MIC2141 Micrel MIC2141 Micropower Boost Converter Preliminary Information General Description Features The MIC2141 is a micropower boost switching regulator that can operate from 3- or 4-cell nickel-metal-hydride batteries or a single Li-ion cell. This regulator employs a constant 330kHz, fixed 18% duty-cycle, gated-oscillator architecture. The MIC2141 can be used in applications where the output voltage must be dynamically adjusted. The device features a control signal input which is used to proportionally adjust the output voltage. The control signal input has a gain of 6, allowing a 0.8V to 3.6V control signal to vary a 4.8V to 22V output. The MIC2141 requires only three external components to operate and is available in a tiny 5-lead SOT-23 package for space and power-sensitive portable applications. The MIC2141 draws only 70µA of quiescent current and can operate with an efficiency exceeding 85%. • • • • • • • • Implements low-power boost, SEPIC, or flyback 2.5V to 14V input voltage 330kHz switching frequency <2µA shutdown current 70µA quiescent current 1.24V bandgap reference typical output current 1mA to 10mA SOT-23-5 Package Applications • LCD bias supply • CCD digital camera supply Ordering Information Part Number Junction Temp. Range Package MIC2141-BM5 –40°C to +85°C SOT-23-5 Typical Application Control Voltage vs. Output Voltage 10µH 4.0 Variable VOUT VC* (from DAC) 3.5 3.0 MIC2141 5 VC (V) 1 2 3 4 2.5 2.0 1.5 1.0 10µF 0.5 0 0 5 10 15 VOUT (V) 20 25 DAC-Controlled LCD Bias Voltage Supply Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com June 2000 1 MIC2141 MIC2141 Micrel Pin Configuration SW GND IN 3 2 1 Part Identification SAxx 4 5 FB VC SOT-23-5 (BM) Pin Description Pin Number Pin Name 1 IN 2 GND 3 SW Switch Node (Input): Internal MOSFET drain; 22V maximum. 4 FB Feedback (Input): Output voltage sense node. Compared to VC control input voltage. 5 VC Control (Input): Output voltage control signal input. Input voltage of 0.8V to 3.6V is proportional to 4.8V to 22V output voltage (gain of 6). If the pin is not connected, the output voltage will be VIN – 0.5V. MIC2141 Pin Function Input: +2.5V to +14V supply for internal circuity. Ground: Return for internal circuitry and internal MOSFET (switch) source. 2 June 2000 MIC2141 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VIN) ................................................... +18V Switch Voltage (VSW) .................................................. +24V Feedback Voltage (FB) ................................................ +24V Control Input Voltage (VC), Note 3 .. VIN–200mV ≤ VC ≤ 4V ESD Rating, Note 4 ...................................................... 2kV Supply Voltage (VIN) .................................... +2.5V to +14V Switch Voltage (VSW) ...................................... +3V to +22V Ambient Temperature (TA) ......................... –40°C to +85°C Junction Tempgserature (TJ) ................... –40°C to +125°C Package Thermal Resistance SOT-23-5 (θJA) ...................................................... 220°C/W Electrical Characteristics VIN = 3.6V, VOUT = 5V; IOUT = 1mA; TJ = 25°C, bold values indicate –40°C ≤ TA ≤ +85°C; unless noted. Parameter Condition Min Input Voltage Quiescent Current Typ 2.5 Switch off, VIN = 3.6V 70 Comparator Hysteresis Max Units 14 V 100 µA 10 mV Control Voltage Gain (VOUT/VC) 2.5V ≤ VIN ≤ 12V, VOUT = 15V Controlled Output Voltage, Note 3 VC = 0.8V; 2.5V ≤ VIN ≤ 4.2V 4.85 5.0 5.15 V VC = 2.5V; 2.7V ≤ VIN ≤ 12V 14.55 15.0 15.45 V VC = 3.4V; 3.6V ≤ VIN ≤ 12V 19.4 20.0 20.6 V 6 Load Regulation 100µA ≤ IOUT ≤ 1mA, VOUT = 15V 0.25 1 % Line Regulation 2.5V ≤ VIN ≤ 12V; IOUT ≤ 1mA 0.05 0.2 %/V Switch On-Resistance ISW = 100mA, VIN = 3.6V 4 Ω ISW = 100mA, VIN = 12V 2.5 Ω Oscillator Frequency 300 330 Oscillator Duty Cycle 15 18 Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. VC = 4V sets VOUT to 24V (absolute maximum level on VSW); VC must be ≤ VIN – 200mV. Note 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. June 2000 3 360 kHz % MIC2141 MIC2141 Micrel Typical Characteristcs Feedback Current vs. Output Voltage Control Voltage vs. Output Voltage 20 20 15 10 5 15 6.4 VIN = 5V L = 33µH 5 10 15 20 OUTPUT VOLTAGE (V) 10 Load Regulation 5 4 3 2 1 4 14.90 IPEAK = 150mA L = 22µH 14.85 VIN = 5V 14.80 0 1 2 3 4 LOAD CURRENT (mA) Oscillator Frequency vs. Input Voltage 340 320 14.2 L = 33µH IL = 100µA 4 6 8 10 INPUT VOLTAGE (V) 12 0.60 240 0.58 200 160 120 80 0 0 16 0.56 0.54 0.52 40 2 4 6 8 10 12 14 16 INPUT VOLTAGE (V) Frequency vs. Temperature 0.50 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Duty Cycle vs. Temperature 350 20 19 340 18 DUTY CYCLE (%) FREQUENCY (kHz) 14.4 On-Time vs. Temperature ON-TIME (µs) QUIESCENT CURRENT (µA) 360 6 8 10 12 14 INPUT VOLTAGE (V) 14.6 14.0 2 5 280 4 14.8 Quiescent Current vs. Input Voltage 380 25 Line Regulation IPEAK = 100mA L = 33µH 14.95 400 5 10 15 20 OUTPUT VOLTAGE (V) 15.0 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) CONTROL CURRENT (nA) 6 300 2 5.7 0 4 15.00 7 1 2 3 CONTROL VOLTAGE (V) 6.0 5.8 1 2 3 CONTROL VOLTAGE (V) Control Current vs. Control Voltage 0 0 6.1 5.9 5 0 0 25 VIN = 5V L = 33µH 6.2 VIN = 2.5V VIN = 3.6V 0 0 FREQUENCY (kHz) 6.3 GAIN OUTPUT VOLTAGE (V) FEEDBACK CURRENT (µA) 25 330 320 310 17 16 15 14 13 12 11 10 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 300 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) MIC2141 Gain vs. Output Voltage 4 June 2000 MIC2141 Micrel Quiescent Current vs. Temperature Output Voltage vs. Temperature OUTPUT VOLTAGE (V) VIN = 5V 86 84 82 80 78 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 15.00 6.00 14.80 5.98 14.60 14.40 5.96 5.94 5.92 14.00 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 5.90 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Switch On-Resistance vs. Temperature Switch Voltage Drop vs. Input Voltage 8 900 700 7 800 600 6 700 400 VIN = 3.3V ID = 100mA 300 5 4 VDS (mV) RDS(on) (Ω) 800 500 VIN = 3.3V 3 500 400 300 2 200 100 1 100 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) On-Resistance vs. Input Voltage Efficiency EFFICIENCY (%) ON-RESISTANCE (Ω) 8 6 5 4 3 2 June 2000 60 50 40 30 4 6 8 10 12 INPUT VOLTAGE (V) 14 0 0 4 6 8 10 12 INPUT VOLTAGE (V) 14 Ripple Voltage vs. Input Voltage 90 BAT54HT1 Diode 1N4148 Diode VIN = 5V VOUT = 15V L = 33µH 20 10 1 0 2 80 70 0 2 RIPPLE VOLTAGE (mV) 100 90 9 IDS = 100mA 600 200 7 VIN = 5V 14.20 Switch Voltage Drop vs. Temperature VDS (mV) VIN = 5V L = 33µH GAIN QUIESCENT CURRENT (µA) 88 Gain vs. Temperature 1 2 3 OUTPUT CURRENT (mA) 5 4 80 L = 100µH 70 60 50 40 VOUT = 15V IL = 1mA 30 20 10 0 2 4 6 8 10 INPUT VOLTAGE (V) 12 MIC2141 MIC2141 Micrel Functional Diagram IN Bandgap Reference SW Oscillator 330kHz FIXED DUTY CYCLE VC FB MIC2141 GND Output The maximum output voltage is limited by the voltage capability of the output switch. Output voltages up to 22V can be achieved with a standard boost circuit. Higher output voltages require a flyback configuration. Output Voltage Control The internal hysteretic comparator disables the output drive once the output voltage exceeds the nominal by 30mV. The drive is then enabled once the output voltage drops below the nominal by 30mV. The reference level, which actually programs the output voltage, is set by the VC control input. The output is 6 times the control voltage (VC) and the output ripple will be 6 times the comparator hystersis. Therefore, with 10mV of hystersis, there will be ±30mV variation in the output around the nominal value. See the “Typical Characteristics: Control Voltage vs. Output Voltage” for a graph of input-to-output behavior. The common-mode range of the comparator requires that the maximum control voltage (VC) be held to 200mV less than VIN. When programming for a 20V output, a minimum VIN of 3.5V will be required. See the “Typical Characteristics: Gain vs. Output Voltage” for a graph of gain behavior. To achieve 20V output at lower input voltages, the external resistive divider (R1 and R2) shown in Figure 2 can be added. This circuit will increase the control-to-output gain, while limiting the error introduced by the tolerance of the internal resistor feedback network. Functional Description See “Applications Information” for component selection and predesigned circuits. Overview This MIC2141 is a fixed-duty-cycle, constant-frequency, gatedoscillator, micropower, switch-mode power supply controller. Quiescent current for the MIC2141 is only 70µA in the switch off state, and since a MOSFET output switch is used, additional current needed for switch drive is minimized. Efficiencies above 85% throughout most operating conditions can be realized. Regulaton Regulation is performed by a hysteretic comparator which regulates the output voltage by gating the internal oscillator. The user applies a programming voltage to the VC pin. (For a fixed or adjustable output regulator, with an internal reference, use the MIC2142.) The output voltage is divided down internally and then compared to the VC, the control input voltage, forcing the output voltage to 6 times the VC. The comparator has hysteresis built into it, which determines the amount of low frequency ripple that will be present on the output. Once the feedback input to the comparator exceeds the control voltage by 10mV, the high-frequency oscillator drive is removed from the output switch. As the feedback input to the comparator returns to the control voltage level, the comparator is reset and the high-frequency oscillator is again gated to the output switch. Typically 10mV of hysteresis seen at the comparator will correspond to 60mV of lowfrequency ripple at the output. Applications, which require continuous adjustment of the output voltage, can do so by adjustment of the VC control pin. MIC2141 6 June 2000 MIC2141 Micrel CCM (continuous conduction mode). As the input voltage is raised above this level the inductor has a potential for developing a dc component while the oscillator is gated on. Table 1 display the input points at which the inductor current can possibly operate in the CCM region. Operation in this region can result in a peak current slightly higher than displayed Table 4. Application Information Predesigned circuit information is at the end of this section. Component Selection Boost Inductor Maximum power is delivered to the load when the oscillator is gated on 100% of the time. Total output power and circuit efficiency must be considered when determining the maximum inductor. The largest inductor possible is preferable in order to minimize the peak current and output ripple. Efficiency can vary from 80% to 90% depending upon input voltage, output voltage, load current, inductor, and output diode. Equation 1 solves for the output current capability for a given inductor value and expected efficiency. Figures 5 through 9 graph estimates for maximum output current, assuming the minimum duty cycle, maximum frequency, and 85% efficiency. To determine the required inductance, find the intersection between the output voltage and current and select the value of the inductor curve just above the intersection. If the efficiency is expected to be other than the 85% used for the graph, Equation 1 can then be used to better determine the maximum output capability. (1) IO(max) (VIN(min) tON ) = 2LMAX TS (3) eff IPK = Series Device Type muRata LQH1C/3C/4C surface mount Sumida CR32 surface mount J.W. Miller 78F axial leaded Coilcraft 90 axial leaded Boost Output Diode Speed, forward voltage, and reverse current are very important in selecting the output diode. In the boost configuration, the average diode current is the same as the average load current. (The peak current is the same as the peak inductor current and can be derived from Equation 2 or Figure 10.) Care must be take to make sure that the peak current is evaluated at the maximum input voltage. − VIN(min) The peak inductor and switch current can be calculated from Equation 2 or read from the graph in Figure 10. The peak current shown in Figure 10 is derived assuming a maximum duty cycle and a minimum frequency. The selected inductor and diode peak current capability must exceed this value. The peak current seen by the inductor is calculated at the maximum input voltage. A wider input voltage range will result in a higher worst-case peak current in the inductor. This effect can be seen in Table 4 by comparing the difference between the peak current at VIN(min) and VIN(max). (2) Manufacturer Table 2. Inductor Examples 1 VO ) Table 2 lists common inductors suitable for most applications. Table 6 lists minimum inductor sizes versus input and output voltage. In low-cost, low-peak-current applications, RF-type leaded inductors may sufficient. All inductors listed in Table 4 can be found within the selection of CR32- or LQH4C-series inductors from either Sumida or muRata. 2 × ( VIN(ccm) = VOUT + VFWD + (1 − D) t ON(max ) VIN(max ) LMIN DCM/CCM Boundary Equation 3 solves for the point at which the inductor current will transition from DCM (discontinuous conduction mode) to Diode 75°C VFWD at 100mA 25°C Room 75°C VFWD Temp. Leakage Package at Leakage at 15V 100mA at 15V MBR0530 0.275V 0.325V 2.5µA 90µA SOD123 SMT 1N4148 0.6V (175°C) 0.95V 25nA (20V) 0.2µA (20V) leaded and SMT BAT54 0.4V (85°C) 0.45V 10nA (25V) 1µA (20V) SMT BAT85 0.54 (85°C) 0.56V 0.4µA 2µA (85°C) DO-34 leaded Table 3. Diode Examples VOUT VIN(CCM) 3.3V 3.04V 5.0V 4.40V 9.0V 7.60V 12.0V 10.0V 15.0V 12.4V 16.0V 13.2V 20.0V 16.4V 22.0V 18.0V As can be seen in the “Typical Characteristics: Efficiency” graph, the output diode type can have an effect on circuit efficiency. The BAT54- and BAT85-series diodes are lowcurrent Shottky diodes available from On Semiconductor and Phillips, respectively. They are suitable for peak repetitive currents of 300mA or less with good reverse current characteristics. For applications that are cost driven, the 1N4148, or equivalent, will provide sufficient switching speed with greater forward drop and reduced cost. Other acceptable diodes are On Semiconductor’s MBR0530 or Vishay’s B0530, although they can have reverse currents that exceed 1mA at very high junction temperatures. Table 3 summarizes some typical performance characteristics of various suitable diodes. Table 1. DCM/CCM Boundary June 2000 7 MIC2141 MIC2141 Micrel Output Capacitor If the availability of tantalum capacitors is limited, ceramic capacitors and inexpensive electrolyics may be necessary. Selection of the capacitor value will depend upon on the peak inductor current and inductor size. MuRata offers the GRM series with up to 10µF at 25V, with a Y5V temperature coefficient, in a 1210 surface-mount package. Low-cost applications can use M-series leaded electrolytic capacitors from Panasonic. In general, ceramic, electrolytic, or tantalum values ranging from 10µF to 47µF can be used for the output capacitor. Manufacturer Series Type Package muRata GRM ceramic Y5V surface mount Vishay 594 tantalum surface mount Panasonic M-series electrolytic leaded LMAX Select 15µH ±10%. IPEAK = L1 33µH C4 0.1µF 1 5 VC = 0.767µs 4.8V 13.5µH Select a BAT54 diode and CR32 inductor. Always check the peak current to insure that it is within the limits specified in the load line shown in Figure 10 for all input and output voltages. Gain Boost Use Figure 2 to increase the voltage gain of the system. The typical gain can easily be increased from the nominal gain of 6 to a value of 8 or 10. Figure 2 shows a gain of 8 so that with 2.5V applied to VC, VOUT will be 20V. Bootstrap The bootstrap configuration is used to increase the maximum output current for a given input voltage. This is most effective when the input voltage is less than 5V. Output current can typically be tripled by using this technique. See Table 4a. for bootstrap-ready-built component values. Design Example Given a design requirement of 12V output and 1mA load with a minimum input voltage of 2.5V, Equation 1 can be used to calculate to maximum inductance or it can be read from the graph in Figure 4. Once the maximum inductance has been determined, the peak current can be determined using Equation 2 or Figure 10. VOUT = 12V IOUT = 1mA VIN = 4.8V to 2.5V C2 10µF 25V t ON(max) ⋅ VIN(max) LMIN IPEAK = 272mA Table 4. Capacitor Examples VIN +2.7V to +12V VIN(min)2 ⋅ t ON(min)2 V IO(max) O − VIN(min) ⋅ 2 ⋅ TS(min) eff = 17µH LMAX = MIC2141 IN SW FB VC GND CR1 BAT54HT1 3 VOUT +5V to +15V C1 10µF 25V 4 2 Return Return Figure 1. Basic Configuration L1 22µH VIN +2.7V to +12V C2 10µF 25V C4 0.1µF 4 5 VC MIC2141 IN SW FB VC GND CR1 BAT54HT1 3 2 1 R1 34.8k IFB VOUT +5V to +20V C1 10µF 25V R2 121k Return R1 VOUT = 6VC 1 + + I ⋅ R1 R2 FB IFB(typ) = 15µA for VOUT = 15V Return Figure 2. Gain-Boost Configuration L1 4.7µH VIN +2.7V to +4.7V VC CR2 C4 1N4148 0.1µF C2 10µF 25V 1 5 MIC2141 IN SW FB VC GND Return CR1 MBR0530 VOUT +12V CR3 1N4148 3 4 2 C1 10µF 25V Return Figure 3. Bootstrap Configuration MIC2141 8 June 2000 MIC2141 Micrel Inductor Selection Guides 40 200 3.9µH VIN = 2.5V 4.7µH VIN = 3.3V Use for Li-ion battery 4.7µH 100 10µH 12µH 10 15µH 18µH 22µH 15µH 18µH 27µH 22µH 33µH 33µH MAX. OUTPUT CURRENT (mA) MAX. OUTPUT CURRENT (mA) 27µH 39µH 47µH 56µH 68µH 82µH 100µH 120µH 1 150µH 10 39µH 47µH 56µH 68µH 82µH 100µH 120µH 150µH 180µH 220µH 180µH 220µH 0.1 0 2 1 4 6 8 10 12 14 16 OUTPUT VOLTAGE (V) 18 20 0.1 0 22 Figure 5. Inductor Selection for VIN = 2.5V June 2000 2 4 6 8 10 12 14 16 OUTPUT VOLTAGE (V) 18 20 22 Figure 6. Inductor Selection for VIN = 3.3V 9 MIC2141 MIC2141 Micrel 100 200 VIN = 9V VIN = 5V 100 8.2µH 10µH 15µH 12µH 18µH 15µH 18µH 22µH 22µH 27µH 27µH 33µH 39µH 47µH 56µH 33µH 39µH 47µH 10 MAX. OUTPUT CURRENT (mA) MAX. OUTPUT CURRENT (mA) 68µH 82µH 100µH 120µH 150µH 180µH 220µH 56µH 68µH 82µH 10 100µH 120µH 150µH 180µH 220µH 1 270µH 330µH 390µH 470µH 0.1 2 4 6 8 10 12 14 16 OUTPUT VOLTAGE (V) 18 20 1 8 22 Figure7. Inductor Selection for VIN = 5V MIC2141 10 12 14 16 18 OUTPUT VOLTAGE (V) 20 22 Figure 8. Inductor Selection for VIN = 9V 10 June 2000 MIC2141 Micrel 100 22µH 18µH VIN = 12V 27µH 33µH 39µH 47µH 56µH 68µH 82µH MAX. OUTPUT CURRENT (mA) 100µH 120µH 150µH 180µH 10 220µH 270µH 330µH 390µH 470µH 1 10 12 14 16 18 OUTPUT VOLTAGE (V) 20 22 Figure 9. Inductor Selection for VIN = 12V June 2000 11 MIC2141 10µH 8.2µH 1000 4.7µH Micrel 3.9µH MIC2141 900 12µH 800 15µH 700 PEAK CURRENT (mA) 600 18µH 500 22µH 400 27µH 33µH 300 39µH 47µH 200 56µH 68µH 100 0 0 2 4 6 8 INPUT VOLTAGE (V) 10 12 82µH 100µH 120µH 150µH 180µH 220µH 270µH 330µH 14 390µH 470µH Figure 10. Peak Inductor Current vs. Input Voltage MIC2141 12 June 2000 MIC2141 Micrel Predesigned Circuit Values VIN(min) VIN(max) VOUT IOUT(max) L1 CR1 IPEAK (VIN = VOUT – 0.5V) or 14V IPEAK (VIN = VIN(min)) 2.5V 4.5V 5.0V 4mA 3mA 2mA 1mA 0.5mA 15µH 18µH 27µH 56µH 120µH BAT54 BAT54 BAT54 BAT54 BAT54 230mA 192mA 128mA 62mA 29mA 128mA 106mA 71mA 34mA 16mA 5V bootstrap 14.8mA 3.9µH MBR0503 890mA 500mA 2.5V 11.5V 12V 1mA 0.5mA 0.2mA 15µH 33µH 82µH MBR0530 BAT54 BAT54 588mA 267mA 108mA 128mA 58mA 23mA 2.5V 2.5V 4.7V 4.7V 12V bootstrap 12V bootstrap 3.5mA 4.3mA 4.7µH 3.9µH MBR0503 MBR0503 750mA 900mA 500mA 500mA 2.5V 14V 15V 0.8mA 0.5mA 0.2mA 15µH 27µH 68µH MBR0530 MBR0530 BAT54 741mA 412mA 163mA 128mA 71mA 28mA 2.5V 14V 16V 0.8mA 0.5mA 0.2mA 15µH 22µH 56µH MBR0530 MBR0530 BAT54 710mA 456mA 190mA 128mA 87mA 34mA 2.5V 14V 22V 0.5mA 0.2mA 0.1mA 15µH 39µH 82µH MBR0530 BAT54 BAT54 590mA 274mA 130mA 128mA 49mA 23mA 3.0V use for Li-ion battery range 4.5V 5V 10mA 3.6mA 0.8mA 12µH 27µH 120µH BAT54 BAT54 BAT54 288mA 128mA 29mA 190mA 85mA 19mA 5V bootstrap 20mA 4.7µH MBR0530 730mA 450mA 3.0V use for Li-ion battery range 8.5V 9V 3mA 1.7mA 0.8mA 12µH 22µH 47µH MBR0530 MBR0530 MBR0530 652mA 296mA 139mA 190mA 103mA 49mA 3.0V use for Li-ion battery range 4.7V 9V bootstrap 8mA 4.7µH MBR0503 750mA 450mA 3.0V use for Li-ion battery range 11.5V 12V 2.1mA 1.7mA 1mA 0.45mA 12µH 15µH 27µH 56µH MBR0530 MBR0530 MBR0530 BAT54 882mA 588mA 327mA 157mA 190mA 156mA 85mA 40mA 3.0V use for Li-ion battery range 4.7V 12V bootstrap 5.4mA 4.7µH MBR0530 750mA 450mA 3.0V use for Li-ion battery range 14V 15V 1.6mA 0.87mA 0.41mA 12µH 22µH 47µH MBR0530 MBR0530 BAT54 926mA 505mA 237mA 190mA 103mA 49mA 3.0V use for Li-ion battery range 4.7V 15V bootstrap 4mA 4.7µH MBR0530 750mA 450mA 3.0V use for Li-ion battery range 14V 22V 1mA 0.8mA 0.46mA 0.2mA 10µH 15µH 27µH 68µH MBR0530 MBR0530 MBR0530 BAT54 1071mA 714mA 400mA 157mA 190mA 152mA 85mA 3.3mA Table 4a. Typical Configurations for Wide-Range Inputs—2.5V to 3.0V Minimum Input June 2000 13 MIC2141 MIC2141 Micrel VIN(min) VIN(max) VOUT IOUT(max) L1 CR1 IPEAK (VIN = VOUT – 0.5V) IPEAK (VIN = VIN(min)) 5.0V 8.5V 9V 17mA 15mA 10mA 5mA 1mA 8.2µH 10µH 12µH 27µH 120µH MBR0530 MBR0530 MBR0530 BAT54 BAT54 795mA 652mA 643mA 241mA 54mA 467mA 383mA 319mA 142mA 32mA 5.0V 11.5V 12V 10mA 5mA 2mA 1mA 8.2µH 18µH 39µH 82µH MBR0530 MBR0530 BAT54 BAT54 1,075mA 490mA 226mA 108mA 467mA 213mA 98mA 47mA 5.0V 14V 15V 7mA 5mA 2mA 1mA 8.2µH 12µH 27µH 56µH MBR0530 MBR0530 MBR0530 BAT54 1356mA 926mA 412mA 199mA 467mA 319mA 142mA 68mA 5.0V 14V 16V 2.5mA 1mA 0.5mA 22µH 56µH 120µH MBR0530 BAT54 BAT54 986mA 190mA 90mA 174mA 68mA 32mA 5.0V 14V 22V 1.7mA 1.0mA 0.5mA 0.1mA 22µH 39µH 82µH 180µH MBR0530 BAT54 BAT54 BAT54 486mA 274mA 130mA 60mA 174mA 98mA 47mA 21mA 9.0V 11.5V 12V 33mA 20mA 10mA 5mA 1mA 15µH 22µH 47µH 100µH 470µH MBR0530 MBR0530 BAT54 BAT54 BAT54 588mA 401mA 188mA 88mA 19mA 460mA 314mA 147mA 69mA 15mA 9.0V 14V 15V 20mA 10mA 5mA 2mA 1mA 15µH 27µH 56µH 150µH 270µH MBR0530 MBR0530 BAT54 BAT54 BAT54 741mA 412mA 199mA 74mA 41mA 460mA 256mA 123mA 46mA 26mA 9.0V 14V 20V 4.5mA 2mA 1mA 39µH 68µH 150µH BAT54 BAT54 BAT54 215mA 131mA 72mA 177mA 84mA 46mA 9.0V 14V 22V 4mA 2mA 1mA 39µH 68µH 150µH BAT54 BAT54 BAT54 275mA 157mA 72mA 177mA 101mA 46mA 12V 14V 15V 45mA 20mA 10mA 5mA 1.7mA 18µH 39µH 82µH 150µH 470µH MBR0530 BAT54 BAT54 BAT54 BAT54 618mA 285mA 136mA 74mA 24mA 511mA 236mA 112mA 61mA 20mA 12V 14V 20V 8mA 5mA 2mA 1mA 47µH 68µH 120µH 390µH BAT54 BAT54 BAT54 BAT54 230mA 158mA 90mA 27mA 196mA 135mA 77mA 24mA 12V 21.5V 22V 7mA 5mA 2mA 1mA 47µH 68µH 150µH 220µH BAT54 BAT54 BAT54 BAT54 228mA 157mA 69mA 47mA 196mA 135mA 61mA 42mA Table 4b. Typical Configurations for Wide-Range Inputs—5V to 15V Minimum Input MIC2141 14 June 2000 MIC2141 Micrel VIN VOUT IOUT L1 CR1 IPEAK (typical) 3.3V ±5% 5V 9V 12V 15V 20V 13mA 5mA 3mA 2.3mA 1.7mA 10µH 10µH 10µH 10µH 10µH BAT54 BAT54 BAT54 BAT54 BAT54 253mA 253mA 253mA 253mA 253mA 5V ±5% 9V 12V 15V 20V 17mA 10.4mA 7.5mA 2.2mA 8.2µH 8.2µH 8.2µH 22µH MB0530 MB0530 MB0530 MB0530 467mA 467mA 467mA 174mA 12V ±5% 15V 20V 44mA 8.3mA 18µH 47µH MB0530 BAT54 511mA 196mA Table 5. Typical Maximum Power Configuration for Regulated Inputs Output Voltage 16V to 22V 4.5V to 15V VIN 2.5V 15µH 15µH 3.0V 12µH 12µH 3.3V 10µH 10µH 3.5V 8.2µH 8.2µH 4.0V 27µH 6.8µH 4.5V 27µH 6.8µH 5.0V 22µH 8.2µH 6.0V 27µH 10µH 7.0V 27µH 10µH 8.0V 33µH 12µH 9.0V 39µH 15µH 10V 39µH 15µH 11V 47µH 18µH 12V 47µH 18µH 13V 56µH 22µH 14V 56µH 22µH 15V 56µH 27µH 16V 68µH 27µH Table 6. Minimum Inductance Manufacturer Web Address muRata www.MuRata.com Sumida www.sumida.com Coilcraft www.coilcraft.com J. W. Miller www.jwmiller.com Micrel www.micrel.com Vishay www.vishay.com Panasonic www.panasonic.com Table 7. Component Supplier Websites June 2000 15 MIC2141 MIC2141 Micrel Package Information 1.90 (0.075) REF 0.95 (0.037) REF 1.75 (0.069) 1.50 (0.059) 3.00 (0.118) 2.60 (0.102) DIMENSIONS: MM (INCH) 1.30 (0.051) 0.90 (0.035) 3.02 (0.119) 2.80 (0.110) 0.20 (0.008) 0.09 (0.004) 10° 0° 0.15 (0.006) 0.00 (0.000) 0.50 (0.020) 0.35 (0.014) 0.60 (0.024) 0.10 (0.004) SOT-23-5 (M) MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB USA http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2000 Micrel Incorporated MIC2141 16 June 2000