MOTOROLA MC14544BCL

SEMICONDUCTOR TECHNICAL DATA
" " ! # L SUFFIX
CERAMIC
CASE 726
CMOS MSI (Low–Power Complementary MOS)
The MC14544B BCD–to–seven segment latch/decoder/driver is designed
for use with liquid crystal readouts, and is constructed with complementary
MOS (CMOS) enhancement mode devices. The circuit provides the
functions of a 4–bit storage latch and an 8421 BCD–to–seven segment
decoder and driver. The device has the capability to invert the logic levels of
the output combination. The phase (Ph), blanking (BI), and latch disable (LD)
inputs are used to reverse the truth table phase, blank the display, and store
a BCD code, respectively. For liquid crystal (LC) readouts, a square wave is
applied to the Ph input of the circuit and the electrically common backplane
of the display. The outputs of the circuit are connected directly to the
segments of the LC readout. The Ripple Blanking Input (RBI) and the Ripple
Blanking Output (RBO) can be used to suppress either leading or trailing
zeroes.
For other types of readouts, such as light–emitting diode (LED),
incandescent, gas discharge, and fluorescent readouts, connection diagrams are given on this data sheet.
Applications include instrument (e.g., counter, DVM etc.) display driver,
computer/calculator display driver, cockpit display driver, and various clock,
watch, and timer uses.
•
•
•
•
•
•
•
Latch Storage of Code
Blanking Input
Readout Blanking on All Illegal Input Combinations
Direct LED (Common Anode or Cathode) Driving Capability
Supply Voltage Range = 3.0 V to 18 V
Capability for Suppression of Non–significant zero
Capable of Driving Two Low–power TTL Loads, One Low–power
Schottky TTL Load or Two HTL Loads Over the Rated Temperature
Range
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
P SUFFIX
PLASTIC
CASE 707
ORDERING INFORMATION
MC14XXXBCP
MC14XXXBCL
TA = – 55° to 125°C for all packages.
PIN ASSIGNMENT
LD
1
18
VDD
C
2
17
f
B
3
16
g
D
4
15
e
A
5
14
d
PH
6
13
c
BI
7
12
b
RBO
8
11
a
VSS
9
10
RBI
MAXIMUM RATINGS* (Voltages referenced to VSS)
Rating
DC Supply Voltage
Input Voltage, All Inputs
Symbol
Value
Unit
VDD
– 0.5 to + 18
V
Vin
– 0.5 to VDD + 0.5
V
DC Input Current per Pin
Iin
± 10
mAdc
Operating Temperature Range
TA
– 55 to + 125
_C
Power Dissipation, per Package†
PD
500
mW
Storage Temperature Range
Tstg
– 65 to + 150
_C
Maximum Continuous Output Drive
Current (Source or Sink) per Output
IOHmax
IOLmax
10
mAdc
Maximum Continuous Output Power*
(Source or Sink) per Output
POHmax
POLmax
70
mW
* POHmax = IOH (VOH – VDD) and POLmax = IOL (VOL – VSS)
* Maximum Ratings are those values beyond which damage to the device may occur.
†Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
Ceramic “L” Packages: – 12 mW/_C From 100_C To 125_C
Plastic
Ceramic
a
f
g
e
b
c
d
DISPLAY
0
1
2
3
4
5
6
7
8
9
This device contains protection circuitry to
guard against damage due to high static
voltages or electric fields. However, precautions must be taken to avoid applications of
any voltage higher than maximum rated voltages to this high–impedance circuit. For proper
operation, Vin and Vout should be constrained
to the range VSS
(Vin or Vout)
VDD.
Unused inputs must always be tied to an
appropriate logic voltage level (e.g., either VSS
or VDD). Unused outputs must be left open.
v
v
REV 3
1/94
MOTOROLA
Motorola, Inc. 1995
CMOS LOGIC DATA
MC14544B
1
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
Characteristic
Output Voltage
Vin = VDD or 0
Symbol
– 55_C
25_C
125_C
VDD
Vdc
Min
Max
Min
Typ #
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
—
—
—
0.05
0.05
0.05
—
—
—
0
0
0
0.05
0.05
0.05
—
—
—
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
—
—
—
4.95
9.95
14.95
5.0
10
15
—
—
—
4.95
9.95
14.95
—
—
—
Vdc
5.0
10
15
—
—
—
1.5
3.0
4.0
—
—
—
2.25
4.50
6.75
1.5
3.0
4.0
—
—
—
1.5
3.0
4.0
5.0
10
15
3.5
7.0
11
—
—
—
3.5
7.0
11
2.75
5.50
8.25
—
—
—
3.5
7.0
11
—
—
—
5.0
5.0
10
10
15
– 3.0
– 0.64
—
– 1.6
– 4.2
—
—
—
—
—
– 2.4
– 0.51
—
– 1.3
– 3.4
– 4.2
– 0.88
– 10.1
– 2.25
– 8.8
—
—
—
—
—
– 1.7
– 0.36
—
– 0.9
– 2.4
—
—
—
—
IOL
5.0
10
10
15
0.64
1.6
—
4.2
—
—
—
—
0.51
1.3
—
3.4
0.88
2.25
10.1
8.8
—
—
—
—
0.36
0.9
—
2.4
—
—
—
mAdc
Input Current
Iin
15
—
± 0.1
—
± 0.00001
± 0.1
—
± 1.0
µAdc
Input Capacitance
Cin
—
—
—
—
5.0
7.5
—
—
pF
Quiescent Current
(Per Package) Vin = 0 or VDD,
Iout = 0 µA
IDD
5.0
10
15
—
—
—
5.0
10
20
—
—
—
0.005
0.010
0.015
5.0
10
20
—
—
—
150
300
600
µAdc
Total Supply Current**†
(Dynamic plus Quiescent,
Per Package)
(CL = 50 pF on all outputs, all
buffers switching)
IT
5.0
10
15
Vin = 0 or VDD
Input Voltage #
“0” Level
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
VIL
“1” Level
VIH
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 0.5 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 9.5 Vdc)
(VOL = 1.5 Vdc)
Vdc
Vdc
IOH
Source
Sink
mAdc
IT = (1.6 µA/kHz) f + IDD
IT = (3.1 µA/kHz) f + IDD
IT = (4.7 µA/kHz )f + IDD
µAdc
#Noise immunity specified for worst–case input combination.
Noise Margin for both “1” and “0” level = 1.0 V min @ VDD = 5.0 V
= 2.0 V min @ VDD = 10 V
= 2.5 V min @ VDD = 15 V
†To calculate total supply current at loads other than 50 pF:
IT(CL) = IT(50 pF) + 3.5 x 10–3 (CL – 50) VDDf
where: IT is in µA (per package), CL in pF, VDD in V, and f in kHz is input frequency.
* The formulas given are for the typical characteristics only at 25_C.
MC14544B
2
MOTOROLA CMOS LOGIC DATA
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
SWITCHING CHARACTERISTICS* (CL = 50 pF, TA = 25_C)
Characteristic
Symbol
Output Rise Time
tTLH = (3.0 ns/pF) CL + 30 ns
tTLH = (1.5 ns/pF) CL + 15 ns
tTLH = (1.1 ns/pF) CL + 10 ns
tTLH
Output Fall Time
tTHL = (1.5 ns/pF) CL + 25 ns
tTHL = (0.75 ns/pF) CL + 12.5 ns
tTHL = (0.55 ns/pF) CL + 12.5 ns
tTHL
Turn–Off Delay Time
tPLH = (1.7 ns/pF) CL + 520 ns
tPLH = (0.66 ns/pF) CL + 217 ns
tPLH = (0.5 ns/pF) CL + 160 ns
tPLH
Turn–On Delay Time
tPHL = (1.7 ns/pF) CL + 420 ns
tPHL = (0.66 ns/pF) CL + 172 ns
tPHL = (0.5 ns/pF) CL + 130 ns
tPHL
VDD
Min
Typ
Max
5.0
10
15
—
—
—
100
50
40
200
100
80
5.0
10
15
—
—
—
100
50
40
200
100
80
5.0
10
15
—
—
—
605
250
185
1210
500
370
5.0
10
15
—
—
—
505
205
155
1650
660
495
Unit
ns
ns
ns
ns
Setup Time
tsu
5.0
10
15
0
0
0
– 40
– 15
– 10
—
—
—
ns
Hold Time
th
5.0
10
15
80
30
20
40
15
10
—
—
—
ns
tWH
5.0
10
15
250
100
80
125
50
40
—
—
—
ns
Latch Disable Pulse Width (Strobing Data)
* The formulas given are for the typical characteristics only.
LOGIC DIAGRAM
BI 7
VDD = PIN 18
VSS = PIN 9
11 a
A 5
12 b
13 c
B 3
14 d
15 e
C 2
17 f
16 g
D 4
LD 1
RBI 10
MOTOROLA CMOS LOGIC DATA
8 RBO
6
PHASE
MC14544B
3
CONNECTIONS TO VARIOUS DISPLAY READOUTS
LIQUID CRYSTAL (LC) READOUT
MC14544B
OUTPUT
Ph
INCANDESCENT READOUT
APPROPRIATE
VOLTAGE
ONE OF SEVEN SEGMENTS
COMMON
BACKPLANE
MC14544B
OUTPUT
Ph
SQUARE WAVE
(VSS TO VDD)
VSS
LIGHT EMITTING DIODE (LED) READOUT
COMMON
CATHODE LED
GAS DISCHARGE READOUT
COMMON
ANODE LED
MC14544B
OUTPUT
Ph
APPROPRIATE
VOLTAGE
VDD
MC14544B
OUTPUT
Ph
MC14544B
OUTPUT
Ph
VSS
VDD
NOTE: Bipolar transistors may be added for gain (for VDD
v 10 V or Iout ≥ 10 mA).
VSS
TRUTH TABLE
Inputs
Outputs
RBI
LD
BI
Ph*
D
C
B
A
RBO
a
b
c
d
e
f
g
Display
X
X
1
0
X
X
X
X
#
0
0
0
0
0
0
0
Blank
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
0
Blank
0
X
X
X
X
X
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
0
1
1
0
1
1
1
1
1
0
1
0
1
1
1
0
1
1
0
1
0
1
0
0
0
0
0
0
1
1
0
1
1
1
1
1
2
3
4
5
X
X
X
X
X
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
0
1
0
1
1
0
1
0
1
1
0
1
0
1
0
0
1
0
1
1
0
1
0
1
1
0
6
7
8
9
Blank
X
X
X
X
X
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Blank
Blank
Blank
Blank
Blank
X
0
0
0
X
X
X
X
#
**
**
†
†
†
1
†
Inverse of Output
Combinations Above
Display
as above
MC14544B
4
†
X = Don’t Care
†Above Combinations
* For liquid crystal readouts, apply a square wave
to Ph. For common cathode LED readouts, select
Ph = 0. For common anode LED readouts, select
Ph = 1.
** Depends upon the BCD Code previously applied
when LD = 1.
# RBO = RBI (A B C D)
MOTOROLA CMOS LOGIC DATA
24
VDD = 15 Vdc
VDD = 5.0 Vdc
POHmax = 70 mWdc
IOL , SINK CURRENT (mAdc)
IOH, SOURCE CURRENT (mAdc)
0
– 6.0
VDD = 10 Vdc
– 12
– 18
18
VDD = 10 Vdc
12
6.0
VDD = 15 Vdc
– 24
– 16
POLmax = 70 mWdc
VDD = 5.0 Vdc
VSS = 0 Vdc
VSS = 0 Vdc
0
– 12
– 8.0
– 4.0
(VOH – VDD), SOURCE DEVICE VOLTAGE (Vdc)
0
0
4.0
8.0
12
(VOL – VSS), SINK DEVICE VOLTAGE (Vdc)
Figure 1. Typical Output Source
Characteristics
16
Figure 2. Typical Output Sink
Characteristics
(a) Inputs D, Ph, and BI low, and Inputs A, B, and LD high.
20 ns
20 ns
90%
10%
C
VDD
50%
VSS
tPLH
tPHL
90%
50%
g
VOH
10%
VOL
tTLH
tTHL
(b) Inputs D, Ph, and BI low, and Inputs A and B high.
20 ns
90%
10%
LD
VSS
tsu
Inputs BI and Ph low, and Inputs D and LD high.
f in respect to a system clock.
C
VDD
50%
th
50%
50%
VDD
VSS
All outputs connected to respective CL loads.
20 ns
A, B, AND C
10%
20 ns
90%
50%
1
2f
50% DUTY CYCLE
ANY OUTPUT
VOH
VDD
VSS
VOH
VOL
Figure 3. Dynamic Power Dissipation
Signal Waveforms
MOTOROLA CMOS LOGIC DATA
g
VOL
(c) Data DCBA strobed into latches
LD
VDD
50%
VSS
tWH
Figure 4. Dynamic Signal Waveforms
MC14544B
5
TYPICAL APPLICATIONS FOR RIPPLE BLANKING
LEADING EDGE ZERO SUPPRESSION
DISPLAYS
a–– –––g
RBI
RBO
VDD (1) D C B A
CONNECT TO
INPUT
CODE
MC14544B
0 0 0 0
(0)
a–– –––g
RBI
RBO
1
D C B A
MC14544B
0 0 0 0
(0)
a–– –––g
RBI
RBO
1
D C B A
0
MC14544B
0 1 0 1
(5)
a–– –––g
RBI
RBO
D C B A
0
a–– –––g
RBI
RBO
D C B A
MC14544B
0 0 0 0
(0)
0
MC14544B
0 0 0 1
(1)
a–– –––g
RBI
RBO
D C B A
0
MC14544B
0 0 1 1
(3)
TRAILING EDGE ZERO SUPPRESSION
DISPLAYS
0
INPUT
CODE
MC14544B
6
a–– –––g
RBI
RBO
D C B A
MC14544B
0 1 0 1
(5)
a–– –––g
RBI
RBO
0
D C B A
MC14544B
0 0 0 0
(0)
a–– –––g
RBI
RBO
0
D C B A
MC14544B
0 0 0 1
(1)
0
a–– –––g
RBI
RBO
D C B A
MC14544B
0 0 1 1
(3)
1
a–– –––g
RBI
RBO
D C B A
MC14544B
0 0 0 0
(0)
1
a – – – – – g CONNECT TO
RBI
RBO
D C B A VDD (1)
MC14544B
0 0 0 0
(0)
INPUT
CODE
MOTOROLA CMOS LOGIC DATA
OUTLINE DIMENSIONS
L SUFFIX
CERAMIC DIP PACKAGE
CASE 726–04
ISSUE G
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIMENSION F FOR FULL LEADS. HALF
LEADS OPTIONAL AT LEAD POSITIONS 1, 9,
10, AND 18.
–A–
18
10
1
9
–B–
OPTIONAL LEAD
CONFIGURATION (1, 9, 10, 18)
DIM
A
B
C
D
F
G
J
K
L
M
N
L
C
N
–T–
K
SEATING
PLANE
F
M
G
D 18 PL
0.25 (0.010)
J
M
T A
18 PL
0.25 (0.010)
S
M
P SUFFIX
PLASTIC DIP PACKAGE
CASE 707–02
ISSUE C
18
10
B
1
9
T B
C
N
F
H
D
G
K
SEATING
PLANE
M
J
MILLIMETERS
MIN
MAX
22.35
23.11
6.10
7.49
–––
5.08
0.38
0.53
1.40
1.78
2.54 BSC
0.20
0.30
3.18
4.32
7.62 BSC
0_
15_
0.51
1.02
S
NOTES:
1. POSITIONAL TOLERANCE OF LEADS (D),
SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM
MATERIAL CONDITION, IN RELATION TO
SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
A
L
INCHES
MIN
MAX
0.880
0.910
0.240
0.295
–––
0.200
0.015
0.021
0.055
0.070
0.100 BSC
0.008
0.012
0.125
0.170
0.300 BSC
0_
15 _
0.020
0.040
DIM
A
B
C
D
F
G
H
J
K
L
M
N
MILLIMETERS
MIN
MAX
22.22
23.24
6.10
6.60
3.56
4.57
0.36
0.56
1.27
1.78
2.54 BSC
1.02
1.52
0.20
0.30
2.92
3.43
7.62 BSC
0_
15_
0.51
1.02
INCHES
MIN
MAX
0.875
0.915
0.240
0.260
0.140
0.180
0.014
0.022
0.050
0.070
0.100 BSC
0.040
0.060
0.008
0.012
0.115
0.135
0.300 BSC
0_
15 _
0.020
0.040
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided
in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered
trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MOTOROLA CMOS LOGIC DATA
◊
*MC14544B/D*
MC14544B
MC14544B/D
7