCC=15V
www.irf.com
15
IR2301(S) & (PbF)
140V 70V 0V
140
Tempreture (oC)
120
100
80
60
40
20
1
10
100
1000
Frequency (KHz)
Figure 29. IR2301S vs. Frequency
(IRFPE50), Rgate=10Ω , VCC=15V
Case Outlines
8 Lead PDIP
16
01-6014
01-3003 01 (MS-001AB)
www.irf.com
IR2301(S) & (PbF)
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8 Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
17
IR2301(S) & (PbF)
LEADFREE PART MARKING INFORMATION
IRxxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2301 order IR2301
8-Lead SOIC IR2301S order IR2301S
Leadfree Part
8-Lead PDIP R2301 order IR2301PbF
8-Lead SOIC IR2301S order IR2301SPbF
This product has been designed and qualified for the Automotive market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
9/7/2004
18
www.irf.com