MICREL MIC5891BN

MIC5891
Micrel
MIC5891
8-Bit Serial-Input Latched Source Driver
General Description
Features
The MIC5891 latched driver is a high-voltage, high current
integrated circuit comprised of eight CMOS data latches,
CMOS control circuitry for the common STROBE and OUTPUT
ENABLE, and bipolar Darlington transistor drivers for each
latch.
•
•
•
•
•
Bipolar/MOS construction provides extremely low power
latches with maximum interface flexibility.
The MIC5891 will typically operate at 5MHz with a 5V logic
supply.
The CMOS inputs are compatible with standard CMOS,
PMOS, and NMOS logic levels. TTL circuits may be used with
appropriate pull-up resistors to ensure a proper logic-high
input.
High-voltage, high-current outputs
Output transient protection diodes
CMOS-, PMOS-, NMOS-, and TTL-compatible inputs
5MHz typical data input rate
Low-power CMOS latches
Applications
•
•
•
•
Alphanumeric and bar graph displays
LED and incandescent displays
Relay and solenoid drivers
Other high-power loads
A CMOS serial data output allows additional drivers to be
cascaded when more than 8 bits are required.
The MIC5891 has open-emitter outputs with suppression
diodes for protection against inductive load transients. The
output transistors are capable of sourcing 500mA and will
sustain at least 35V in the on-state.
Ordering Information
Simultaneous operation of all drivers at maximum rated
current requires a reduction in duty cycle due to package
power limitations. Outputs may be paralleled for higher load
current capability.
Part Number
Temperature Range
Package
MIC5891BN
–40°C to +85°C
16-Pin Plastic DIP
MIC5891BWM
–40°C to +85°C
16-pin Wide SOIC
The MIC5891 is available in a 16-pin plastic DIP package (N)
and 16-pin wide SOIC package (WM).
Functional Diagram
Pin Configurations
CLOCK
SERIAL
DATA IN
SERIAL
DATA OUT
8-BIT SERIAL PARALLEL SHIFT REGISTER
LATCHES
STROBE
GROUND
OUTPUT
ENABLE
MOS
BIPOLAR
OUT1 OUT2
OUT3
OUT4
OUT5
OUT6
OUT7
GROUND
1
16 SERIAL
DATA OUT
SHIFT
VDD 15 LOGIC SUPPLY
REGISTER
CLOCK
2
SERIAL
DATA IN
3
STROBE
4
OUT1
5
12 OUT8
OUT2
6
11 OUT7
OUT3
7
10 OUT6
OUT4
8
LATCHES
OUTPUT
ENABLE
OE
14
VBB
13 LOAD SUPPLY
9
OUT5
OUT8
7-54
December 1997
MIC5891
Micrel
Typical Circuits
Absolute Maximum Ratings (Notes 1, 2, 3)
VDD
Output Voltage (VOUT) .............................................. 50V
Logic Supply Voltage Range (VDD) ............... 4.5V to 15V
Load Supply Voltage Range (VBB) ................ 5.0V to 50V
Input Voltage Range (VIN) ................. –0.3V to VDD+0.3V
Continuous Collector Current (IC) ........................ 500mA
Package Power Dissipation ............................. see graph
Operating Temperature Range (TA) ...... –55°C to +125°C
Storage Temperature Range (TS) ......... –65°C to +150°C
IN
Note 1:
TA = 25°C
Note 2:
Derate at the rate of 20mW/°C above TA = 25°C.
Note 3:
Micrel CMOS devices have input-static protection but are
susceptible to damage when exposed to extremely high static
electrical charges.
Typical Input Circuit
VBB
Allowable Duty Cycles
Number of
Outputs ON at
IOUT = –200 mA
VOUT
PACKAGE POWER DISSIPATION (W)
Typical Output Circuit
Allowable Package Power
Dissipation vs. Temp.
2.5
2
1.5
PDIP
θJA = 60°C/W
1
0.5
CerDIP
θJA = 90°C/W
0
25
50
75
100 125 150
AMBIENT TEMPERATURE (°C)
December 1997
7-55
Max. Allowable Duty Cycles
at TA of:
50°C
60°C
70°C
8
53%
47%
41%
7
60%
54%
48%
6
70%
64%
56%
5
83%
75%
67%
4
100%
94%
84%
3
100%
100%
100%
2
100%
100%
100%
1
100%
100%
100%
7
MIC5891
Micrel
Electrical Characteristics
VBB = 50V, VDD = 5V to 12V; TA = +25°C; unless noted.
Limits
Characteristic
Symbol
VBB
Test Conditions
Output Leakage Current
ICEX
50V
Output Saturation Voltage
VCE(SAT)
50V
Min.
Max.
Units
TA = +25°C
–50
µA
TA = +85°C
–100
µA
IOUT = –100mA, TA = +85°C
1.8
V
IOUT = –225mA, TA = +85°C
1.9
V
2.0
V
IOUT = –350mA, TA = +85°C
Output Sustaining Voltage
VCE(SUS)
50V
IOUT = –350mA, L = 2mH
35
Input Voltage
VIN(1)
50V
VDD = 5.0V
3.5
VDD+0.3
V
10.5
VDD+0.3
V
VIN(0)
50V
VDD = 5V to 12V
VSS–0.3
0.8
V
Input Current
IIN(1)
50V
VDD = VIN = 5.0V
50
µA
Input Impedance
ZIN
50V
VDD = 5.0V
100
kΩ
VDD = 12V
50
kΩ
VDD = 12V
VDD = 12V
Maximum Clock Frequency
fc
50V
Serial Data Output Resistance
ROUT
50V
V
240
3.3
µA
MHz
VDD = 5.0V
20
kΩ
VDD = 12V
6.0
kΩ
µs
Turn-On Delay
tPLH
50V
Output Enable to Output, IOUT = –350mA
2.0
Turnoff Delay
tPHL
50V
Output Enable to Output, IOUT = –350mA
10
µs
Supply Current
IBB
50V
all outputs on, all outputs open
10
mA
all outputs off
200
µA
VDD = 5V, all outputs off, inputs = 0V
100
µA
VDD = 12V, all outputs off, inputs = 0V
200
µA
VDD = 5V, one output on, all inputs = 0V
1.0
mA
VDD = 12V, one output on, all inputs = 0V
3.0
mA
IDD
Diode Leakage Current
Diode Forward Voltage
IH
VF
50V
Max
Open
TA = +25°C
50
µA
TA = +85°C
100
µA
IF = 350mA
2.0
V
Note 4: Positive (negative) current is defined as going into (coming out of) the specified device pin.
Note 5: Operation of these devices with standard TTL may require the use of appropriate pull-up resistors.
Timing Conditions
A.
B.
C.
D.
E.
F.
G.
H.
I.
(VDD = 5.0V, Logic Levels are VDD and Ground)
Minimum data active time before clock pulse (data set-up time) ........................................................................75ns
Minimum data active time after clock pulse (data hold time) ..............................................................................75ns
Minimum data pulse width .................................................................................................................................150ns
Minimum clock pulse width ...............................................................................................................................150ns
Minimum time between clock activation and strobe ..........................................................................................300ns
Minimum strobe pulse width ..............................................................................................................................100ns
Typical time between strobe activation and output transition .............................................................................1.0µs
Turnoff delay ................................................................................................................ see Electrical Characteristics
Turn-on delay ............................................................................................................... see Electrical Characteristics
7-56
December 1997
MIC5891
Micrel
CLOCK
A
D
B
DATA IN
E
F
C
STROBE
OUTPUT
ENABLE
G
OUTN
H
I
In
Output
Enable
Timing Conditions
Truth Table
Serial
Data
Input
Shift Register Contents
Clock
Input
I3
…
IN-1
Latch Contents
I1
I2
I3
… IN-1
Output Content
I1
I2
H
H
R1 R2
… RN-2 RN-1
RN-1
L
L
R1 R2
… RN-2 RN-1
RN-1
X
R1 R2 R3
… RN-1 RN
RN
X
X
X
…
X
X
L
R1 R2 R3 … RN-1 RN
P1
P2
P3
… PN-1 PN
PN
H
P1
P2
P3 … PN-1 PN
L
P1 P2 P3 … PN-1 PN
X
X
X
H
L
X
IN
Serial
Data Strobe
Output Input
…
X
X
I1
I2
L
I3 … IN-1 In
L … L
L
L = Low Logic Level
H = High Logic Level
X = Irrelevant
P = Present State
R = Previous State
Applications Information
Serial data present at the input is transferred into the shift
register on the rising edge of the CLOCK input pulse. Additional
CLOCK pulses shift data information towards the SERIAL
DATA OUTPUT. The serial data must appear at the input prior
to the rising edge of the CLOCK input waveform.
The 8 bits present in the shift register are transferred to the
respective latches when the STROBE is high (serial-toparallel conversion). The latches will continue to accept new
December 1997
data as long as the STROBE is held high. Most applications
where the latching feature is not used (STROBE tied high)
require the OUTPUT ENABLE input to be high during serial
data entry.
Outputs are active (controlled by the latch state) when the
OUTPUT ENABLE is low. All Outputs are low (disabled) when
the OUTPUT ENABLE is high. OUTPUT ENABLE does not
affect the data in the shift register or latch.
7-57
7