68HC08M6 HC08M68HC 8M68HC08M MC68HC908RF2/D REV 1 MC68HC908RF2 Advance Information HCMOS Microcontroller Unit blank MC68HC908RF2 Advance Information Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Motorola and are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc. MC68HC908RF2 — Rev. 1 MOTOROLA © Motorola, Inc., 2001 Advance Information 3 Advance Information To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://www.motorola.com/mcu/ The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. Revision History Date Revision Level June, 2001 Advance Information 4 Page Number(s) Description First bulleted paragraph under the subsection 15.6 Interrupts reworded for clarity 208 Revision to the description of the CHxMAX bit and the note that follows that description 218 17.3 Absolute Maximum Ratings — ESD HBM and ESD MM entries added 234 17.9 UHF Transmitter Module — Table entries and figures revised throughout 239 17.12 LVI Characteristics — VLVS and VLVR specifications updated — low voltage reset and detection entries deleted 247 17.13 Memory Characteristics — Maximum value for FLASH page program pulses updated 248 1 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information — MC68HC908RF2 List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . . 25 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 43 Section 4. FLASH 2TS Memory . . . . . . . . . . . . . . . . . . . . 45 Section 5. Central Processor Unit (CPU) . . . . . . . . . . . . 65 Section 6. System Integration Module (SIM) . . . . . . . . . 81 Section 7. Break Module (BRK) . . . . . . . . . . . . . . . . . . . 103 Section 8. Internal Clock Generator Module (ICG). . . . 109 Section 9. Configuration Register (CONFIG) . . . . . . . . 147 Section 10. Monitor Read-Only Memory (MON) . . . . . . 151 Section 11. Computer Operating Properly Module (COP) . . . . . . . . . . . . . . . . . . . . . . . 163 Section 12. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 169 Section 13. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 175 Section 14. Keyboard/External Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . 183 Section 15. Timer Interface Module (TIM) . . . . . . . . . . . 197 Section 16. PLL Tuned UHF Transmitter Module . . . . . 221 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information List of Sections 5 List of Sections Section 17. Preliminary Electrical Specifications . . . . 233 Section 18. Mechanical Specifications . . . . . . . . . . . . . 249 Section 19. Ordering Information . . . . . . . . . . . . . . . . . 251 Advance Information 6 MC68HC908RF2 — Rev. 1 List of Sections MOTOROLA Advance Information — MC68HC908RF2 Table of Contents Section 1. General Description 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . .29 1.5.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .30 1.5.3 External Reset (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.4 External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .30 1.5.5 Port A Input/Output Pins (PTA7, PTA6/KBD6–PTA1/KBD1, and PTA0) . . . . . . . . 31 1.5.6 Port B Input/Output Pins (PTB3/TCLK, PTB2/TCH0, PTB1, and PTB0/MCLK) . . . 31 1.5.7 UHF Transmitter Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Section 2. Memory Map 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Input/Output Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Table of Contents 7 Table of Contents Section 3. Random-Access Memory (RAM) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Section 4. FLASH 2TS Memory 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 FLASH 2TS Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 FLASH 2TS Charge Pump Frequency Control. . . . . . . . . . . . . 49 4.6 FLASH 2TS Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.7 FLASH 2TS Program/Margin Read Operation . . . . . . . . . . . . . 50 4.8 FLASH 2TS Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.9 FLASH 2TS Block Protect Register . . . . . . . . . . . . . . . . . . . . . 54 4.10 Embedded Program/Erase Routines . . . . . . . . . . . . . . . . . . . . 55 4.11 Embedded Function Descriptions. . . . . . . . . . . . . . . . . . . . . . . 56 4.11.1 RDVRRNG Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.11.2 PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.11.3 ERARNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.11.4 REDPROG Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.11.5 Example Routine Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 4.12 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.12.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 4.12.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Advance Information 8 MC68HC908RF2 — Rev. 1 Table of Contents MOTOROLA Table of Contents Section 5. Central Processor Unit (CPU) 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 5.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 5.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 5.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Section 6. System Integration Module (SIM) 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 85 6.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 6.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . 85 6.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 86 6.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 86 6.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 88 6.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 90 6.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Table of Contents 9 Table of Contents 6.4.2.4 6.4.2.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .90 6.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 91 6.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 91 6.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 91 6.6 Program Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 6.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 96 6.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 6.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 6.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 6.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 100 6.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 101 Section 7. Break Module (BRK) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 105 7.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .105 7.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .106 7.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 7.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 Advance Information 10 MC68HC908RF2 — Rev. 1 Table of Contents MOTOROLA Table of Contents 7.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.6.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .107 7.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Section 8. Internal Clock Generator Module (ICG) 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.4.1 Clock Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.4.2 Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4.2.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 114 8.4.2.2 Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.4.2.3 Frequency Comparator . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.4.2.4 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.4.3 External Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.3.1 External Oscillator Amplifier . . . . . . . . . . . . . . . . . . . . . . 116 8.4.3.2 External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .117 8.4.4 Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.4.4.1 Clock Monitor Reference Generator . . . . . . . . . . . . . . . 118 8.4.4.2 Internal Clock Activity Detector . . . . . . . . . . . . . . . . . . . 121 8.4.4.3 External Clock Activity Detector . . . . . . . . . . . . . . . . . . .121 8.4.5 Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 8.4.5.1 Clock Selection Switch. . . . . . . . . . . . . . . . . . . . . . . . . . 122 8.4.5.2 Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.5 Usage Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8.5.1 Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5.2 Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . . 126 8.5.3 Clock Monitor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.5.4 Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . . 127 8.5.4.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 128 8.5.4.2 Binary Weighted Divider . . . . . . . . . . . . . . . . . . . . . . . . 128 8.5.4.3 Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . . 129 8.5.4.4 Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . . 129 8.5.5 Switching Internal Clock Frequencies . . . . . . . . . . . . . . . . 130 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Table of Contents 11 Table of Contents 8.5.6 8.5.6.1 8.5.6.2 8.5.6.3 8.5.7 8.5.8 Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . . 131 Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . . 131 Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . . 132 Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Improving Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Trimming Frequency on the Internal Clock Generator . . . . 135 8.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 8.7 Configuration Register Option . . . . . . . . . . . . . . . . . . . . . . . . 137 8.7.1 EXTSLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 8.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.8.1 ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.8.2 ICG Multiplier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 8.8.3 ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.8.4 ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.8.5 ICG DCO Stage Register . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Section 9. Configuration Register (CONFIG) 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Section 10. Monitor Read-Only Memory (MON) 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.4.1 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Advance Information 12 MC68HC908RF2 — Rev. 1 Table of Contents MOTOROLA Table of Contents 10.4.5 10.4.6 10.4.7 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Section 11. Computer Operating Properly Module (COP) 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 11.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 11.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 11.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.4.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 11.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.4.7 COPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.4.8 COPRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 11.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 11.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 11.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 11.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 11.9 COP Module During Break Interrupts . . . . . . . . . . . . . . . . . . .168 Section 12. Low-Voltage Inhibit (LVI) 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Table of Contents 13 Table of Contents 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 12.4.1 False Trip Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 12.4.2 Short Stop Recovery Option. . . . . . . . . . . . . . . . . . . . . . . . 171 12.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 12.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 12.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 12.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 12.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 Section 13. Input/Output (I/O) Ports 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 13.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 13.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 178 13.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 13.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 13.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 181 Section 14. Keyboard/External Interrupt Module (KBI) 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.4.1 External Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 14.4.2 IRQ1 Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 14.4.3 KBI Module During Break Interrupts. . . . . . . . . . . . . . . . . . 189 14.4.4 Keyboard Interrupt Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.4.5 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Advance Information 14 MC68HC908RF2 — Rev. 1 Table of Contents MOTOROLA Table of Contents 14.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 14.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 14.6 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 14.6.1 IRQ and Keyboard Status and Control Register . . . . . . . . 193 14.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 195 Section 15. Timer Interface Module (TIM) 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 15.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 15.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 15.5.4 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .202 15.5.5 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . 203 15.5.6 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 204 15.5.7 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . 205 15.5.8 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . 206 15.5.9 PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 15.6.1 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 15.6.2 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 15.6.3 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 15.7 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 209 15.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 15.8.1 TIM Clock Pin (TCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.8.2 TIM Channel I/O Pins (TCH0) . . . . . . . . . . . . . . . . . . . . . . 210 15.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.9.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 211 15.9.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Table of Contents 15 Table of Contents 15.9.3 15.9.4 15.9.5 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 214 TIM Channel Status and Control Registers . . . . . . . . . . . . 214 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .218 Section 16. PLL Tuned UHF Transmitter Module 16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 16.3 Transmitter Functional Description . . . . . . . . . . . . . . . . . . . . . 223 16.4 Phase-Lock Loop (PLL) and Local Oscillator . . . . . . . . . . . . . 223 16.5 RF Output Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16.6 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16.7 Microcontroller Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 16.8 State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 16.9 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 16.10 Data Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 16.11 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.11.1 Application Schematics in OOK and FSK Modulation . . . .229 16.11.2 Complete Application Schematic . . . . . . . . . . . . . . . . . . . . 232 Section 17. Preliminary Electrical Specifications 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 17.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 234 17.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 235 17.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 17.6 1.8-Volt to 3.3-Volt DC Electrical Characteristics Excluding UHF Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 17.7 3.0-Volt DC Electrical Characteristics Excluding UHF Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Advance Information 16 MC68HC908RF2 — Rev. 1 Table of Contents MOTOROLA Table of Contents 17.8 2.0-Volt DC Electrical Characteristics Excluding UHF Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 17.9 UHF Transmitter Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 17.9.1 UHF Module Electrical Characteristics. . . . . . . . . . . . . . . . 239 17.9.2 UHF Module Output Power Measurement . . . . . . . . . . . . . 244 17.10 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 17.11 Internal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . 246 17.12 LVI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 17.13 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Section 18. Mechanical Specifications 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 18.3 32-Pin LQFP Package (Case No. 873A) . . . . . . . . . . . . . . . . 250 Section 19. Ordering Information 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 19.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Table of Contents 17 Table of Contents Advance Information 18 MC68HC908RF2 — Rev. 1 Table of Contents MOTOROLA Advance Information — MC68HC908RF2 List of Figures Figure Title 1-1 1-2 1-3 MC68HC908RF2 MCU Block Diagram. . . . . . . . . . . . . . . . . . . 28 LQFP Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2-1 2-2 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 36 4-1 4-2 4-3 FLASH 2TS Control Register (FLCR). . . . . . . . . . . . . . . . . . . .47 Smart Programming Algorithm Flowchart. . . . . . . . . . . . . . . . . 52 FLASH 2TS Block Protect Register (FLBPR) . . . . . . . . . . . . . . 54 5-1 5-2 5-3 5-4 5-5 5-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .69 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ICG Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 External Reset Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . 87 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 95 MC68HC908RF2 — Rev. 1 MOTOROLA Page Advance Information List of Figures 19 List of Figures Figure Title 6-12 6-13 6-14 6-15 6-16 6-17 6-18 6-19 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . . 97 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . . 97 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . . 98 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . . 99 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 100 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 101 7-1 7-2 7-3 7-4 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 104 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Break Status and Control Register (BSCR) . . . . . . . . . . . . . . 107 Break Address Registers (BRKH and BRKL) . . . . . . . . . . . . . 108 8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-9 8-10 8-11 8-12 8-13 8-14 8-15 ICG Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Internal Clock Generator Block Diagram . . . . . . . . . . . . . . . . 113 External Clock Generator Block Diagram . . . . . . . . . . . . . . . . 116 Clock Monitor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 119 Clock Selection Circuit Block Diagram . . . . . . . . . . . . . . . . . . 122 Synchronizing Clock Switcher Circuit Diagram. . . . . . . . . . . . 123 Code Example for Switching Clock Sources . . . . . . . . . . . . . 125 Code Example for Enabling the Clock Monitor . . . . . . . . . . . . 126 Code Example for Writing DDIV and DSTG . . . . . . . . . . . . . .135 ICG I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 139 ICG Control Register (ICGCR) . . . . . . . . . . . . . . . . . . . . . . . . 141 ICG Multiplier Register (ICGMR) . . . . . . . . . . . . . . . . . . . . . . 143 ICG Trim Register (ICGTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ICG DCO Divider Register (ICGDVR) . . . . . . . . . . . . . . . . . .145 ICG DCO Stage Register (ICGDSR) . . . . . . . . . . . . . . . . . . . 146 9-1 Configuration Register (CONFIG). . . . . . . . . . . . . . . . . . . . . . 148 10-1 10-2 10-3 10-4 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Advance Information 20 Page MC68HC908RF2 — Rev. 1 List of Figures MOTOROLA List of Figures Figure Title Page 10-5 10-6 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11-1 11-2 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 167 12-1 12-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13-1 13-2 13-3 13-4 13-5 13-6 13-7 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 178 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 181 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14-1 14-2 14-3 14-4 14-5 IRQ Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 IRQ and Keyboard I/O Register Summary . . . . . . . . . . . . . . . 185 IRQ Interrupt Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 190 IRQ and Keyboard Status and Control Register (INTKBSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Keyboard Interrupt Enable Register (INTKBIER) . . . . . . . . . . 195 14-6 15-1 15-2 15-3 15-4 15-5 15-6 15-7 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 204 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 211 TIM Counter Registers (TCNTH and TCNTL) . . . . . . . . . . . . 213 TIM Counter Modulo Registers (TMODH and TMODL) . . . . . 214 TIM Channel Status and Control Registers (TSC0 and TSC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 15-8 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 15-9 TIM Channel 0 Registers (TCH0H and TCH0L) . . . . . . . . . . . 219 15-10 TIM Channel 1 Registers (TCH1H and TCH1L) . . . . . . . . . . . 219 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information List of Figures 21 List of Figures Figure Title Page 16-1 16-2 16-3 16-4 Simplified Integrated RF Module Block Diagram . . . . . . . . . . 222 Main State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226 Signals, Waveforms, and Timing Definitions . . . . . . . . . . . . . 228 Application Schematic in OOK Modulation, 315-MHz and 434-MHz Frequency Bands . . . . . . . . . . . . 229 16-5 Application Schematic in FSK Modulation, 315-MHz and 434-MHz Frequency Bands . . . . . . . . . . . . 230 16-6 Complete Application Schematic in OOK Modulation, 434-MHz Frequency Band. . . . . . . . . . . . . . . . . . . . . . . . . 232 17-1 17-2 17-3 17-4 17-5 17-6 RF Spectrum at 434-MHz Frequency Band Displayed with a 5-MHz Span . . . . . . . . . . . . . . . . . 242 RF Spectrum at 434-MHz Frequency Band Displayed with a 50-MHz Span . . . . . . . . . . . . . . . . . . . . . 243 RF Spectrum at 434-MHz Frequency Band Displayed with a 1.5-GHz Span. . . . . . . . . . . . . . . . . . . . . 243 Output Power Measurement Configurations. . . . . . . . . . . . . .244 Ouput Characteristic and Matching Network for 434-MHz Frequency Band . . . . . . . . . . . . . . . . . . . . . . 245 Output Power at 434-MHz Frequency Band versus REXT Value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Advance Information 22 MC68HC908RF2 — Rev. 1 List of Figures MOTOROLA Advance Information — MC68HC908RF2 List of Tables Table Title 1-1 UHF Transmitter Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2-1 Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4-1 4-2 4-3 4-4 4-5 Charge Pump Clock Frequency . . . . . . . . . . . . . . . . . . . . . . . .49 Erase Block Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Embedded FLASH Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Embedded FLASH Routine Global Variables. . . . . . . . . . . . . . 56 CTLBYTE-Erase Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5-1 5-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6-1 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8-1 8-2 8-3 8-4 8-5 Correction Sizes from DLF to DCO . . . . . . . . . . . . . . . . . . . . 115 Clock Monitor Reference Divider Ratios. . . . . . . . . . . . . . . . . 120 Quantization Error in ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Typical Settling Time Examples . . . . . . . . . . . . . . . . . . . . . . .133 ICG Module Register Bit Interaction Summary. . . . . . . . . . . . 140 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 157 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 158 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 158 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 159 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 159 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . .160 MC68HC908RF2 — Rev. 1 MOTOROLA Page Advance Information List of Tables 23 List of Tables Table Title Page 12-1 LOWV Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 13-1 13-2 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 15-1 15-2 15-3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 217 16-1 Frequency Band Selection and Associated Divider Ratios. . . . . . . . . . . . . . . . . . . . . . 223 16-2 DATACLK Frequency versus Crystal Oscillator Frequency . . . . . . . . . . . . . . . . . 225 16-3 Component Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 16-4 Recommended Crystal Characteristics (SMD Ceramic Package) . . . . . . . . . . . . . . . . . . . . . . . . . . 231 16-5 Crystal Pulling Capacitor Value versus Carrier Frequency Total Deviation . . . . . . . . . . . . . 231 19-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251 Advance Information 24 MC68HC908RF2 — Rev. 1 List of Tables MOTOROLA Advance Information — MC68HC908RF2 Section 1. General Description 1.1 Contents 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5.1 Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . .29 1.5.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .30 1.5.3 External Reset (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.5.4 External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .30 1.5.5 Port A Input/Output Pins (PTA7, PTA6/KBD6–PTA1/KBD1, and PTA0) . . . . . . . . 31 1.5.6 Port B Input/Output Pins (PTB3/TCLK, PTB2/TCH0, PTB1, and PTB0/MCLK) . . . . . . . . . . . . . . 31 1.5.7 UHF Transmitter Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.2 Introduction The MC68HC908RF2 MCU is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). Optimized for low-power operation and available in a small 32-pin low-profile quad flat pack (LQFP), this MCU is well suited for remote keyless entry (RKE) transmitter designs. The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information General Description 25 General Description 1.3 Features Features of the MC68HC908RF2 MCU include: • High-performance M68HC08 architecture • Fully upward-compatible object code with M6805, M146805, and M68HC05 Families • Maximum internal bus frequency of 4 MHz at 3.3 volts • Maximum internal bus frequency of 2 MHz at 1.8 volts • Internal oscillator requiring no external components: – Software selectable bus frequencies – ± 25 percent accuracy with trim capability to ±2 percent – Option to allow use of external clock source or external crystal/ceramic resonator • 2 Kbytes of on-chip FLASH memory • FLASH program memory security(1) • 128 bytes of on-chip RAM • 16-bit, 2-channel timer interface module (TIM) • 12 general-purpose input/output (I/O) ports: – Six shared with keyboard wakeup function – Two shared with the timer module – Port A pins have 3-mA sink capabilities • Low-voltage inhibit (LVI) module: – 1.85-V detection forces MCU into reset – 2.0-V detection sets indicator flag • 6-bit keyboard interrupt with wakeup feature • External asynchronous interrupt pin with internal pullup (IRQ1) • Ultra high frequency (UHF) transmitter 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Advance Information 26 MC68HC908RF2 — Rev. 1 General Description MOTOROLA General Description MCU Block Diagram • System protection features: – Computer operating properly (COP) reset – Low-voltage detection with reset – Illegal opcode detection with reset – Illegal address detection with reset • 32-pin plastic LQFP package • Low-power design with stop and wait modes • Master reset pin and power-on reset (POR) • –40° to 85° Celsius operation Features of the CPU08 include: • Enhanced HC05 programming model • Extensive loop control functions • 16 addressing modes (eight more than the HC05) • 16-bit index register and stack pointer • Memory-to-memory data transfers • Fast 8 × 8 multiply instruction • Fast 16/8 divide instruction • Binary-coded decimal (BCD) instructions • Optimization for controller applications • Third party C language support 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC908RF2 MCU. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information General Description 27 SECURITY MODULE CONTROL AND STATUS REGISTERS — 32 BYTES PTA ARITHMETIC/LOGIC UNIT (ALU) DDRA CPU REGISTERS PTA1/KBD1‡** PTA0** DDRB 2-CHANNEL TIMER MODULE USER FLASH VECTOR SPACE — 14 BYTES General Description OSC2 OSC1 SOFTWARE SELECTABLE INTERNAL OSCILLATOR MODULE VCC MODE RST* SYSTEM INTEGRATION MODULE IRQ1* KEYBOARD/INTERRUPT MODULE ENABLE DATA BAND UHF TRANSMITTER RFOUT GNDRF REXT POWER-ON RESET MODULE XTAL1 XTAL0 DATACLK MOTOROLA MC68HC908RF2 — Rev. 1 VDD CFSK POWER VSS * PIN CONTAINS INTEGRATED PULLUP RESISTOR ** HIGH CURRENT SINK PIN ‡ PIN CONTAINS SOFTWARE SELECTABLE PULLUP RESISTOR Figure 1-1. MC68HC908RF2 MCU Block Diagram PTB LOW-VOLTAGE INHIBIT MODULE MONITOR ROM — 768 BYTES PTA4/KBD4‡** PTA3/KBD3‡** PTA2/KBD2‡** COMPUTER OPERATING PROPERLY MODULE USER FLASH — 2031 BYTES USER RAM — 128 BYTES PTA7** PTA6/KBD6‡** PTA5/KBD5‡ ** PTB3/TCLK PTB2/TCH0 PTB1 PTB0/MCLK General Description Advance Information 28 INTERNAL BUS M68HC08 CPU General Description Pin Assignments 1.5 Pin Assignments PTA2/KBD PTA3/KBD PTA4/KBD PTA5/KBD PTA6/KBD PTA7 RST IRQ1 32 31 30 29 28 27 26 25 Figure 1-2 shows the pin assignments. PTB2/TCH0 5 20 PTB3/TCLK GND 6 19 DATACLK XTAL1 7 18 DATA XTAL0 8 17 BAND 16 OSC1 MODE 21 15 4 ENABLE PTB1 14 OSC2 VCC 22 13 3 GNDRF PTB0/MCLK 12 VSS RFOUT 23 11 2 VCC PTA0 10 VDD CFSK 24 9 1 REXT PTA1/KBD1 Figure 1-2. LQFP Pin Assignments 1.5.1 Power Supply Pins (VDD and VSS) VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as shown in Figure 1-3. Place the bypass capacitors as close to the MCU power pins as possible. Use high-frequency-response ceramic capacitors for CBypass. CBulk are optional bulk current bypass capacitors for use in applications that require the port pins to source high-current levels. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information General Description 29 General Description MCU VDD VSS CBypass 0.1 µF + CBulk VDD Note: Component values shown represent typical applications. Figure 1-3. Power Supply Bypassing 1.5.2 Oscillator Pins (OSC1 and OSC2) The OSC1 and OSC2 pins are the connections to an external clock source or crystal/ceramic resonator. 1.5.3 External Reset (RST) A logic 0 on the RST pin forces the MCU to a known startup state. RST is bidirectional, allowing a reset of the entire system. It is driven low when any internal reset source is asserted. The RST pin contains an internal pullup resistor. For additional information, see Section 6. System Integration Module (SIM). 1.5.4 External Interrupt Pin (IRQ1) IRQ1 is an asynchronous external interrupt pin. The IRQ1 pin contains an internal pullup resistor. Advance Information 30 MC68HC908RF2 — Rev. 1 General Description MOTOROLA General Description Pin Assignments 1.5.5 Port A Input/Output Pins (PTA7, PTA6/KBD6–PTA1/KBD1, and PTA0) Port A is an 8-bit special function port that shares its pins with the keyboard interrupt. Six port A pins (PTA6–PTA1) can be programmed to serve as an external interrupt. Once enabled, that pin will contain an internal pullup resistor. All port A pins are high-current sink pins. 1.5.6 Port B Input/Output Pins (PTB3/TCLK, PTB2/TCH0, PTB1, and PTB0/MCLK) Port B is a 4-bit, general-purpose, bidirectional I/O port, with some of its pins shared with the timer (TIM) module. 1.5.7 UHF Transmitter Pins The MC68HC908RF2 — Rev. 1 uses dedicated pins for its UHF module. These pins are described in Table 1-1. Table 1-1. UHF Transmitter Pins Pin Function Description 6 GND 7 XTAL1 Reference oscillator input 8 XTAL0 Reference oscillator output 9 REXT Output amplifier current setting resistor 10 CFSK FSK switch output 11 VCC 12 RFOUT Power amplifier output 13 GNDRF Power amplifier ground 14 VCC Power supply 15 ENABLE Enable input 16 MODE Modulation type selection input 17 BAND Frequency band selection 18 DATA Data input 19 DATACLK Ground Power supply Clock output to the microcontroller MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information General Description 31 General Description Advance Information 32 MC68HC908RF2 — Rev. 1 General Description MOTOROLA Advance Information — MC68HC908RF2 Section 2. Memory Map 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Input/Output Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 2.2 Introduction The memory map, shown in Figure 2-1, includes: • 2031 bytes of user FLASH memory • 128 bytes of random-access memory (RAM) • 14 bytes of user-defined vectors in FLASH memory • 768 bytes of monitor read-only memory (ROM) These definitions apply to the memory map representation of reserved and unimplemented locations: • Reserved — Accessing a reserved location can have unpredictable effects on MCU operation. • Unimplemented — Accessing an unimplemented location causes an illegal address reset. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Memory Map 33 Memory Map $0000 ↓ $003F I/O REGISTERS (28 BYTES) $0040 ↓ $007F UNIMPLEMENTED (64 BYTES) $0080 ↓ $00FF RAM (128 Bytes) $0100 ↓ $77FF UNIMPLEMENTED (30,464 BYTES) $7800 ↓ $7FEE FLASH MEMORY (2031 BYTES) $7FEF OPTIONAL FACTORY DETERMINED ICG TRIM VALUE(1) $7FF0 ↓ $EFFF UNIMPLEMENTED (28,688 BYTES) $F000 ↓ $F2EF MONITOR ROM (752 BYTES) $F2F0 ↓ $FDFF UNIMPLEMENTED (2832 BYTES) $FE00 SIM BREAK STATUS REGISTER (SBSR) $FE01 SIM RESET STATUS REGISTER (SRSR) $FE02 SIM BREAK FLAG CONTROL REGISTER (SBFCR) $FE03 ↓ $FE06 RESERVED (4 BYTES) $FE07 UNIMPLEMENTED (1 BYTE) $FE08 FLASH CONTROL REGISTER (FLCR) $FE09 RESERVED (1 BYTE) $FE0A ↓ $FE0B UNIMPLEMENTED (2 BYTES) $FE0C BREAK ADDRESS REGISTER HIGH (BRKH) $FE0D BREAK ADDRESS REGISTER LOW (BRKL) 1. Address $7FEF is reserved for an optional factory-determined ICG trim value. Consult with a local Motorola representative for more information and availability of this option. Figure 2-1. Memory Map Advance Information 34 MC68HC908RF2 — Rev. 1 Memory Map MOTOROLA Memory Map Input/Output Section $FE0E BREAK STATUS AND CONTROL REGISTER (BSCR) $FE0F LVI STATUS REGISTER (LVISR) $FE10 ↓ $FEEF UNIMPLEMENTED (222 BYTES) $FEF0 ↓ $FEFF MONITOR ROM (16 BYTES) $FF00 ↓ $FFEF UNIMPLEMENTED (240 BYTES) $FFF0 FLASH BLOCK PROTECT REGISTER (FLBPR) $FFF1 RESERVED (1 BYTE) $FFF2 ↓ $FFFF FLASH VECTORS (14 Bytes) Figure 2-1. Memory Map (Continued) 2.3 Input/Output Section Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have these addresses: • $FE00 — SIM break status register, SBSR • $FE01 — SIM reset status register, SRSR • $FE02 — SIM break flag control register, BFCR • $FE08 — FLASH control register, FLCR • $FE0C — BREAK address register high, BRKH • $FE0D — BREAK address register low, BRKL • $FE0E — BREAK status and control register, BSCR • $FE0F — LVI status register, LVISR • $FFF0 — FLASH block protection register, FLBPR • $FFFF — COP control register, COPCTL MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Memory Map 35 Memory Map Addr. $0000 $0001 Register Name Read: Port A Data Register (PTA) Write: See page 177. Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 Unaffected by reset Read: Port B Data Register (PTB) Write: See page 180. Reset: $0002 Unimplemented $0003 Unimplemented PTB3 Unaffected by reset Read: Data Direction Register A DDRA7 $0004 (DDRA) Write: See page 178. Reset: 0 Read: Data Direction Register B MCLKEN $0005 (DDRB) Write: See page 181. Reset: 0 $0006 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 KEYF 0 IMASKK MODEK R ACKK 0 0 0 0 0 IMASKI MODEI Unimplemented ↓ $0019 Unimplemented IRQ and Keyboard Status Read: and Control Register Write: $001A (INTKBSCR) See page 193. Reset: IRQ1F Read: Keyboard Interrupt Enable $001B Register (INTKBIER) Write: See page 196. Reset: 0 0 R ACKI 0 0 0 0 0 0 0 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 0 0 0 0 0 0 = Unimplemented R 0 0 0 = Reserved U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 6) Advance Information 36 MC68HC908RF2 — Rev. 1 Memory Map MOTOROLA Memory Map Input/Output Section Addr. Register Name $001C Bit 7 6 5 4 3 2 1 Bit 0 LVIRST LVIPWR COPRS SSREC STOP COPD 1 1 0 0 0 0 0 0 PS2 PS1 PS0 Unimplemented ↓ $001E $001F Unimplemented Read: Configuration Register EXTSLOW LVISTOP (CONFIG) Write: See page 148. Reset: 0 0 Read: Timer Status and Control $0020 Register (TSC) Write: See page 213. Reset: TOF 0 0 1 0 0 0 0 0 Read: Timer Counter Register High (TCNTH) Write: See page 215. Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Timer Counter Register Low (TCNTL) Write: See page 215. Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 = Unimplemented R $0021 $0022 $0023 Read: Timer Counter Modulo Register High (TMODH) Write: See page 216. Reset: Timer Counter Read: Modulo Register Low $0024 Write: (TMODL) See page 216. Reset: $0025 Read: Timer Channel 0 Status and Control Register Write: (TSC0) See page 217. Reset: TOIE TSTOP 0 TRST CH0F 0 0 = Reserved U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 6) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Memory Map 37 Memory Map Addr. Register Name Read: Timer Channel 0 Register $0026 High (TCH0H) Write: See page 221. Reset: Read: Timer Channel 0 Register $0027 Low (TCH0L) Write: See page 221. Reset: $0028 Read: Timer Channel 1 Status and Control Register Write: (TSC1) See page 217. Reset: Read: Timer Channel 1 Register $0029 High (TCH1H) Write: See page 221. Reset: Read: Timer Channel 1 Register $002A Low (TCH1L) Write: See page 221. Reset: $002B Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CH1F 0 CH1IE MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset Unimplemented ↓ $0035 Unimplemented $0036 Read: Internal Clock Generator Control Register Write: (ICGCR) See page 141. Reset: $0037 Read: Internal Clock Generator Multiplier Register Write: (ICGMR) See page 143. Reset: CMF CMIE ICGS CMON CS ICGON ECGS ECGON 0 0 0 0 1 0 0 0 R N6 N5 N4 N3 N2 N1 N0 0 0 0 1 0 1 0 1 = Unimplemented R = Reserved U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 6) Advance Information 38 MC68HC908RF2 — Rev. 1 Memory Map MOTOROLA Memory Map Input/Output Section Addr. $0038 Register Name Read: Internal Clock Generator Trim Register (ICGTR) Write: See page 144. Reset: ICG DCO Divider Read: Control Register $0039 (ICGDVR) Bit 7 6 5 4 3 2 1 Bit 0 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 R R R R DDIV3 DDIV2 DDIV1 DDIV0 0 0 0 0 U U U U DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 R R Write: See page 145. Reset: Read: ICG DCO Stage Register DSTG7 $003A (ICGDSR) Write: See page 146. Reset: $003B Reserved $003C Unimplemented ↓ $003F Unimplemented Read: SIM Break Status Register $FE00 (SBSR) Write: See page 99. Reset: Unaffected by reset R R R R R R R R R R R R SBSW R See Note 0 Note: Writing a logic 0 clears SBSW Read: SIM Reset Status Register $FE01 (SRSR) Write: See page 100. POR: $FE02 Read: SIM Break Flag Control Register (SBFCR) Write: See page 101. Reset: $FE03 Reserved POR PIN COP ILOP ILAD 0 LVI 0 1 X X X X X X X BCFE R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R = Unimplemented R = Reserved U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 6) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Memory Map 39 Memory Map Addr. Register Name $FE04 Reserved $FE05 Unimplemented Bit 7 6 5 4 3 2 1 Bit 0 R R R R R R R R FDIV0 BLK1 BLK0 HVEN MARGIN ERASE PGM 0 0 0 0 0 0 0 0 R R R R R R R R Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 LOWV 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented R ↓ $FE07 $FE08 Unimplemented Read: FLASH 2TS Control Register (FLCR) Write: See page 47. Reset: $FE09 Reserved $FE0A Unimplemented $FE0B Unimplemented $FE0C Read: Break Address Register High (BRKH) Write: See page 108. Reset: $FE0D Read: Break Address Register Low (BRKL) Write: See page 108. Reset: Read: Break Status and Control $FE0E Register (BSCR) Write: See page 107. Reset: $FE0F 0 Read: LVIOUT LVI Status Register (LVISR) Write: See page 172. Reset: 0 = Reserved U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 6) Advance Information 40 MC68HC908RF2 — Rev. 1 Memory Map MOTOROLA Memory Map Input/Output Section Addr. Register Name FLASH 2TS Block Protect Read: Register (FLBPR)† $FFF0 Write: See page 54. Reset: Bit 7 6 5 4 3 2 1 Bit 0 R R R R BPR3 BPR2 BPR1 BPR0 Unaffected by reset † Non-volatile FLASH register $FFFF Read: COP Control Register (COPCTL) Write: See page 167. Reset: Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset = Unimplemented R = Reserved U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 6) Table 2-1 is a list of vector locations. Table 2-1. Vector Locations High Priority Low Address Vector $FFF2 ICG vector (high) $FFF3 ICG vector (low) $FFF4 TIM overflow vector (high) $FFF5 TIM overflow vector (low) $FFF6 TIM channel 1 vector (high) $FFF7 TIM channel 1 vector (low) $FFF8 TIM channel 0 vector (high) $FFF9 TIM channel 0 vector (low) $FFFA IRQ1/keyboard vector (high) $FFFB IRQ1/keyboard vector (low) $FFFC SWI vector (high) $FFFD SWI vector (low) $FFFE Reset vector (high) $FFFF Reset vector (low) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Memory Map 41 Memory Map 2.4 Monitor ROM The 768 bytes at addresses $F000–F2EF and $FEF0–$FEFF are utilized by the monitor ROM. The address range $F000–F2EF is reserved for the monitor code functions, FLASH memory programming, and erase algorithms. The address range $FEF0–$FEFF holds reserved ROM addresses that contain the monitor code reset vectors. Advance Information 42 MC68HC908RF2 — Rev. 1 Memory Map MOTOROLA Advance Information — MC68HC908RF2 Section 3. Random-Access Memory (RAM) 3.1 Contents 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Introduction This section describes the 128 bytes of random-access memory (RAM). 3.3 Functional Description Addresses $0080–$00FF are RAM locations. The location of the stack RAM is programmable. NOTE: For correct operation, the stack pointer must point only to RAM locations. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. NOTE: For M68HC05, M6805, and M146805 compatibility, the H register is not stacked. During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Be careful when using nested subroutines. The CPU could overwrite data in the RAM during a subroutine or during the interrupt stacking operation. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Random-Access Memory (RAM) 43 Random-Access Memory (RAM) Advance Information 44 MC68HC908RF2 — Rev. 1 Random-Access Memory (RAM) MOTOROLA Advance Information — MC68HC908RF2 Section 4. FLASH 2TS Memory 4.1 Contents 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 FLASH 2TS Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 FLASH 2TS Charge Pump Frequency Control. . . . . . . . . . . . . 49 4.6 FLASH 2TS Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.7 FLASH 2TS Program/Margin Read Operation . . . . . . . . . . . . . 50 4.8 FLASH 2TS Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.9 FLASH 2TS Block Protect Register . . . . . . . . . . . . . . . . . . . . . 54 4.10 Embedded Program/Erase Routines . . . . . . . . . . . . . . . . . . . . 55 4.11 Embedded Function Descriptions. . . . . . . . . . . . . . . . . . . . . . . 56 4.11.1 RDVRRNG Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.11.2 PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.11.3 ERARNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.11.4 REDPROG Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.11.5 Example Routine Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 4.12 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.12.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 4.12.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 4.2 Introduction This section describes the operation of the embedded FLASH 2TS memory. This memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 45 FLASH 2TS Memory 4.3 Functional Description The FLASH 2TS memory is appropriately named to describe its 2-transistor source-select bit cell. The FLASH 2TS memory is an array of 2031 bytes with an additional 14 bytes of user vectors and one byte for block protection. An erased bit reads as a logic 0 and a programmed bit reads as a logic 1. The address ranges for the user memory, control register, and vectors are: • $7800–$7FEE, user space • $7FEF, reserved — optional ICG trim value, see 8.8.3 ICG Trim Register • $FFF0, block protect register • $FE08, FLASH 2TS control register • $FFF2–$FFFF, these locations are reserved for user-defined interrupt and reset vectors This list is the row architecture for the user space array: $7800–$7807 (Row 0) $7808–$780F (Row 1) $7810–$7817 (Row 2) $7818–$781F (Row 3) $7820–$7827 (Row 4) -------------------------$7FE8–$7FEF (Row 253) Program and erase operations are facilitated through control bits in a memory mapped register. Details for these operations appear later in this section. Memory in the FLASH 2TS array is organized into pages within rows. For the 2-Kbyte array on the MC68HC908RF2, the page size is one byte. There are eight pages (or eight bytes) per row. Programming operations are performed on a page basis, one byte at a time. Erase operations are performed on a block basis. The minimum Advance Information 46 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory FLASH 2TS Control Register block size is one row of eight bytes. Refer to Table 4-2 for additional block size options. NOTE: Sometimes a program disturb condition, in which case an erased bit on the row being programmed unintentionally becomes programmed, occurs. The embedded smart programming algorithm implements a margin read technique to avoid program disturb. The margin read step of the smart programming algorithm is used to ensure programmed bits are programmed to sufficient margin for data retention over the device’s lifetime. In the application code, perform an erase operation after eight program operations (on the same row) to further avoid program disturb. For availability of programming tools and more information, contact a local Motorola representative. NOTE: A security feature prevents viewing of the FLASH 2TS contents.(1) 4.4 FLASH 2TS Control Register The FLASH 2TS control register (FLCR) controls program, erase, and margin read operations. Address: $FE08 Bit 7 Read: 6 5 4 3 2 1 Bit 0 FDIV0 BLK1 BLK0 HVEN MARGIN ERASE PGM 0 0 0 0 0 0 0 0 Write: Reset: 0 = Unimplemented Figure 4-1. FLASH 2TS Control Register (FLCR) FDIV0 — Frequency Divide Control Bit This read/write bit selects the factor by which the charge pump clock is divided from the system clock. See 4.5 FLASH 2TS Charge Pump Frequency Control. 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH 2TS difficult for unauthorized users. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 47 FLASH 2TS Memory BLK1 — Block Erase Control Bit This read/write bit together with BLK0 allows erasing of blocks of varying size. See 4.6 FLASH 2TS Erase Operation for a description of available block sizes. BLK0 — Block Erase Control Bit This read/write bit together with BLK1 allows erasing of blocks of varying size. See 4.6 FLASH 2TS Erase Operation for a description of available block sizes. HVEN — High-Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can be set only if either PGM = 1 or ERASE = 1 and the proper sequence for smart programming or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MARGIN — Margin Read Control Bit This read/write bit configures the memory for margin read operation. MARGIN cannot be set if the HVEN = 1. MARGIN will automatically return to unset (0) if asserted when HVEN = 1. 1 = Margin read operation selected 0 = Margin read operation unselected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be set at the same time. 1 = Erase operation selected 0 = Erase operation unselected PGM — Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be set at the same time. 1 = Program operation selected 0 = Program operation unselected Advance Information 48 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory FLASH 2TS Charge Pump Frequency Control 4.5 FLASH 2TS Charge Pump Frequency Control The internal charge pump, required for program, margin read, and erase operations, is designed to operate most efficiently with a 2-MHz clock. The charge pump clock is derived from the bus clock. Table 4-1 shows how the FDIV bits are used to select a charge pump frequency based on the bus clock frequency. Program, margin read, and erase operations cannot be performed if the bus clock frequency is below 2 MHz. Table 4-1. Charge Pump Clock Frequency NOTE: FDIV0 Pump Clock Frequency 0 Bus frequency ÷ 1 1 Bus frequency ÷ 2 The charge pump is optimized for 2-MHz operation. 4.6 FLASH 2TS Erase Operation Use this step-by-step procedure to erase a block of FLASH 2TS memory. Refer to 17.13 Memory Characteristics for a detailed description of the times used in this algorithm. 1. Set the ERASE, BLK0, BLK1, and FDIV0 bits in the FLASH 2TS control register. Refer to Table 4-1 for FDIV settings and to Table 4-2 for block sizes. 2. Ensure target portion of array is unprotected by reading the block protect register at address $FFF0. Refer to 4.8 FLASH 2TS Block Protection and 4.9 FLASH 2TS Block Protect Register for more information. 3. Write to any FLASH 2TS address with any data within the block address range desired. 4. Set the HVEN bit. 5. Wait for a time, tErase. 6. Clear the HVEN bit. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 49 FLASH 2TS Memory 7. Wait for a time, tKill, for the high voltages to dissipate. 8. Clear the ERASE bit. 9. After a time, tHVD, the memory can be accessed in read mode again. NOTE: While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Table 4-2 shows the various block sizes which can be erased in one erase operation. Table 4-2. Erase Block Sizes BLK1 BLK0 Block Size, Addresses Cared 0 0 Full array: 2 Kbytes 0 1 One-half array: 1 Kbyte 1 0 Eight rows: 64 bytes 1 1 Single row: 8 bytes In step 3 of the erase operation, the cared addresses are latched and used to determine the location of the block to be erased. For instance, with BLK0 = BLK1 = 0, writing to any FLASH 2TS address in the range $7800 to $78F0 will enable the erase of all FLASH memory. 4.7 FLASH 2TS Program/Margin Read Operation NOTE: After a total of eight program operations have been applied to a row, the row must be erased before further programming to avoid program disturb. An erased byte will read $00. The FLASH 2TS memory is programmed on a page basis. A page consists of one byte. The smart programming algorithm (Figure 4-2) is recommended to program every page in the FLASH 2TS memory. Advance Information 50 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory FLASH 2TS Program/Margin Read Operation The embedded smart programming algorithm uses this step-by-step sequence to program the data into the FLASH memory. The algorithm optimizes the time required to program each page. Refer to 4.10 Embedded Program/Erase Routines for information on utilizing embedded routines. 1. Set the FDIV bits. These bits determine the charge pump frequency. 2. Set PGM = 1. This configures the memory for program operation and enables the latching of address and data for programming. 3. Read the FLASH 2TS block protect register (FLBPR). 4. Write data to the one byte being programmed. 5. Set HVEN = 1. 6. Wait for a time, tStep. 7. Set HVEN = 0. 8. Wait for a time, tHVTV. 9. Set MARGIN = 1. 10. Wait for a time, tVTP. 11. Set PGM = 0. 12. Wait for a time, tHVD. 13. Read back data in margin read mode. This read operation is stretched by eight cycles. 14. Clear the MARGIN bit. If the margin read data is identical to write data, the program operation is complete; otherwise, jump to step 2. NOTE: While these operations must be performed in the order shown, other unrelated operations may occur between the steps. The smart programming algorithm guarantees the minimum possible program time. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 51 FLASH 2TS Memory PROGRAM FLASH 2TS Page Program/Margin Read Procedure Note: This algorithm is mandatory for programming the FLASH 2TS. SET INTERRUPT MASK: SEI INSTRUCTION Note: This page program algorithm assumes the page/s to be programmed are initially erased. INITIALIZE ATTEMPT COUNTER TO 0 SET PGM BIT AND FDIV BITS READ FLASH BLOCK PROTECT REG. WRITE DATA TO SELECTED PAGE SET HVEN BIT WAIT tSTEP CLEAR HVEN BIT WAIT tHVTV SET MARGIN BIT WAIT tVTP CLEAR PGM BIT WAIT tHVD MARGIN READ PAGE OF DATA CLEAR MARGIN BIT INCREMENT ATTEMPT COUNTER N MARGIN READ DATA EQUAL TO WRITE DATA? Y N CLEAR MARGIN BIT ATTEMPT COUNT EQUAL TO flsPulses? CLEAR INTERRUPT MASK: CLI INSTRUCTION Y PROGRAMMING OPERATION FAILED PROGRAMMING OPERATION COMPLETE Figure 4-2. Smart Programming Algorithm Flowchart Advance Information 52 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory FLASH 2TS Block Protection 4.8 FLASH 2TS Block Protection NOTE: In performing a program or erase operation, the FLASH 2TS block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit. Due to the ability of the on-board charge pump to erase and program the FLASH 2TS memory in the target application, provision is made for protecting blocks of memory from unintentional erase or program operations due to system malfunction. This protection is implemented by a reserved location in the memory for block protect information. This block protect register must be read before setting HVEN = 1. When the block protect register is read, its contents are latched by the FLASH 2TS control logic. If the address range for an erase or program operation includes a protected block, the PGM or ERASE bit is cleared which prevents the HVEN bit in the FLASH 2TS control register from being set such that no high-voltage operation is allowed in the array. When the block protect register is erased (all 0s), the entire memory is accessible for program and erase. When bits within the register are programmed, they lock blocks of memory address ranges as shown in 4.9 FLASH 2TS Block Protect Register. The block protect register itself can be erased or programmed only with an external voltage VHI present on the IRQ1 pin. The presence of VHI on the IRQ1 pin also allows entry into monitor mode out of reset. Therefore, the ability to change the block protect register is voltage-level dependent and can occur in either user or monitor modes. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 53 FLASH 2TS Memory 4.9 FLASH 2TS Block Protect Register The block protect register (FLBPR) is implemented as a byte within the FLASH 2TS memory. Each bit, when programmed, protects a range of addresses in the FLASH 2TS. Address: $FFF0 Bit 7 6 5 4 3 2 1 Bit 0 R R R R BPR3 BPR2 BPR1 BPR0 Read: Write: Reset: Unaffected by reset R = Reserved Figure 4-3. FLASH 2TS Block Protect Register (FLBPR) BPR3 — Block Protect Register Bit 3 This bit protects the memory contents in the address ranges $7A00–$7FEF and $FFF0–$FFFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program BPR2 — Block Protect Register Bit 2 This bit protects the memory contents in the address ranges $7900–$7FEF and $FFF0–$FFFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program BPR1 — Block Protect Register Bit 1 This bit protects the memory contents in the address ranges $7880–$7FEF and $FFF0–$FFFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program BPR0 — Block Protect Register Bit 0 This bit protects the FLASH memory contents in the address ranges $7800–$7FEF and $FFF0–$FFFF. 1 = Address range protected from erase or program 0 = Address range open to erase or program Advance Information 54 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory Embedded Program/Erase Routines By programming the block protect bits, a portion of the memory will be locked so that no further erase or program operations may be performed. Programming more than one bit at a time is redundant. If both bit 1 and bit 2 are set, for instance, the FLASH address ranges between $7880–$FFFF are locked. If all bits are erased, then all of the memory is available for erase and program. The presence of a voltage VHI on the IRQ1 pin will bypass the block protection so that all of memory, including the block protect register, can be programmed or erased. 4.10 Embedded Program/Erase Routines The MC68HC908RF2 monitor ROM contains numerous routines for programming and erasing the FLASH memory. These embedded routines are intended to assist the programmer with modifying the FLASH memory array. These routines will implement the smart programming algorithm as defined in Figure 4-2. The functions are listed in Table 4-3. Table 4-3. Embedded FLASH Routines Call JSR to Address(1) Read/verify a range RDVRRNG ROMSTRT + 0 Program range of FLASH PRGRNGE ROMSTRT + 3 Erase range of FLASH ERARNGE ROMSTRT + 6 Redundant program FLASH REDPROG ROMSTRT + 9 Function Description 1. ROMSTRT is defined as the starting address of the monitor ROM in the memory map. This is address $F000. The functions shown in Table 4-3 accept data through the CPU registers and global variables in RAM. Table 4-4 shows the RAM locations that are used for passing parameters. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 55 FLASH 2TS Memory Table 4-4. Embedded FLASH Routine Global Variables Variable Location Variable Address(1) CTRLBYT RAMSTART + 8 CPUSPD RAMSTART + 9 LADDR RAMSTART + 10 BUMPS RAMSTART + 12 DERASE RAMSTART + 13 DATA RAMSTART + 15 1. RAMSTART is defined as the starting address of the RAM in the memory map. This is address $0080. 4.11 Embedded Function Descriptions This subsection describes the embedded functions. 4.11.1 RDVRRNG Routine Name: Purpose: Entry conditions: Exit conditions: RDVRRNG Read and/or verify a range of FLASH memory H:X Contains the first address of the range LADDR Contains the last address of the range DATA Contains the data to compare the read data against for read/verify to RAM only (length is user determined) ACC Non-zero for read/verify to RAM, 0 for output to PA0 C bit Set if good compare for read/verify to RAM only ACC Contains checksum DATA Contains read FLASH data for read/verify to RAM only Advance Information 56 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory Embedded Function Descriptions Ready/verify RAM option: Output to PA0 option: NOTE: This subroutine both compares data passed in the DATA array to the FLASH data and reads the data from FLASH into the DATA array. It also calculates the checksum of the data. This subroutine dumps the data from the range to PA0 in the same format as monitor data. It also calculates the checksum of the data. This serial dump does not circumvent security because the security vectors must still be passed to make FLASH readable in monitor mode. 4.11.2 PRGRNGE Routine Name: Purpose: Entry conditions: Exit conditions: PRGRNGE Programs a range of addresses in FLASH memory H:X Contains the first address in the range LADDR Contains the last address in the range DATA Contains the data to be programmed (length is user determined) CPUSPD Contains the bus frequency times 4 in MHz BUMPS Contains the maximum allowable number of programming bumps to use C bit Set if successful program; cleared otherwise I bit Set, masking interrupts This routine programs a range of FLASH defined by H:X and LADDR. The range can be from one byte to as much RAM as can be allocated to DATA. The smart programming algorithm defined in 4.7 FLASH 2TS Program/Margin Read Operation is used. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 57 FLASH 2TS Memory 4.11.3 ERARNGE Routine Name: Purpose: Entry conditions: ERARNGE Erase a range of addresses in FLASH memory H:X Contains an address in the range to be erased; range size specified by control byte CTLBYTE Contains the erase block size in bits 5 and 6 (see Table 4-5) DERASE Contains the erase delay time in µs/24 CPUSPD CPU frequency times 4 in MHz Table 4-5. CTLBYTE-Erase Block Size Exit conditions: I bit Bit 6 Bit 5 Block Size 0 0 Full array 0 1 One half array 1 0 Eight rows: 64 pages 1 1 Single row: 8 pages Set, masking interrupts. This routine erases the block of FLASH defined by H:X and CTLBYTE. The algorithm defined in 4.6 FLASH 2TS Erase Operation is used. Preserves the contents of H:X (address passed) Advance Information 58 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory Embedded Function Descriptions 4.11.4 REDPROG Routine Name: Purpose: Entry conditions: Exit conditions: REDPROG This routine will use a range of multiple rows in the FLASH array to emulate increased write/erase cycling capability of one row. H:X Contains the address of the first row in the range. This address must be the first address of a row (multiple of eight bytes) LADDR Address of last row in the range; must be the first address of a row (multiple of eight bytes) DATA Data to program in the row (bit 7 of DATA + 0 is used internally and will be overwritten). Routine will always use eight bytes starting at DATA. BUMPS Contains the maximum allowable number of programming bumps to use CPUSPD Contains the bus frequency times 4 in MHz DERASE Contains the erase delay time in µs/24 C bit Set if successful program; cleared otherwise I bit Set, masking interrupts This routine uses a range of the FLASH array containing multiple rows to emulate increased write/erase cycling capability for data storage. The routine will write data to each row of the FLASH array (in the range defined) upon subsequent calls. The number of rows is the difference between the value in H:X and LADDR, divided by 8. A row is the minimum range that can be programmed with the REDPROG routine. All rows in the range will be programmed once before any are programmed again. This approach is taken to ensure that all rows reach the end of lifetime at approximately the same time. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 59 FLASH 2TS Memory A special bit will be maintained by the routine, called a cycling bit, in each row. This bit is used to ensure that the data is programmed to all the rows defined in the range. This is the high bit of the first byte in each row. This bit cannot be used to store user data. It will be modified by the REDPROG routine. This is at bit 7 of the byte at address DATA+0. To determine which row to program, the algorithm will step from the first to the last row in a range looking for the first row whose cycling bit is different from the first. If all rows contain the same cycling bit, then the first row will be used. The row whose cycling bit is different will be erased and the entire row will be programmed with the given data, including a toggled version of the cycling bit. 4.11.5 Example Routine Calls This code is for illustrative purposes only and does not represent valid syntax for any particular assembler. RAM EQU $80 RDVRRNG EQU $F000 PRGRNGE EQU $F003 ERANRGE EQU $F006 REDPROG EQU $F009 ;************************************************************* RAM Definitions for Subroutines ;************************************************************** ORG CTRLBYT CPUSPD LADDR BUMPS DERASE RAM+8 RMB RMB RMB RMB RMB 1 1 2 1 2 ;Allocation of “DATA” space is dependent on the device and ;application Advance Information 60 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory Embedded Function Descriptions DATA RMB 8 ;************************************************************* ; CALLING EXAMPLE FOR READ/VERIFY A RANGE (RDVRRNG) ;************************************************************** LDA #$FF ;TARGET IS RAM LDHX #$7807 ;END AFTER FIRST ROW STHX LADDR LDHX #$7800 ;START AT FIRST ROW JSR RDVRRNG ;DATA WILL CONTAIN FLASH INFO ;*************************************************************; CALLING EXAMPLE FOR ERASE A RANGE (ERARNGE) ;************************************************************** MOV #$08,CPUSPD ;Load Bus frequency in MHz * 4 MOV #$60,CTRLBYT ;Bits 5&6 hold the block size to erase ;00 Full Array ;20 One-Half Array ;40 Eight Rows ;60 Singe Row ;Remember a Row is 1 byte ;Set erase time in uS/24, number in ;decimal LDHX STHX LDHX JSR #100000/24 DERASE #$7800 ERARNGE ;Address in the range to erase ;Call through jump table ;************************************************************; ; CALLING EXAMPLE FOR PROGRAM A RANGE (PRGRNGE) ;************************************************************* MOV #’P’,DATA MOV #’R’,DATA+1 MOV #’O’,DATA+2 MOV #’G’,DATA+3 MOV #’T’,DATA+4 MOV #’E’,DATA+5 MOV #’S’,DATA+6 MOV #’T’,DATA+7 MOV MOV #$08,CPUSPD #$0A,BUMPS LDHX STHX LDHX #$7807 LADDR #$7800 JSR PRGRNGE ;Load Bus frequency in MHz * 4 ;Load max number of programming steps ;before a failure is returned ;Load the last address to program ;into LADDR ;Load the first address to program ;into H:X ;This range may cross page boundaries ;and may be any length, so long as the ;data to program is loaded in RAM ;beginning at DATA. ;Call through jump table. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 61 FLASH 2TS Memory ;************************************************************** ; CALLING EXAMPLE FOR REDUNDANT PROGRAM A ROW (REDPROG) ;************************************************************** MOV #$56,DATA MOV #’P’,DATA+1 MOV #’R’,DATA+2 MOV #’O’,DATA+3 MOV #’G’,DATA+4 MOV #’R’,DATA+5 MOV #’E’,DATA+6 MOV #’D’,DATA+7 MOV MOV #$08,CPUSPD #$0A,BUMPS LDHX STHX #100000/24 DERASE LDHX #$7808 STHX LDHX LADDR #$7800 JSR REDPROG ;Load Bus frequency in MHz * 4 ;Load max number of programming steps ;before a failure is returned ;Set erase time in uS/24 ;Load the last address of the multi-row ;range; (in this case, 2 rows) ;into LADDR ;Load the first address of the ;multi-row range into H:X ;Call through jump table. 4.12 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 4.12.1 Wait Mode Putting the MCU into wait mode while the FLASH 2TS is in read mode does not affect the operation of the FLASH 2TS memory directly, but there will be no memory activity since the CPU is inactive. The WAIT instruction should not be executed while performing a program or erase operation on the FLASH 2TS. When the MCU is put into wait mode, the charge pump for the FLASH 2TS is disabled so that either a program or erase operation will not continue. If the memory is in either program mode (PGM = 1, HVEN = 1) or erase mode (ERASE = 1, HVEN = 1), then it will remain in that mode during wait. Exit from wait mode must now be done with a reset rather than an interrupt because if Advance Information 62 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA FLASH 2TS Memory Low-Power Modes exiting wait with an interrupt, the memory will not be in read mode and the interrupt vector cannot be read from the memory. 4.12.2 Stop Mode When the MCU is put into stop mode, if the FLASH 2TS is in read mode, it will be put into low-power standby. The STOP instruction should not be executed while performing a program or erase operation on the FLASH 2TS. When the MCU is put into stop mode, the charge pump for the FLASH 2TS is disabled so that either a program or erase operation will not continue. If the memory is in either program mode (PGM = 1, HVEN = 1) or erase mode (ERASE = 1, HVEN = 1), then it will remain in that mode during stop. Exit from stop mode now must be done with a reset rather than an interrupt because if exiting stop with an interrupt, the memory will not be in read mode and the interrupt vector cannot be read from the memory. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information FLASH 2TS Memory 63 FLASH 2TS Memory Advance Information 64 MC68HC908RF2 — Rev. 1 FLASH 2TS Memory MOTOROLA Advance Information — MC68HC908RF2 Section 5. Central Processor Unit (CPU) 5.1 Contents 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 5.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 5.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 5.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Central Processor Unit (CPU) 65 Central Processor Unit (CPU) 5.2 Introduction The M68HC08 CPU is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual, Motorola document order number CPU08RM/AD, contains a description of the CPU instruction set, addressing modes, and architecture. 5.3 Features Features of the CPU include: • Object code fully upward-compatible with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with X-register manipulation instructions • 4-MHz CPU internal bus frequency • 64-Kbyte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes • Low-power stop and wait modes 5.4 CPU Registers Figure 5-1 shows the five CPU registers. CPU registers are not part of the memory map. Advance Information 66 MC68HC908RF2 — Rev. 1 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers 7 0 ACCUMULATOR (A) 15 0 H INDEX REGISTER (H:X) X 0 15 STACK POINTER (SP) 15 0 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG Figure 5-1. CPU Registers 5.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 5-2. Accumulator (A) 5.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Central Processor Unit (CPU) 67 Central Processor Unit (CPU) The index register can serve also as a temporary data storage location. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 5-3. Index Register (H:X) 5.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte (LSB) to $FF and does not affect the most significant byte (MSB). The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 5-4. Stack Pointer (SP) NOTE: For correct operation, the stack pointer must point only to RAM locations. Advance Information 68 MC68HC908RF2 — Rev. 1 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) CPU Registers 5.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Bit 0 1 Read: Write: Reset: Loaded with vector from $FFFE and $FFFF Figure 5-5. Program Counter (PC) 5.4.5 Condition Code Register The 8-bit condition code register (CCR) contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X Read: Write: Reset: X = Indeterminate Figure 5-6. Condition Code Register (CCR) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Central Processor Unit (CPU) 69 Central Processor Unit (CPU) V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 I — Interrupt Mask Bit When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled NOTE: To maintain M6805 compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). Advance Information 70 MC68HC908RF2 — Rev. 1 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Arithmetic/Logic Unit (ALU) N — Negative Flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero Flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produce a result of $00. 1 = Zero result 0 = Non-zero result C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 5.5 Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual, Motorola document order number CPU08RM/AD, for a description of the instructions and addressing modes and more detail about the architecture of the CPU. 5.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Central Processor Unit (CPU) 71 Central Processor Unit (CPU) 5.6.1 Wait Mode The WAIT instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock 5.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. 5.7 CPU During Break Interrupts If the break module is enabled, a break interrupt causes the CPU to execute the software interrupt instruction (SWI) at the completion of the current CPU instruction. (See Section 7. Break Module (BRK).) The program counter vectors to $FFFC–$FFFD ($FEFC–$FEFD in monitor mode). A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. 5.8 Instruction Set Summary Table 5-1 provides a summary of the M68HC08 instruction set. Advance Information 72 MC68HC908RF2 — Rev. 1 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Instruction Set Summary V H I N Z C ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP A ← (A) + (M) + (C) Add with Carry IMM DIR EXT – IX2 IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT – IX2 IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) A ← (A) & (M) AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP Arithmetic Shift Left (Same as LSL) C b7 ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP Arithmetic Shift Right BCC rel Branch if Carry Bit Clear ff ee ff A7 ii 2 – – – – – – IMM AF ii 2 IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 A4 B4 C4 D4 E4 F4 9EE4 9ED4 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 0 DIR INH – – INH IX1 IX SP1 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 C DIR INH – – INH IX1 IX SP1 37 dd 47 57 67 ff 77 9E67 ff 4 1 1 4 3 5 b0 b7 2 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 A ← (A) + (M) Logical AND ff ee ff Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 1 of 7) b0 PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL Mn ← 0 DIR DIR DIR DIR – – – – – – DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) ff ee ff 24 rr 3 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 BCLR n, opr Clear Bit n in M BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 BGE opr Branch if Greater Than or Equal To (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 – – – – – – REL 90 rr 3 BGT opr Branch if Greater Than (Signed Operands) PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL 92 rr 3 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Central Processor Unit (CPU) 73 Central Processor Unit (CPU) Effect on CCR V H I N Z C Cycles Description Operand Operation Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 2 of 7) BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 – – – – – – REL 28 rr BHCS rel Branch if Half Carry Bit Set PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr BHI rel Branch if Higher PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 BHS rel Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 (A) & (M) IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 A5 B5 C5 D5 E5 F5 9EE5 9ED5 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1 – – – – – – REL 3 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 PC ← (PC) + 3 + rel ? (Mn) = 0 DIR DIR DIR DIR – – – – – DIR DIR DIR DIR 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 PC ← (PC) + 2 – – – – – – REL 21 rr 3 PC ← (PC) + 3 + rel ? (Mn) = 1 DIR DIR DIR DIR – – – – – DIR DIR DIR DIR 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel Branch Never BRSET n,opr,rel Branch if Bit n in M Set Advance Information 74 (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) MC68HC908RF2 — Rev. 1 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Instruction Set Summary V H I N Z C BSET n,opr Set Bit n in M BSR rel Branch to Subroutine 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 rr 4 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 Mn ← 1 DIR DIR DIR – – – – – – DIR DIR DIR DIR DIR PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel – – – – – – REL AD DIR IMM IMM – – – – – – IX1+ IX+ SP1 31 41 51 61 71 9E61 PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel Compare and Branch if Equal CBEQ X+,rel CBEQ opr,SP,rel + 3 + rel ? (A) + 3 + rel ? (A) + 3 + rel ? (X) + 3 + rel ? (A) + 2 + rel ? (A) + 4 + rel ? (A) – (M) – (M) – (M) – (M) – (M) – (M) = $00 = $00 = $00 = $00 = $00 = $00 (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 3 of 7) CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 3F dd 4F 5F 8C 6F ff 7F 9E6F ff (A) – (M) IMM DIR EXT – – IX2 IX1 IX SP1 SP2 A1 B1 C1 D1 E1 F1 9EE1 9ED1 DIR INH INH 0 – – 1 IX1 IX SP1 33 dd 43 53 63 ff 73 9E63 ff CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Clear Compare A with M COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A M← A← X← M← M← M← (M) = $FF – (M) (A) = $FF – (M) (X) = $FF – (M) (M) = $FF – (M) (M) = $FF – (M) (M) = $FF – (M) ff ee ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 (H:X) – (M:M + 1) – – IMM DIR 65 75 ii ii+1 dd 3 4 (X) – (M) IMM DIR EXT – – IX2 IX1 IX SP1 SP2 A3 B3 C3 D3 E3 F3 9EE3 9ED3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 U – – INH 72 (A) 10 MC68HC908RF2 — Rev. 1 MOTOROLA ii dd hh ll ee ff ff 3 1 1 1 3 2 4 ff ee ff 2 Advance Information Central Processor Unit (CPU) 75 Central Processor Unit (CPU) V H I N Z C DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP Decrement DIV Divide EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP JMP JMP JMP JMP opr opr opr,X opr,X ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA LDA LDA LDA LDA LDA LDA LDA #opr opr opr opr,X opr,X ,X opr,SP opr,SP LDHX #opr LDHX opr LDX LDX LDX LDX LDX LDX LDX LDX #opr opr opr opr,X opr,X ,X opr,SP opr,SP Exclusive OR M with A Increment Jump Jump to Subroutine Load A from M Load H:X from M Load X from M A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1 DIR PC ← (PC) + 3 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH PC ← (PC) + 2 + rel ? (result) ≠ 0 IX1 PC ← (PC) + 3 + rel ? (result) ≠ 0 IX PC ← (PC) + 2 + rel ? (result) ≠ 0 SP1 PC ← (PC) + 4 + rel ? (result) ≠ 0 3B 4B 5B 6B 7B 9E6B dd rr rr rr ff rr rr ff rr 5 3 3 5 4 6 M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 DIR INH – – – INH IX1 IX SP1 A ← (H:A)/(X) H ← Remainder – – – – INH 52 A ← (A ⊕ M) IMM DIR EXT 0 – – – IX2 IX1 IX SP1 SP2 A8 B8 C8 D8 E8 F8 9EE8 9ED8 M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 DIR INH – – – INH IX1 IX SP1 3C dd 4C 5C 6C ff 7C 9E6C ff PC ← Jump Address DIR EXT – – – – – – IX2 IX1 IX BC CC DC EC FC dd hh ll ee ff ff 2 3 4 3 2 PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address DIR EXT – – – – – – IX2 IX1 IX BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 A ← (M) IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 H:X ← (M:M + 1) IMM 0 – – – DIR 45 55 ii jj dd 3 4 X ← (M) IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 Advance Information 76 Effect on CCR Cycles Description Operand Operation Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 4 of 7) 3A dd 4A 5A 6A ff 7A 9E6A ff 4 1 1 4 3 5 7 ii dd hh ll ee ff ff ff ee ff ff ee ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 MC68HC908RF2 — Rev. 1 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Instruction Set Summary LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Logical Shift Left (Same as ASL) Logical Shift Right MOV MOV MOV MOV Move MUL 0 NOP No Operation NSA Nibble Swap A 4 1 1 4 3 5 C DIR INH – – 0 INH IX1 IX SP1 34 dd 44 54 64 ff 74 9E64 ff 4 1 1 4 3 5 b0 dd dd dd ii dd dd 5 4 4 4 H:X ← (H:X) + 1 (IX+D, DIX+) DD 0 – – – DIX+ IMD IX+D 4E 5E 6E 7E X:A ← (X) × (A) – 0 – – – 0 INH 42 M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) DIR INH – – INH IX1 IX SP1 None – – – – – – INH 9D 1 A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 A ← (A) | (M) IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 AA BA CA DA EA FA 9EEA 9EDA (M)Destination ← (M)Source Unsigned multiply Negate (Two’s Complement) 38 dd 48 58 68 ff 78 9E68 ff b0 b7 NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP 0 DIR INH – – INH IX1 IX SP1 C b7 Cycles V H I N Z C LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP opr,opr opr,X+ #opr,opr X+,opr Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 5 of 7) 5 30 dd 40 50 60 ff 70 9E60 ff 4 1 1 4 3 5 2 3 4 4 3 2 4 5 ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 C DIR INH – – INH IX1 IX SP1 39 dd 49 59 69 ff 79 9E69 ff 4 1 1 4 3 5 DIR INH – – INH IX1 IX SP1 36 dd 46 56 66 ff 76 9E66 ff 4 1 1 4 3 5 ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP Rotate Left through Carry b7 b0 C Rotate Right through Carry b7 b0 MC68HC908RF2 — Rev. 1 MOTOROLA ii dd hh ll ee ff ff ff ee ff Advance Information Central Processor Unit (CPU) 77 Central Processor Unit (CPU) Effect on CCR V H I N Z C Cycles Description Operand Operation Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 6 of 7) Reset Stack Pointer SP ← $FF – – – – – – INH 9C 1 RTI Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) INH 80 7 RTS Return from Subroutine SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) – – – – – – INH 81 4 A ← (A) – (M) – (C) IMM DIR EXT – – IX2 IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 RSP SBC SBC SBC SBC SBC SBC SBC SBC #opr opr opr opr,X opr,X ,X opr,SP opr,SP Subtract with Carry ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 M ← (A) DIR EXT IX2 0 – – – IX1 IX SP1 SP2 B7 C7 D7 E7 F7 9EE7 9ED7 (M:M + 1) ← (H:X) 0 – – – DIR 35 I ← 0; Stop Oscillator – – 0 – – – INH 8E M ← (X) DIR EXT IX2 0 – – – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF dd hh ll ee ff ff IMM DIR EXT – – IX2 IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 ii dd hh ll ee ff ff – – 1 – – – INH 83 9 STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX STX STX STX STX STX STX opr opr opr,X opr,X ,X opr,SP opr,SP SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Store X in M Subtract A ← (A) – (M) ff ee ff 3 4 4 3 2 4 5 dd 4 dd hh ll ee ff ff 1 ff ee ff ff ee ff 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 SWI Software Interrupt PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TAP Transfer A to CCR CCR ← (A) INH 84 2 TAX Transfer A to X X ← (A) – – – – – – INH 97 1 Advance Information 78 MC68HC908RF2 — Rev. 1 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) Opcode Map TPA Transfer CCR to A Test for Negative or Zero TSX Transfer SP to H:X TXA Transfer X to A TXS Transfer H:X to SP Cycles V H I N Z C TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 7 of 7) A ← (CCR) – – – – – – INH (A) – $00 or (X) – $00 or (M) – $00 DIR INH INH 0 – – – IX1 IX SP1 H:X ← (SP) + 1 – – – – – – INH 95 2 A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : — 85 3D dd 4D 5D 6D ff 7D 9E6D ff 1 3 1 1 3 2 4 Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected 5.9 Opcode Map The opcode map is provided in Table 5-2. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Central Processor Unit (CPU) 79 MSB Branch REL DIR INH 3 4 0 2 3 4 5 6 7 8 9 A B C D MOTOROLA MC68HC908RF2 — Rev. 1 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 9 IMM DIR EXT A B C Register/Memory IX2 SP2 IX1 SP1 IX D 9ED E 9EE F 4 SUB IX2 4 CMP IX2 4 SBC IX2 4 CPX IX2 4 AND IX2 4 BIT IX2 4 LDA IX2 4 STA IX2 4 EOR IX2 4 ADC IX2 4 ORA IX2 4 ADD IX2 4 JMP IX2 6 JSR IX2 4 LDX IX2 4 STX IX2 5 SUB 4 SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2 3 SUB IX1 3 CMP IX1 3 SBC IX1 3 CPX IX1 3 AND IX1 3 BIT IX1 3 LDA IX1 3 STA IX1 3 EOR IX1 3 ADC IX1 3 ORA IX1 3 ADD IX1 3 JMP IX1 5 JSR IX1 3 LDX IX1 3 STX IX1 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 2 SUB IX 2 CMP IX 2 SBC IX 2 CPX IX 2 AND IX 2 BIT IX 2 LDA IX 2 STA IX 2 EOR IX 2 ADC IX 2 ORA IX 2 ADD IX 2 JMP IX 4 JSR IX 2 LDX IX 2 STX IX LSB 1 Central Processor Unit (CPU) 0 Read-Modify-Write INH IX1 E F 1 4 NEGA NEG 2 DIR 1 INH 4 5 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 1 4 COMA COM 2 DIR 1 INH 1 4 LSRA LSR 2 DIR 1 INH 3 4 LDHX STHX 2 DIR 3 IMM 1 4 RORA ROR 2 DIR 1 INH 1 4 ASRA ASR 2 DIR 1 INH 1 4 LSLA LSL 2 DIR 1 INH 1 4 ROLA ROL 2 DIR 1 INH 1 4 DECA DEC 2 DIR 1 INH 3 5 DBNZ DBNZA 3 DIR 2 INH 1 4 INCA INC 2 DIR 1 INH 1 3 TSTA TST 2 DIR 1 INH 5 MOV 3 DD 1 3 CLRA CLR 2 DIR 1 INH INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 3 5 NEG NEG 3 SP1 1 IX 4 6 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 3 5 COM COM 3 SP1 1 IX 3 5 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 3 5 ROR ROR 3 SP1 1 IX 3 5 ASR ASR 3 SP1 1 IX 3 5 LSL LSL 3 SP1 1 IX 3 5 ROL ROL 3 SP1 1 IX 3 5 DEC DEC 3 SP1 1 IX 4 6 DBNZ DBNZ 4 SP1 2 IX 3 5 INC INC 3 SP1 1 IX 2 4 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 2 4 CLR CLR 3 SP1 1 IX SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment 3 7 BGE RTI 1 INH 2 REL 3 4 BLT RTS 1 INH 2 REL 3 BGT 2 REL 3 9 BLE SWI 1 INH 2 REL 2 2 TXS TAP 1 INH 1 INH 2 1 TSX TPA 1 INH 1 INH 2 PULA 1 INH 1 2 TAX PSHA 1 INH 1 INH 1 2 CLC PULX 1 INH 1 INH 1 2 SEC PSHX 1 INH 1 INH 2 2 CLI PULH 1 INH 1 INH 2 2 SEI PSHH 1 INH 1 INH 1 1 RSP CLRH 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 TXA WAIT 1 INH 1 INH 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 JSR BSR REL 2 DIR 3 2 LDX LDX IMM 2 DIR 3 2 STX AIX IMM 2 DIR 2 SUB IMM 2 CMP IMM 2 SBC IMM 2 CPX IMM 2 AND IMM 2 BIT IMM 2 LDA IMM 2 AIS IMM 2 EOR IMM 2 ADC IMM 2 ORA IMM 2 ADD IMM MSB 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 SUB EXT 4 CMP EXT 4 SBC EXT 4 CPX EXT 4 AND EXT 4 BIT EXT 4 LDA EXT 4 STA EXT 4 EOR EXT 4 ADC EXT 4 ORA EXT 4 ADD EXT 3 JMP EXT 5 JSR EXT 4 LDX EXT 4 STX EXT 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 LDX 4 SP2 2 5 STX 4 SP2 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 4 LDX 3 SP1 1 4 STX 3 SP1 1 High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 1 Cycles 5 BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode Central Processor Unit (CPU) Advance Information 80 Table 5-2. Opcode Map Bit Manipulation DIR DIR Advance Information — MC68HC908RF2 Section 6. System Integration Module (SIM) 6.1 Contents 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 85 6.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 6.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . 85 6.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 86 6.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 86 6.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 88 6.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 90 6.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .90 6.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 91 6.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 91 6.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 91 6.6 Program Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 6.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.3 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.4 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 96 6.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 6.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 81 System Integration Module (SIM) 6.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 6.8.1 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 100 6.8.3 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 101 6.2 Introduction This section describes the system integration module (SIM). Together with the central processor unit (CPU), the SIM controls all MCU activities. The SIM is a system state controller that coordinates CPU and exception timing. A block diagram of the SIM is shown in Figure 6-1. Figure 6-2 is a summary of the SIM input/output (I/O) registers. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals: – Stop/wait/reset/break entry and recovery – Internal clock control • Master reset control, including power-on reset (POR) and computer operating properly (COP) timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation • CPU enable/disable timing Advance Information 82 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Introduction MODULE STOP MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO ICG) SIM COUNTER COP CLOCK CGMXCLK (FROM ICG) CGMOUT (FROM ICG) ÷2 CLOCK CONTROL RESET PIN LOGIC CLOCK GENERATORS INTERNAL CLOCKS LVI (FROM LVI MODULE) POR CONTROL MASTER RESET CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE) RESET INTERRUPT CONTROL AND PRIORITY DECODE INTERRUPT SOURCES CPU INTERFACE Figure 6-1. SIM Block Diagram MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 83 System Integration Module (SIM) Addr. Register Name Bit 7 6 5 4 3 2 R R R R R R Read: SIM Break Status Register $FE00 (SBSR) Write: See page 99. Reset: 1 Bit 0 SBSW R See Note 0 Note: Writing a logic 0 clears SBSW Read: SIM Reset Status Register $FE01 (SRSR) Write: See page 100. POR: $FE02 Read: SIM Break Flag Control Register (SBFCR) Write: See page 101. Reset: POR PIN COP ILOP ILAD 0 LVI 0 1 X X X X X X X BCFE R R R R R R R 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved X = Indeterminate Figure 6-2. SIM I/O Register Summary Table 6-1 shows the internal signal names used in this section. Table 6-1. Signal Name Conventions Signal Name Description CGMXCLK Selected clock source from internal clock generator module (ICG) CGMOUT Clock output from ICG module Bus clock = CGMOUT divided by two ICLK Output from internal clock generator ECLK External clock source IAB Internal address bus IDB internal data bus PORRST Signal from the power-on reset module to the SIM IRST Internal reset signal R/W Read/write signal Advance Information 84 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Bus Clock Control and Generation 6.3 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 6-3. This clock can come from either an external oscillator or from the internal clock generator (ICG) module. 6.3.1 Bus Timing In user mode, the internal bus frequency is either the crystal oscillator output (ECLK) divided by four or the ICG output (ICLK) divided by four. 6.3.2 Clock Startup from POR or LVI Reset When the power-on reset (POR) module or the low-voltage inhibit (LVI) module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after 4096 CGMXCLK cycles. The RST pin is driven low by the SIM during this entire period. The bus clocks start upon completion of the timeout. CGMXCLK ECLK CLOCK SELECT CIRCUIT ICLK ICG GENERATOR ÷2 A CGMOUT B S* *When S = 1, CGMOUT = B CS SIM COUNTER BUS CLOCK GENERATORS ÷2 SIM PTB3 MONITOR MODE USER MODE ICG Figure 6-3. ICG Clock Signals MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 85 System Integration Module (SIM) 6.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 CGMXCLK cycles. (See 6.7.2 Stop Mode.) In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. 6.4 Reset and System Initialization The MCU has these reset sources: • Power-on reset module (POR) • External reset pin (RST) • Computer operating properly module (COP) • Low-voltage inhibit module (LVI) • Illegal opcode • Illegal address All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 6.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). (See 6.8 SIM Registers.) Advance Information 86 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Reset and System Initialization 6.4.1 External Pin Reset Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset. Figure 6-4 shows the relative timing of an external reset recovery. PULLED LOW EXTERNAL RST PULLED HIGH EXTERNAL CGMOUT IAB PC VECT H VECT L Figure 6-4. External Reset Recovery Timing MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 87 System Integration Module (SIM) 6.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 CGMXCLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles. (See Figure 6-5.) An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or POR. (See Figure 6-6.) Note that for LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 6-5. The COP reset is asynchronous to the bus clock. The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. IRST RST RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES CGMXCLK IAB VECTOR HIGH Figure 6-5. Internal Reset Timing ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST LVI POR INTERNAL RESET Figure 6-6. Sources of Internal Reset Advance Information 88 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Reset and System Initialization 6.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 CGMXCLK cycles. Another 64 CGMXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, these events occur: • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables CGMOUT. • Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow stabilization of the oscillator. • The RST pin is driven low during the oscillator stabilization time. • The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. OSC1 PORRST 4096 CYCLES 32 CYCLES 32 CYCLES CGMXCLK CGMOUT RST $FFFE IAB $FFFF Figure 6-7. POR Recovery MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 89 System Integration Module (SIM) 6.4.2.2 Computer Operating Properly (COP) Reset The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR) if the COPD bit in the CONFIG register is at logic 0. (See Section 11. Computer Operating Properly Module (COP).) 6.4.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the configuration register (CONFIG) is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. 6.4.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. 6.4.2.5 Low-Voltage Inhibit (LVI) Reset The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the VLVR voltage. The LVI bit in the SIM reset status register (SRSR) is set and a chip reset is asserted if the LVIPWRD and LVIRSTD bits in the CONFIG register are at logic 0. The RST pin will be held low until the SIM counts 4096 CGMXCLK cycles after VDD rises above VLVR+ HLVR. Another 64 CGMXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. (See Section 12. Low-Voltage Inhibit (LVI).) Advance Information 90 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Counter 6.5 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 12 bits long and is clocked by the falling edge of CGMXCLK. 6.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the internal clock generation module (ICG) to drive the bus clock state machine. 6.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the CONFIG register. If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared. 6.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. See 6.7.2 Stop Mode for details. The SIM counter is free-running after all reset states. See 6.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 91 System Integration Module (SIM) 6.6 Program Exception Control Normal, sequential program execution can be changed in three different ways: 1. Interrupts: a. Maskable hardware CPU interrupts b. Non-maskable software interrupt instruction (SWI) 2. Reset 3. Break interrupts 6.6.1 Interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 6-8 shows interrupt entry timing. Figure 6-10 shows interrupt recovery timing. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). (See Figure 6-9.) MODULE INTERRUPT I BIT IAB DUMMY IDB DUMMY SP SP – 1 PC – 1[7:0] SP – 2 PC–1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L V DATA H START ADDR V DATA L OPCODE R/W Figure 6-8. Interrupt Entry Advance Information 92 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Program Exception Control FROM RESET YES BREAK INTERRUPT? I BIT SET? NO YES I BIT SET? NO IRQ INTERRUPT? YES NO STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR AS MANY INTERRUPTS AS EXIST ON CHIP FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 6-9. Interrupt Processing MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 93 System Integration Module (SIM) MODULE INTERRUPT I BIT IAB SP – 4 IDB SP – 3 CCR SP – 2 A SP – 1 X SP PC – 1 [15:8] PC PC–1[7:0] PC + 1 OPCODE OPERAND R/W Figure 6-10. Interrupt Recovery 6.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 6-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. NOTE: To maintain compatibility with the M68HC05, M6805, and M146805 Families, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. Advance Information 94 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Program Exception Control CLI BACKGROUND ROUTINE LDA #$FF INT1 PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 6-11. Interrupt Recognition Example 6.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. 6.6.2 Reset All reset sources always have higher priority than interrupts and cannot be arbitrated. 6.6.3 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See Section 7. Break Module (BRK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 95 System Integration Module (SIM) subsection of each module to see how each module is affected by the break state. 6.6.4 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the break flag control register (BFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. 6.7 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described here. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 6.7.1 Wait Mode In wait mode, the CPU clocks are inactive while one set of peripheral clocks continues to run. Figure 6-12 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one Advance Information 96 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Low-Power Modes cycle after the WAIT instruction during which the interrupt occurred. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. IAB WAIT ADDR IDB WAIT ADDR + 1 PREVIOUS DATA SAME NEXT OPCODE SAME SAME SAME R/W Note: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 6-12. Wait Mode Entry Timing Figure 6-13 and Figure 6-14 show the timing for WAIT recovery. IAB IDB $6E0B $A6 $A6 $6E0C $A6 $01 $00FF $00FE $0B $00FD $00FC $6E EXITSTOPWAIT Note: EXITSTOPWAIT = RST pin or CPU interrupt or break interrupt Figure 6-13. Wait Recovery from Interrupt or Break 32 CYCLES IAB IDB $6E0B $A6 $A6 32 CYCLES RSTVCT H RSTVCTL $A6 RST CGMXCLK Figure 6-14. Wait Recovery from Internal Reset MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 97 System Integration Module (SIM) 6.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the CONFIG register. If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long startup times from stop mode. NOTE: External crystal applications should use the full stop recovery time by clearing the SSREC bit. A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the SIM break status register (SBSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 6-15 shows stop mode entry timing. CPUSTOP IAB IDB STOP ADDR STOP ADDR + 1 PREVIOUS DATA SAME NEXT OPCODE SAME SAME SAME R/W Note: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 6-15. Stop Mode Entry Timing STOP RECOVERY PERIOD CGMXCLK INT/BREAK IAB STOP +1 STOP + 2 STOP + 2 SP SP – 1 SP – 2 SP – 3 Figure 6-16. Stop Mode Recovery from Interrupt or Break Advance Information 98 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Registers 6.8 SIM Registers The SIM has three memory mapped registers: • SIM break status register, SBSR • SIM reset status register, SRSR • SIM break flag control register, SBFCR 6.8.1 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop or wait mode. Address: $FE00 Bit 7 6 5 4 3 2 R R R R R R Read: Write: Reset: 1 SBSW See Note Bit 0 R 0 R = Reserved Note: Writing a logic 0 clears SBSW. Figure 6-17. SIM Break Status Register (SBSR) SBSW — SIM Break Stop/Wait Bit This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt. 0 = Stop mode or wait mode was not exited by break interrupt. SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. (See code example.) Writing 0 to the SBSW bit clears it. ;This code works if the H register has been pushed onto the stack in the break ;service routine software. This code should be executed at the end of the ;break service routine software. HIBYTE LOBYTE ; DOLO RETURN EQU 5 EQU 6 If not SBSW, do RTI BRCLR SBSW, SBSR, RETURN TST BNE DEC DEC PULH RTI LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP ;See if wait mode or stop mode was exited ;by break. ;If RETURNLO is not zero, ;then just decrement low byte. ;Else deal with high byte, too. ;Point to WAIT/STOP opcode. ;Restore H register. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 99 System Integration Module (SIM) 6.8.2 SIM Reset Status Register This register contains six flags that show the source of the last reset. The status register will clear automatically after reading it. A power-on reset sets the POR bit. Address: Read: $FE01 Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD 0 LVI 0 1 X X X X X X X Write: POR: = Unimplemented X = Indeterminate Figure 6-18. SIM Reset Status Register (SRSR) POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR PIN — External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = Read of SRSR COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = Read of SRSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = Read of SRSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = Read of SRSR LVI — Low-Voltage Inhibit Reset Bit 1 = Last reset was caused by the LVI circuit 0 = Read of SRSR Advance Information 100 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Registers 6.8.3 SIM Break Flag Control Register The SIM break control register contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE02 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R 0 0 0 0 0 0 0 0 Read: Write: Reset: R = Reserved Figure 6-19. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information System Integration Module (SIM) 101 System Integration Module (SIM) Advance Information 102 MC68HC908RF2 — Rev. 1 System Integration Module (SIM) MOTOROLA Advance Information — MC68HC908RF2 Section 7. Break Module (BRK) 7.1 Contents 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 105 7.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .105 7.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .106 7.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 7.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 7.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.6.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .107 7.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.2 Introduction The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. 7.3 Features Features of the break module (BRK) include: • Accessible input/output (I/O) registers during break interrupts • CPU-generated break interrupts • Software-generated break interrupts • COP disabling during break interrupts MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Break Module (BRK) 103 Break Module (BRK) 7.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). These events can cause a break interrupt to occur: • A CPU-generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic 1 to the BRKA bit in the break status and control register. When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 7-1 shows the structure of the break module. IAB[15:8] BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB[15:0] CONTROL BREAK 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW IAB[7:0] Figure 7-1. Break Module Block Diagram Advance Information 104 MC68HC908RF2 — Rev. 1 Break Module (BRK) MOTOROLA Break Module (BRK) Functional Description Addr. $FE0C $FE0D Register Name Read: Break Address Register High (BRKH) Write: See page 108. Reset: Read: Break Address Register Low (BRKL) Write: See page 108. Reset: Read: Break Status and Control $FE0E Register (BSCR) Write: See page 107. Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 = Unimplemented Figure 7-2. I/O Register Summary 7.4.1 Flag Protection During Break Interrupts The system integration module (SIM) controls whether module status bits can be cleared during the break state. The BCFE bit in the SIM break flag control register (BFCR) enables software to clear status bits during the break state. (See 6.8.3 SIM Break Flag Control Register and the Break Interrupts subsection for each module.) 7.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Break Module (BRK) 105 Break Module (BRK) 7.4.3 TIM During Break Interrupts A break interrupt stops the timer counter. 7.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VHI is present on the RST pin. 7.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 7.5.1 Wait Mode If enabled, the break module is active in wait mode. 7.5.2 Stop Mode The break module is inactive in stop mode. The STOP instruction does not affect break module register states. 7.6 Break Module Registers These registers control and monitor operation of the break module: • Break status and control register, BSCR • Break address register high, BRKH • Break address register low, BRKL Advance Information 106 MC68HC908RF2 — Rev. 1 Break Module (BRK) MOTOROLA Break Module (BRK) Break Module Registers 7.6.1 Break Status and Control Register The break status and control register (BSCR) contains break module enable and status bits. Address: $FE0E Bit 7 6 BRKE BRKA 0 0 Read: 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 7-3. Break Status and Control Register (BSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. 1 = Break address match 0 = No break address match MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Break Module (BRK) 107 Break Module (BRK) 7.6.2 Break Address Registers The break address registers contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Register Name and Address: BRKH — $FE0C Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Write: Reset: Register Name and Address: BRKL — $FE0D Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 7-4. Break Address Registers (BRKH and BRKL) Advance Information 108 MC68HC908RF2 — Rev. 1 Break Module (BRK) MOTOROLA Advance Information — MC68HC908RF2 Section 8. Internal Clock Generator Module (ICG) 8.1 Contents 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.4.1 Clock Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.4.2 Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4.2.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 114 8.4.2.2 Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.4.2.3 Frequency Comparator . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.4.2.4 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.4.3 External Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.4.3.1 External Oscillator Amplifier . . . . . . . . . . . . . . . . . . . . . . 116 8.4.3.2 External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .117 8.4.4 Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.4.4.1 Clock Monitor Reference Generator . . . . . . . . . . . . . . . 118 8.4.4.2 Internal Clock Activity Detector . . . . . . . . . . . . . . . . . . . 121 8.4.4.3 External Clock Activity Detector . . . . . . . . . . . . . . . . . . .121 8.4.5 Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 8.4.5.1 Clock Selection Switch. . . . . . . . . . . . . . . . . . . . . . . . . . 122 8.4.5.2 Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.5 Usage Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 8.5.1 Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.5.2 Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . . 126 8.5.3 Clock Monitor Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.5.4 Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . . 127 8.5.4.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 128 8.5.4.2 Binary Weighted Divider . . . . . . . . . . . . . . . . . . . . . . . . 128 8.5.4.3 Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . . 129 8.5.4.4 Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . . 129 8.5.5 Switching Internal Clock Frequencies . . . . . . . . . . . . . . . . 130 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 109 Internal Clock Generator Module (ICG) 8.5.6 8.5.6.1 8.5.6.2 8.5.6.3 8.5.7 8.5.8 Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . . 131 Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . . 131 Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . . 132 Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Improving Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Trimming Frequency on the Internal Clock Generator . . . . 135 8.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 8.7 Configuration Register Option . . . . . . . . . . . . . . . . . . . . . . . . 137 8.7.1 EXTSLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 8.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.8.1 ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.8.2 ICG Multiplier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 8.8.3 ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8.8.4 ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.8.5 ICG DCO Stage Register . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.2 Introduction The internal clock generator module (ICG) is used to create a stable clock source for the microcontroller without using any external components. The ICG generates the oscillator output clock (CGMXCLK), which is used by the COP, LVI, and other modules. The ICG also generates the clock generator output (CGMOUT), which is fed to the system integration module (SIM) to create the bus clocks. The bus frequency will be one-fourth the frequency of CGMXCLK and one-half the frequency of CGMOUT. 8.3 Features The ICG has these features: • External clock generator, either 1-pin external source or 2-pin crystal • Internal clock generator with programmable frequency output in integer multiples of a nominal frequency (307.2 kHz ±25 percent) Advance Information 110 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Functional Description • Frequency adjust (trim) register to improve variability to ±2 percent • Bus clock software selectable from either internal or external clock • Clock monitor for both internal and external clocks 8.4 Functional Description The ICG, shown in Figure 8-1, contains these major submodules: • Clock enable circuit • Internal clock generator • External clock generator • Clock monitor circuit • Clock selection circuit 8.4.1 Clock Enable Circuit The clock enable circuit is used to enable the internal clock (ICLK) or external clock (ECLK). The clock enable circuit generates an ICG stop (ICGSTOP) signal which stops all clocks (ICLK, ECLK, and the lowfrequency base clock, IBASE) low. ICGSTOP is set and the ICG is disabled in stop mode. The internal clock enable signal (ICGEN) turns on the internal clock generator which generates ICLK. ICGEN is set (active) whenever the ICGON bit is set and the ICGSTOP signal is clear. When ICGEN is clear, ICLK and IBASE are both low. The external clock enable signal (ECGEN) turns on the external clock generator which generates ECLK. ECGEN is set (active) whenever the ECGON bit is set and the ICGSTOP signal is clear. When ECGEN is clear, ECLK is low. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 111 Internal Clock Generator Module (ICG) CS CGMOUT RESET CGMXCLK CLOCK SELECTION CIRCUIT IOFF EOFF CMON CPU_INT CMF ECGS CLOCK MONITOR/SWITCHER CIRCUIT ICGS DDIV INTERNAL CLOCK GENERATOR N[6:0] DSTG TRIM[7:0] ICLK IBASE ICGEN SIMOSCEN CLOCK ENABLE CIRCUIT ECGON ICGON ECGEN EXTERNAL CLOCK GENERATOR EXTSLOW INTERNAL TO MCU OSC1 ECLK OSC2 EXTERNAL NAME CONFIGURATION REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 8-1. ICG Module Block Diagram Advance Information 112 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Functional Description 8.4.2 Internal Clock Generator The internal clock generator, shown in Figure 8-2, creates a lowfrequency base clock (IBASE), which operates at a nominal frequency (fNOM) of 307.2 kHz ±25 percent, and an internal clock (ICLK) which is an integer multiple of IBASE. This multiple is the ICG multiplier factor (N), which is programmed in the ICG multiplier register (ICGMR). The internal clock generator is turned off and the output clocks (IBASE and ICLK) are held low when the internal clock generator enable signal (ICGEN) is clear. The internal clock generator contains: • A digitally controlled oscillator • A modulo N divider • A frequency comparator, which contains voltage and current references, a frequency to voltage converter, and comparators • A digital loop filter ICGEN VOLTAGE & CURRENT REFERENCES ++ DSTG[7:0] + DIGITAL LOOP FILTER – DDIV[3:0] DIGITALLY CONTROLLED OSCILLATOR ICLK –– TRIM[7:0] FREQUENCY COMPARATOR CLOCK GENERATOR N[6:0] MODULO N DIVIDER IBASE NAME REGISTER BIT NAME MODULE SIGNAL Figure 8-2. Internal Clock Generator Block Diagram MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 113 Internal Clock Generator Module (ICG) 8.4.2.1 Digitally Controlled Oscillator The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock (ICLK). The clock period of ICLK is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because there is only a limited number of bits in DDIV and DSTG, the precision of the output (ICLK) is restricted to a long-term precision of approximately ±0.202 percent to ±0.368 percent when measured over several cycles (of the desired frequency). Additionally, since the propagation delays of the devices used in the DCO ring oscillator are a measurable fraction of the bus clock period, reaching the long-term precision may require alternately running faster and slower than desired, making the worst case cycle-to-cycle frequency variation ±6.45 percent to ±11.8 percent (of the desired frequency). The valid values of DDIV:DSTG range from $000 to $9FF. For more information on the quantization error in the DCO, see 8.5.4 Quantization Error in DCO Output. 8.4.2.2 Modulo N Divider The modulo N divider creates the low-frequency base clock (IBASE) by dividing the internal clock (ICLK) by the ICG multiplier factor (N) contained in the ICG multiplier register (ICGMR). When N is programmed to a $01 or $00, the divider is disabled and ICLK is passed through to IBASE undivided. When the internal clock generator is stable, the frequency of IBASE will be equal to the nominal frequency (fNOM) of 307.2 kHz ±25 percent. 8.4.2.3 Frequency Comparator The frequency comparator effectively compares the low-frequency base clock (IBASE) to a nominal frequency, fNOM. First, the frequency comparator converts IBASE to a voltage by charging a known capacitor with a current reference for a period dependent on IBASE. This voltage is compared to a voltage reference with comparators, whose outputs are fed to the digital loop filter. The dependence of these outputs on the capacitor size, current reference, and voltage reference causes up to ±25 percent error in fNOM. Advance Information 114 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Functional Description 8.4.2.4 Digital Loop Filter The digital loop filter (DLF) uses the outputs of the frequency comparator to adjust the internal clock (ICLK) clock period. The DLF generates the DCO divider control bits (DDIV[3:0]) and the DCO stage control bits (DSTG[7:0]), which are fed to the DCO. The DLF first concatenates the DDIV and DSTG registers (DDIV[3:0]:DSTG[7:0]) and then adds or subtracts a value dependent on the relative error in the low-frequency base clock’s period, as shown in Table 8-1. In some extreme error conditions, such as operating at a VDD level which is out of specification, the DLF may attempt to use a value above the maximum ($9FF) or below the minimum ($000). In both cases, the value for DDIV will be between $A and $F. In this range, the DDIV value will be interpreted the same as $9 (the slowest condition). Recovering from this condition requires subtracting (increasing frequency) in the normal fashion until the value is again below $9FF (if the desired value is $9xx, the value may settle at $Axx through $Fxx, an acceptable operating condition). If the error is less than ±5 percent, the internal clock generator’s filter stable indicator (FICGS) is set, indicating relative frequency accuracy to the clock monitor. Table 8-1. Correction Sizes from DLF to DCO Frequency Error of IBASE Compared to fNOM DDVI[3:0]:DSTG[7:0] Correction IBASE < 0.85 fNOM –32 (–$020) 0.85 fNOM < IBASE IBASE < 0.95 fNOM –8 (–$008) 0.95 fNOM < IBASE IBASE < fNOM –1 (–$001) fNOM < IBASE IBASE < 1.05 fNOM +1 (+$001) 1.05 fNOM < IBASE IBASE < 1.15 fNOM +8 (+$008) 1.15 fNOM < IBASE +32 (+$020) Current to New DDIV[3:0]:DSTG[7:0] Relative Correction in DCO Min $xFF to $xDF –2/31 –6.45% Max $x20 to $x00 –2/19 –10.5% Min $xFF to $xF7 –0.5/31 –1.61% Max $x08 to $x00 –0.5/17.5 –2.86% Min $xFF to $xFE –0.0625/31 –0.202% Max $x01 to $x00 –0.0625/17.0625 –0.366% Min $xFE to $xFF +0.0625/30.9375 +0.202% Max $x00 to $x01 +0.0625/17 +0.368% Min $xF7 to $xFF +0.5/30.5 +1.64% Max $x00 to $x08 +0.5/17 +2.94% Min $xDF to $xFF +2/29 +6.90% Max $x00 to $x20 +2/17 +11.8% x: Maximum error is independent of value in DDIV[3:0]. DDIV increments or decrements when an addition to DSTG[7:0] carries or borrows. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 115 Internal Clock Generator Module (ICG) 8.4.3 External Clock Generator The ICG also provides for an external oscillator or clock source, if desired. The external clock generator, shown in Figure 8-3, contains an external oscillator amplifier and an external clock input path. STOP ECLK INPUT PATH ECGON AMPLIFIER EXTERNAL CLOCK GENERATOR EXTSLOW INTERNAL TO MCU OSC1 OSC2 EXTERNAL NAME CONFIGURATION REGISTER BIT NAME TOP LEVEL SIGNAL NAME REGISTER BIT NAME MODULE SIGNAL RB RS* *RS can be 0 (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data. X1 C1 C2 COMPONENTS REQUIRED FOR EXTERNAL CRYSTAL USE ONLY Figure 8-3. External Clock Generator Block Diagram 8.4.3.1 External Oscillator Amplifier The external oscillator amplifier provides the gain required by an external crystal connected in a Pierce oscillator configuration. The amount of this gain is controlled by the slow external (EXTSLOW) bit in the configuration register. When EXTSLOW is set, the amplifier gain is reduced for operating low-frequency crystals (32 kHz to 100 kHz). When EXTSLOW is clear, the amplifier gain will be sufficient for 1-MHz to 8-MHz crystals. EXTSLOW must be configured correctly for the given crystal or the circuit may not operate. Advance Information 116 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Functional Description The amplifier is enabled when the ECGON bit is set and stop mode is not enabled. When the amplifier is enabled, it will be connected between the OSC1 and OSC2 pins. In its typical configuration, the external oscillator requires five external components: 1. Crystal, X1 2. Fixed capacitor, C1 3. Tuning capacitor, C2 (can also be a fixed capacitor) 4. Feedback resistor, RB 5. Series resistor, RS (included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals). Refer to the crystal manufacturer’s data for more information. 8.4.3.2 External Clock Input Path The external clock input path is the means by which the microcontroller uses an external clock source. The input to the path is the OSC1 pin and the output is the external clock (ECLK). The path, which contains input buffering, is enabled when the ECGON bit is set and stop mode is not enabled. 8.4.4 Clock Monitor Circuit The ICG contains a clock monitor circuit which, when enabled, will continuously monitor both the external clock (ECLK) and the internal clock (ICLK) to determine if either clock source has failed based on these conditions: • Either ICLK or ECLK has stopped. • The frequency of IBASE < frequency EREF divided by 4 • The frequency of ECLK < frequency of IREF divided by 4 Using the clock monitor requires both clocks to be active (ECGON and ICGON are both set). To enable the clock monitor, both clocks must also be stable (ECGS and ICGS both set). This is to prevent the use of the clock monitor when a clock is first turned on and potentially unstable MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 117 Internal Clock Generator Module (ICG) NOTE: Although the clock monitor can be enabled only when the both clocks are stable (ICGS or ECGS is set), the clock monitor will remain enabled if one of the clocks goes unstable. The clock monitor only works if the external slow (EXTSLOW) bit in the configuration register is properly defined with respect to the external frequency source. The clock monitor circuit, shown in Figure 8-4, contains these blocks: • Clock monitor reference generator • Internal clock activity detector • External clock activity detector 8.4.4.1 Clock Monitor Reference Generator The clock monitor uses a reference based on one clock source to monitor the other clock source. The clock monitor reference generator generates the external reference clock (EREF) based on the external clock (ECLK) and the internal reference clock (IREF) based on the internal clock (ICLK). To simplify the circuit, the low-frequency base clock (IBASE) is used in place of ICLK because it always operates at or near 307.2 kHz. For proper operation, EREF must be at least twice as slow as IBASE and IREF must be at least twice as slow as ECLK. To guarantee that IREF is slower than ECLK and EREF is slower than IBASE, one of the signals is divided down. Which signal is divided and by how much is determined by the external slow (EXTSLOW) bit in the configuration register, according to the rules in Table 8-2. Note that each signal (IBASE and ECLK) is always divided by four. A longer divider is used on either IBASE or ECLK based on the EXTSLOW bit. NOTE: If EXTSLOW is not set according to the rules defined in Table 8-2, the clock monitor could switch clock sources unexpectedly. Advance Information 118 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Functional Description CMON IOFF CMON FICGS IBASE IBASE ICGEN ICGEN IOFF ICLK ACTIVITY DETECTOR EREF ICGS IBASE EREF ICGS ICGON EXTXTALEN EXTSLOW EXTSLOW ESTBCLK ECGS DIVIDER ECGON ECLK IREF STOP ECGS ESTBCLK ECGS IREF ECGON ECLK ECGEN ECLK ECLK CMON ACTIVITY DETECTOR EOFF EOFF NAME CONFIGURATION REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 8-4. Clock Monitor Block Diagram MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 119 Internal Clock Generator Module (ICG) ICGON ECGON ECGS EXTSLOW External Frequency EREF Divider Ratio EREF Frequency ESTBCLK Divider Ratio ESTBCLK Frequency IREF Divider Ratio IREF Frequency Table 8-2. Clock Monitor Reference Divider Ratios 0 x x x U U U U U Off 0 x 0 0 x 0 Off 0 Off 0 U U x 0 x Off 0 4096 (ECLK) 1.875 kHz x 1*4 76.8 kHz ±25% 4096 (ECLK) 244 Hz 1*4 1.953 kHz 76.8 kHz ±25% 4096 (IBASE) 75 Hz ±25% 16*4 4.8 kHz ±25% Min x x x x 1 1 30 kHz Max 8 MHz Min 1 MHz 0 1.953 kHz 128*4 Max 8 MHz Min 30 kHz 1 15.63 kHz 7.5 kHz 1*4 Max 100 kHz 25.0 kHz 500 kHz U: Unaffected. Refer to section of table where ICGON or ECGON is set to x (don’t care). IBASE is always used as the internal frequency (307.2 kHz). The long divider (divide by 4096) is also used as an external crystal stabilization divider. The divider is reset when the external clock generator is off (ECGEN is clear). When the external clock generator is first turned on, the external clock generator stable bit (ECGS) will be clear. This condition automatically selects ECLK as the input to the long divider. The external stabilization clock (ESTBCLK) will be ECLK divided by 4096. This timeout allows the crystal to stabilize. The falling edge of ESTBCLK is used to set ECGS. (ECGS will set after a full 16 or 4096 cycles.) When ECGS is set, the divider returns to its normal function. ESTBCLK may be generated by either IBASE or ECLK, but any clocking will reinforce only the set condition. If ECGS is cleared because the clock monitor determined that ECLK was inactive, the divider will revert to a stabilization divider. Since this will change the EREF and IREF divide ratios, it is important to turn the clock monitor off (CMON = 0) after inactivity is detected to ensure valid recovery. Advance Information 120 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Functional Description 8.4.4.2 Internal Clock Activity Detector The internal clock activity detector looks for at least one falling edge on the low-frequency base clock (IBASE) every time the external reference (EREF) is low. Since EREF is less than half the frequency of IBASE, this should occur every time. If it does not occur two consecutive times, the internal clock inactivity indicator (IOFF) is set. IOFF will be cleared the next time there is a falling edge of IBASE while EREF is low. The internal clock stable bit (ICGS) is set when IBASE is within approximately 5 percent of the target 307.2 kHz ±25 percent for two consecutive measurements. ICGS is cleared when IBASE is outside the 5 percent of the target 307.2 kHz ±25 percent, the internal clock generator is disabled (ICGEN is clear), or when IOFF is set. 8.4.4.3 External Clock Activity Detector The external clock activity detector looks for at least one falling edge on the external clock (ECLK) every time the internal reference (IREF) is low. Since IREF is less than half the frequency of ECLK, this should occur every time. If it does not occur two consecutive times, the external clock inactivity indicator (EOFF) is set. EOFF will be cleared the next time there is a falling edge of ECLK while IREF is low. The external clock stable bit (ECGS) is also generated in the external clock activity detector. ECGS is set on a falling edge of the external stabilization clock (ESTBCLK). This will be 4096 ECLK cycles after the external clock generator on bit (ECGON) is set. ECGS is cleared when the external clock generator is disabled (ECGON is clear) or when EOFF is set. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 121 Internal Clock Generator Module (ICG) 8.4.5 Clock Selection Circuit The clock selection circuit, shown in Figure 8-5, contains two clock switches which generate the oscillator output clock (CGMXCLK) from either the internal clock (ICLK) or the external clock (ECLK). The clock selection circuit also contains a divide-by-two circuit which creates the clock generator output clock (CGMOUT), which generates the bus clocks. CS SELECT ICLK ICLK ECLK ECLK IOFF IOFF EOFF EOFF RESET VSS NAME OUTPUT SYNCHRONIZING CLOCK CGMXCLK DIV2 SWITCHER CGMOUT FORCE_I FORCE_E TOP LEVEL SIGNAL NAME REGISTER BIT NAME MODULE SIGNAL Figure 8-5. Clock Selection Circuit Block Diagram 8.4.5.1 Clock Selection Switch The clock select switch creates the oscillator output clock (CGMXCLK) from either the internal clock (ICLK) or the external clock (ECLK), based on the clock select bit (CS; set selects ECLK, clear selects ICLK). When switching the CS bit, both ICLK and ECLK must be on (ICGON and ECGON set). The clock being switched to must also be stable (ICGS or ECGS set). Advance Information 122 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Functional Description 8.4.5.2 Clock Switching Circuit To robustly switch between the internal clock (ICLK) and the external clock (ECLK), the switch assumes the clocks are completely asynchronous, so a synchronizing circuit is required to make the transition (see Figure 8-6). When the clock select bit is changed, the switch will continue to operate off the original clock for between 1 and 2 cycles as the select input transitions through one side of the synchronizer. Next, the output will be held low for between 1 and 2 cycles of the new clock as the select input transitions through the other side. Then the output starts switching at the new clock’s frequency. This transition guarantees that no glitches will be seen on the output even though the select input may change asynchronously to the clocks. The unpredictably of the transition period is a necessary result of the asynchronicity. IOFF D Q D QB CK DFF CK Q DFF QB ICLK FORCE_I OUTPUT ECLK CK FORCE_E QB CK DFF D SELECT QB DFF Q D Q EOFF FORCE_I = Force internal; reset condition FORCE_E = Force external Figure 8-6. Synchronizing Clock Switcher Circuit Diagram MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 123 Internal Clock Generator Module (ICG) The switch automatically selects ICLK during reset. When the clock monitor is on (CMON is set) and it determines one of the clock sources is inactive (as indicated by the IOFF or EOFF signals), the circuit is forced to select the active clock. There are no clocks for the inactive side of the synchronizer to properly operate, so that side is forced deselected. However, the active side will not be selected until one to two clock cycles after the IOFF or EOFF signal transitions. 8.5 Usage Notes The ICG has several features which can provide protection to the microcontroller if properly used. There are other features which can greatly simplify usage of the ICG if certain techniques are employed. This section will describe several possible ways to use the ICG and its features. These techniques are not the only ways to use the ICG, and may not be optimum for all environments. In any case, these techniques should be used only as a template, and the user should modify them according to the application’s requirements. These notes include: • Switching clock sources • Enabling the clock monitor • Using clock monitor interrupts • Quantization error in DCO output • Switching internal clock frequencies • Nominal frequency settling time • Improving frequency settling time • Trimming frequency Advance Information 124 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Usage Notes 8.5.1 Switching Clock Sources Switching from one clock source to another requires both clock sources to be enabled and stable. A simple flow requires: 1. Enable desired clock source 2. Wait for it to become stable 3. Switch clocks 4. Disable previous clock source The key point to remember in this flow is that the clock source cannot be switched (CS cannot be written) unless the desired clock is on and stable. A short assembly code example of how to employ this flow is shown in Figure 8-7. This code is for illustrative purposes only and does not represent valid syntax for any particular assembler. start lda #$13 loop ** ** sta icgcr cmpa bne icgcr loop ;Clock Switching Code Example ;This code switches from Internal to External clock ;Clock Monitor and interrupts are not enabled ;Mask for CS, ECGON, ECGS ;If switching from External to Internal, mask is $0C. ;Other code here, such as writing the COP, since ECGS may ;take some time to set ;Try to set CS, ECGON and clear ICGON. ICGON will not ;clear until CS is set, and CS will not set until ;ECGON and ECGS are set. ;Check to see if ECGS set, then CS set, then ICGON clear ;Keep looping until ICGON is clear. Figure 8-7. Code Example for Switching Clock Sources MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 125 Internal Clock Generator Module (ICG) 8.5.2 Enabling the Clock Monitor Many applications require the clock monitor to determine if one of the clock sources has become inactive, so the other can be used to recover from a potentially dangerous situation. Using the clock monitor requires both clocks to be active (ECGON and ICGON both set). To enable the clock monitor, both clocks also must be stable (ECGS and ICGS both set). This is to prevent the use of the clock monitor when a clock is first turned on and potentially unstable. Enabling the clock monitor and clock monitor interrupts requires a flow similar to this flow: 1. Enable the alternate clock source 2. Wait for both clock sources to be stable 3. Switch to the desired clock source if necessary 4. Enable the clock monitor 5. Enable clock monitor interrupts These events must happen in sequence. A short assembly code example of how to employ this flow is shown in Figure 8-8. This code is for illustrative purposes only and does not represent valid syntax for any particular assembler. start lda loop ** sta brset cmpa bne ;Clock Monitor Enabling Code Example ;This code turns on both clocks, selects the desired ; one, then turns on the Clock Monitor and Interrupts #$AF ;Mask for CMIE, CMON, ICGON, ICGS, ECGON, ECGS ; If Internal Clock desired, mask is $AF ; If External Clock desired, mask is $BF ; If interrupts not desired mask is $2F int; $3F ext ** ;Other code here, such as writing the COP, since ECGS ; and ICGS may take some time to set. icgcr ;Try to set CMIE. CMIE wont set until CMON set; CMON ; won’t set until ICGON, ICGS, ECGON, ECGS set. 6,ICGCR,error ;Verify CMF is not set icgcr ;Check if ECGS set, then CMON set, then CMIE set loop ;Keep looping until CMIE is set. Figure 8-8. Code Example for Enabling the Clock Monitor Advance Information 126 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Usage Notes 8.5.3 Clock Monitor Interrupts The clock monitor circuit can be used to recover from perilous situations such as crystal loss. To use the clock monitor effectively, these notes should be observed: • Enable the clock monitor and clock monitor interrupts. • The first statement in the clock monitor interrupt service routine should be a read to the ICG control register (ICGCR) to verify that the clock monitor flag (CMF) is set. This is also the first step in clearing the CMF bit. • Never use BSET or BCLR instructions on the ICGCR, as this may inadvertently clear CMF. Only use the BRSET and BRCLR instructions to check the CMF bit and not to check any other bits in the ICGCR. • When the clock monitor detects inactivity on the selected clock source (defined by the CS bit of the ICG control register), the inactive clock is deselected automatically and the remaining active clock is selected as the source for CGMXCLK. The interrupt service routine can use the state of the CS bit to check which clock is inactive. • When the clock monitor detects inactivity, the application may have been subjected to extreme conditions which may have affected other circuits. The clock monitor interrupt service routine should take any appropriate precautions. 8.5.4 Quantization Error in DCO Output The digitally controlled oscillator (DCO) is comprised of three major subblocks: 1. Binary weighted divider 2. Variable-delay ring oscillator 3. Ring oscillator fine-adjust circuit Each of these blocks affects the clock period of the internal clock (ICLK). Since these blocks are controlled by the digital loop filter (DLF) outputs MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 127 Internal Clock Generator Module (ICG) DDIV and DSTG, the output of the DCO can change only in quantized steps as the DLF increments or decrements its output. The following sections describe how each block will affect the output frequency. 8.5.4.1 Digitally Controlled Oscillator The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock (ICLK), whose clock period is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because of the digital nature of the DCO, the clock period of ICLK will change in quantized steps. This will create a clock period difference or quantization error (Q-ERR) from one cycle to the next. Over several cycles or for longer periods, this error is divided out until it reaches a minimum error of 0.202 percent to 0.368 percent. The dependence of this error on the DDIV[3:0] value and the number of cycles the error is measured over is shown in Table 8-3. Table 8-3. Quantization Error in ICLK DDIV[3:0] ICLK Cycles Bus Cycles tICLK Q-ERR %0000 (min) 4 1 1.61%–2.94% %0000 (min) ≥ 32 ≥8 0.202%–0.368% %0001 4 1 0.806%–1.47% %0001 ≥ 16 ≥4 0.202%–0.368% %0010 4 1 0.403%–0.735% %0010 ≥8 ≥2 0.202%–0.368% %0011 ≥4 ≥1 0.202%–0.368% %0100 ≥2 ≥1 0.202%–0.368% %0101–%1001 (max) ≥1 ≥1 0.202%–0.368% 8.5.4.2 Binary Weighted Divider The binary weighted divider divides the output of the ring oscillator by a power of 2, specified by the DCO divider control bits (DDIV[3:0]). DDIV maximizes at %1001 (values of %1010 through %1111 are interpreted as %1001), which corresponds to a divide by 512. When DDIV is %0000, Advance Information 128 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Usage Notes the ring oscillator’s output is divided by 1. Incrementing DDIV by 1 will double the period; decrementing DDIV will halve the period. The DLF cannot directly increment or decrement DDIV; DDIV is only incremented or decremented when an addition or subtraction to DSTG carries or borrows. 8.5.4.3 Variable-Delay Ring Oscillator The variable-delay ring oscillator’s period is adjustable from 17 to 31 stage delays, in increments of two, based on the upper three DCO stage control bits (DSTG[7:5]). A DSTG[7:5] of %000 corresponds to 17 stage delays; DSTG[7:5] of %111 corresponds to 31 stage delays. Adjusting the DSTG[5] bit has a 6.45 percent to 11.8 percent effect on the output frequency. This also corresponds to the size correction made when the frequency error is greater than ±15 percent. The value of the binary weighted divider does not affect the relative change in output clock period for a given change in DSTG[7:5]. 8.5.4.4 Ring Oscillator Fine-Adjust Circuit The ring oscillator fine-adjust circuit causes the ring oscillator to effectively operate at non-integer numbers of stage delays by operating at two different points for a variable number of cycles specified by the lower five DCO stage control bits (DSTG[4:0]). For example, when DSTG[7:5] is %011, the ring oscillator nominally operates at 23 stage delays. When DSTG[4:0] is %00000, the ring will always operate at 23 stage delays. When DSTG[4:0] is %00001, the ring will operate at 25 stage delays for one of 32 cycles and at 23 stage delays for 31 of 32 cycles. Likewise, when DSTG[4:0] is %11111, the ring operates at 25 stage delays for 31 of 32 cycles and at 23 stage delays for one of 32 cycles. When DSTG[7:5] is %111, similar results are achieved by including a variable divide-by-two, so the ring operates at 31 stages for some cycles and at 17 stage delays, with a divide-by-two for an effective 34 stage delays, for the remainder of the cycles. Adjusting the DSTG[0] bit has a 0.202 percent to 0.368 percent effect on the output clock period. This corresponds to the minimum size correction made by the DLF, and the inherent, long-term quantization error in the output frequency. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 129 Internal Clock Generator Module (ICG) 8.5.5 Switching Internal Clock Frequencies The frequency of the internal clock (ICLK) may need to be changed for some applications. For example, if the reset condition does not provide the correct frequency, or if the clock is slowed down for a low-power mode (or sped up after a low-power mode), the frequency must be changed by programming the internal clock multiplier factor (N). The frequency of ICLK is N times the frequency of IBASE, which is 307.2 kHz ±25 percent. Before switching frequencies by changing the N value, the clock monitor must be disabled. This is because when N is changed, the frequency of the low-frequency base clock (IBASE) will change proportionally until the digital loop filter has corrected the error. Since the clock monitor uses IBASE, it could erroneously detect an inactive clock. The clock monitor cannot be re-enabled until the internal clock is stable again (ICGS is set). NOTE: There is no hardware mechanism to prevent changing bus frequency dynamically. Be careful when changing bus frequency and consider the impact on the system. This flow is an example of how to change the clock frequency: 1. Verify there is no clock monitor interrupt by reading the CMF bit. 2. Turn off the clock monitor. 3. If desired, switch to the external clock (see 8.5.1 Switching Clock Sources). 4. Change the value of N. 5. Switch back to internal (see 8.5.1 Switching Clock Sources), if desired. 6. Turn on the clock monitor (see 8.5.2 Enabling the Clock Monitor), if desired. Advance Information 130 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Usage Notes 8.5.6 Nominal Frequency Settling Time Because the clock period of the internal clock (ICLK) is dependent on the digital loop filter outputs (DDIV and DSTG) which cannot change instantaneously, ICLK will temporarily operate at an incorrect clock period when any of the operating condition changes. This happens whenever the part is reset, the ICG multiply factor (N) is changed, the ICG trim factor (TRIM) is changed, or the internal clock is enabled after inactivity (STOP or disabled operation). The time that the ICLK takes to adjust to the correct period is known as the settling time. Settling time depends primarily on how many corrections it takes to change the clock period, and the period of each correction. Since the corrections require four periods of the low-frequency base clock (4*tIBASE), and since ICLK is N (the ICG multiply factor for the desired frequency) times faster than IBASE, each correction takes 4*N*tICLK. The period of ICLK, however, will vary as the corrections occur. 8.5.6.1 Settling to Within 15 Percent When the error is greater than 15 percent, the filter takes eight corrections to double or halve the clock period. Due to how the DCO increases or decreases the clock period, the total period of these eight corrections is approximately 11 times the period of the fastest correction. (If the corrections were perfectly linear, the total period would be 11.5 times the minimum period; however, the ring must be slightly non-linear.) Therefore, the total time it takes to double or halve the clock period is 44*N*tICLKFAST. If the clock period needs more than doubled or halved, the same relationship applies, only for each time the clock period needs doubled, the total number of cycles doubles. That is, when transitioning from fast to slow: • Going from the initial speed to half speed takes 44*N*tICLKFAST • From half speed to quarter speed takes 88*N*tICLKFAST • Going from quarter speed to eighth speed takes 176*N*tICLKFAST, and so on. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 131 Internal Clock Generator Module (ICG) This series can be expressed as (2x–1)*44*N*tICLKFAST, where x is the number of times the speed needs doubled or halved. Since 2x happens to be equal to tICLKSLOW/tICLKFAST, the equation reduces to 44*N*(tICLKSLOW-tICLKFAST). Note that increasing speed takes much longer than decreasing speed since N is higher. This can be expressed in terms of the initial clock period (t1) minus the final clock period (t2) as such: t 15 = abs [ 44N ( t 1 – t 2 ) ] 8.5.6.2 Settling to Within 5 Percent Once the clock period is within 15 percent of the desired clock period, the filter starts making smaller adjustments. When between 15 percent and 5 percent error, each correction will adjust the clock period between 1.61 percent and 2.94 percent. In this mode, a maximum of eight corrections will be required to get to less than 5 percent error. Since the clock period is relatively close to desired, each correction takes approximately the same period of time, or 4*tIBASE. At this point, the internal clock stable bit (ICGS) will be set and the clock frequency is usable, although the error will be as high as 5 percent. The total time to this point is: t 5 = abs [ 44N ( t1 – t2 ) ] + 32tIBASE 8.5.6.3 Total Settling Time Once the clock period is within 5 percent of the desired clock period, the filter starts making minimum adjustments. In this mode, each correction will adjust the frequency between 0.202 percent and 0.368 percent. A maximum of 24 corrections will be required to get to the minimum error. Each correction takes approximately the same period of time or 4*tIBASE. Added to the corrections for 15 percent to 5 percent, this makes 32 corrections (128*tIBASE) to get from 15 percent to the minimum error. The total time to the minimum error is: t tot = abs [ 44N ( t1 – t 2 ) ] + 128tIBASE Advance Information 132 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Usage Notes The equations for t15, t5, and ttot are dependent on the actual initial and final clock periods t1 and t2, not the nominal. This means the variability in the ICLK frequency due to process, temperature, and voltage must be considered. Additionally, other process factors and noise can affect the actual tolerances of the points at which the filter changes modes. This means a worst case adjustment of up to 35 percent (ICLK clock period tolerance plus 10 percent) must be added. This adjustment can be reduced with trimming. Table 8-4 shows some typical values for settling time. Table 8-4. Typical Settling Time Examples t1 t2 N t15 t5 ttot 1/ (6.45 MHz) 1/ (25.8 MHz) 84 430 µs 535 µs 850 µs 1/ (25.8 MHz) 1/ (6.45 MHz) 21 107 µs 212 µs 525 µs 1/ (25.8 MHz) 1/ (307.2 kHz) 1 141 µs 246 µs 560 µs 1/ (307.2 kHz) 1/ (25.8 MHz) 84 11.9 ms 12.0 ms 12.3 ms 8.5.7 Improving Settling Time The settling time of the internal clock generator can be vastly improved if an external clock source can be used during the settling time. When the internal clock generator is disabled (ICGON is low), the DDIV[3:0] and DSTG[7:0] bits can be written. Then, when the internal clock generator is re-enabled, the clock period will automatically start at the point written in the DDIV and DSTG bits. Since a change in the DDIV and DSTG bits only cause a change in the clock period relative to the starting point, the starting point must first be captured. The initial clock period can be expressed as in the next example, where tX is a process, temperature, and voltage dependent constant and DDIV1 and DSTG1 are the values of DDIV and DSTG when operating at t1. t1 = tX ⋅ 2 DDIV1 MC68HC908RF2 — Rev. 1 MOTOROLA ⋅ DSTG1 Advance Information Internal Clock Generator Module (ICG) 133 Internal Clock Generator Module (ICG) Finding the new values for DDIV and DSTG is easy if the new clock period is a binary multiple or fraction of the original. In this case, DSTG is unchanged and DDIV2 is DDIV1 + log2(t2/t1). If the new clock period is not a binary multiple or fraction of the original, both DSTG and DDIV may need to change according to these equations: log ( t 2 ⁄ t 1 ) DVFACT = int --------------------------log ( 2 ) DDIV2 = DDIV1 + DVFACT ( t2 ⁄ t 1 ) DSFACT = ---------------------------------------------------( DDIV2 – DDIV1 ) 2 DSTG2 = DSFACT ⋅ DSTG1 If DSTG2 is greater than 255: DDIV2 = DDIV2 + 1 DSTG2 DSTG2 = --------------------2 The software required to do this is relatively simple, since most of the math can be done before coding because the initial and final clock periods are known. An example of how to code this in assembly code is shown in Figure 8-9. This example is for illustrative purposes only and does not represent a valid syntax for any particular assembler. Advance Information 134 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Usage Notes ;DDIV and DSTG modification code example ;Changes DDIV and DSTG according to the initial and ; desired clock period values ;Requires ICGON to be clear (disabled) ;User must previously calculate DVFACT and STFACT by ; the equations listed in the specification ;Modifies X and A registers start store exit lda cmp lda add sta lda icgcr #13 #dvfact icgdvr icgdvr #stfact ldx mul rola rolx bcc rorx inc stx lda cmp bhi lda sta jmp jmp icgdsr store icgdsr icgdvr #09 exit #09 icgdvr error enable ;Verify ICGON clear (this will require ; CMIE,CMF,CMON,ICGON,ICGS clear and CS,ECGON,ECGS set) ;Add the DDIV factor (calculated before ; coding by the DDIV2 equation) ;Load the DSTG factor (calculated before coding and ; multiplied by 128 to make it 0-255 for maximum precision ;Load current stage register contents ;Multiply factor times current value ;Since factor was multiplied by 128, ; result is x6-x0:a7, so put it all in X ;If result is >255, rolx will set carry ; so divide result by two and ; add one to DDIV ;Store value ;Test to see if DDIV too high or low ;Valid range 0-9; too low is FF/FE; too high is 0A/0B ;If DDIV is 0-9, you’re almost done ;Otherwise, maximize period and execute error code ;Jump to code which turns on desired ;clock, clock monitor, interrupts, etc. Figure 8-9. Code Example for Writing DDIV and DSTG 8.5.8 Trimming Frequency on the Internal Clock Generator The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the frequency comparator indicate zero error, will vary as much as ±25 percent due to process, temperature, and voltage dependencies. These dependencies are in the voltage and current references, the offset of the comparators, and the internal capacitor. The voltage and temperature dependencies have been designed to be a maximum of approximately ±1 percent error. The process dependencies account for the rest. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 135 Internal Clock Generator Module (ICG) Fortunately, for an individual part, the process dependencies are constant. An individual part can operate at approximately ±2 percent variance from its unadjusted operating point over the entire specification range of the application. If the unadjusted operating point can be changed, the entire variance can be limited to ±2 percent. The method of changing the unadjusted operating point is by changing the size of the capacitor. This capacitor is designed with 639 equally sized units, 384 of which are always connected. The remaining 255 units are put in by adjusting the ICG trim factor (TRIM). The default value for TRIM is $80, or 128 units, making the default capacitor size 512. Each unit added or removed will adjust the output frequency by about ±0.195 percent of the unadjusted frequency (adding to TRIM will decrease frequency). Therefore, the frequency of IBASE can be changed to ±25 percent of its unadjusted value, which is enough to cancel the process variability mentioned before. The best way to trim the internal clock is to use the timer to measure the width of an input pulse on an input capture pin (this pulse must be supplied by the application and should be as long or wide as possible). Considering the prescale value of the timer and the theoretical (zero error) frequency of the bus (307.2 kHz *N/4), the error can be calculated. This error, expressed as a percentage, can be divided by 0.195 percent and the resultant factor added or subtracted from TRIM. This process should be repeated to eliminate any residual error. NOTE: It is recommended that the user preserve a copy of the contents of the ICG trim register (ICGTR) in non-volitale memory. Address $7FEF is reserved for an optional factory-determined value. Consult with a local Motorola representative for more information and availability of this option. Advance Information 136 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) Low-Power Modes 8.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 8.6.1 Wait Mode The ICG remains active in wait mode. If enabled, the ICG interrupt to the CPU can bring the MCU out of wait mode. In some applications, low-power consumption is desired in wait mode and a high-frequency clock is not needed. In these applications, reduce power consumption by either selecting a low-frequency external clock and turning the internal clock generator off, or reducing the bus frequency by minimizing the ICG multiplier factor (N) before executing the WAIT instruction. 8.6.2 Stop Mode The ICG is disabled in stop mode. Upon execution of the STOP instruction, all ICG activity will cease and the output clocks (CGMXCLK and CGMOUT) will be held low. Power consumption will be minimal. The STOP instruction does not affect the values in the ICG registers. Normal execution will resume after the MCU exits stop mode. 8.7 Configuration Register Option One configuration register option affects the functionality of the ICG: EXTSLOW (slow external clock). All configuration register options will have a default setting. Refer to Section 9. Configuration Register (CONFIG) on how the configuration register is used. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 137 Internal Clock Generator Module (ICG) 8.7.1 EXTSLOW Slow external clock (EXTSLOW), when set, will decrease the drive strength of the oscillator amplifier, enabling low-frequency crystal operation (30 kHz–100 kHz). When clear, EXTSLOW enables high frequency crystal operation (1 MHz to 8 MHz). EXTSLOW, when set, also configures the clock monitor to expect an external clock source that is slower than the low-frequency base clock (60 Hz–307.2 kHz). When EXTSLOW is clear, the clock monitor will expect an external clock faster than the low-frequency base clock (307.2 kHz–32 MHz). The default state for this option is clear. 8.8 I/O Registers The ICG contains five registers, summarized in Figure 8-10. These registers are: • ICG control register, ICGCR • ICG multiplier register, ICGMR • ICG trim register, ICGTR • ICG DCO divider control register, ICGDVR • ICG DCO stage control register, ICGDSR Several of the bits in these registers have interaction where the state of one bit may force another bit to a particular state or prevent another bit from being set or cleared. A summary of this interaction is shown in Table 8-5. Advance Information 138 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) I/O Registers Addr. $0036 $0037 $0038 Register Name Bit 7 Internal Clock Generator Read: Control Register Write: (ICGCR) See page 141. Reset: Internal Clock Generator Read: Multiplier Register Write: (ICGMR) See page 143. Reset: Read: Internal Clock Generator Trim Register (ICGTR) Write: See page 144. Reset: ICG DCO Divider Control $0039 6 5 4 3 CMON CS ICGON CMF CMIE 2 1 ICGS Bit 0 ECGS ECGON 0 0 0 0 1 0 0 0 R N6 N5 N4 N3 N2 N1 N0 0 0 0 1 0 1 0 1 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 R R R R DDIV3 DDIV2 DDIV1 DDIV0 0 0 0 0 U U U U DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 Read: Register (ICGDVR) Write: See page 145. Reset: Read: ICG DCO Stage Register DSTG7 $003A (ICGDSR) Write: See page 146. Reset: Unaffected by reset = Unimplemented R = Reserved U = Unaffected Figure 8-10. ICG I/O Register Summary MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 139 Internal Clock Generator Module (ICG) Table 8-5. ICG Module Register Bit Interaction Summary CMIE CMF CMON CS ICGON ICGS ECGON ECGS N[6:0] TRIM[7:0] DDIV[3:0] DSTG[7:0] Register Bit Results for Given Condition Reset 0 0 0 0 1 0 0 0 $15 $80 — — CMF = 1 — (1) 1 — 1 — 1 — uw uw uw uw CMON = 0 0 0 (0) — — — — — — — — — CMON = 1 — — (1) — 1 — 1 — uw uw uw uw CS = 0 — — — (0) 1 — — — — — uw uw CS = 1 — — — (1) — — 1 — — — — — ICGON = 0 0 0 0 1 (0) 0 1 — — — — — ICGON = 1 — — — — (1) — — — — — uw uw ICGS = 0 us — us uc — (0) — — — — — — ECGON = 0 0 0 0 0 1 — (0) 0 — — uw uw ECGS = 0 us — us us — — — (0) — — — — IOFF = 1 — 1* (1) 1 (1) 0 (1) — uw uw uw uw EOFF = 1 — 1* (1) 0 (1) — (1) 0 uw uw uw uw N = written (0) (0) (0) — — 0* — — — — — — TRIM = written (0) (0) (0) — — 0* — — — — — — Condition — 0, 1 0*, 1* (0), (1) us, uc, uw Register bit is unaffected by the given condition. Register bit is forced clear or set, respectively, in the given condition. Register bit is temporarily forced clear or set, respectively, in the given condition. Register bit must be clear or set, respectively, for the given condition to occur. Register bit cannot be set, cleared, or written, respectively, in the given condition. Advance Information 140 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) I/O Registers 8.8.1 ICG Control Register The ICG control register (ICGCR) contains the control and status bits for the internal clock generator, external clock generator, and clock monitor as well as the clock select and interrupt enable bits. Address: $0036 Bit 7 Read: 6 5 4 3 CMON CS ICGON 0 0 1 CMF CMIE 2 1 ICGS Bit 0 ECGS ECGON Write: Reset: 0 0 0 0 0 = Unimplemented Figure 8-11. ICG Control Register (ICGCR) CMIE — Clock Monitor Interrupt Enable Bit This read/write bit enables clock monitor interrupts. An interrupt will occur when both CMIE and CMF are set. CMIE can be set when the CMON bit has been set for at least one cycle. CMIE is forced clear when CMON is clear or during reset. 1 = Clock monitor interrupts enabled 0 = Clock monitor interrupts disabled CMF — Clock Monitor Interrupt Flag This read-only bit is set when the clock monitor determines that either ICLK or ECLK becomes inactive and the CMON bit is set. This bit is cleared by first reading the bit while it is set, followed by writing the bit low. This bit is forced clear when CMON is clear or during reset. 1 = Either ICLK or ECLK has become inactive. 0 = ICLK and ECLK have not become inactive since the last read of the ICGCR or the clock monitor is disabled. CMON — Clock Monitor On Bit This read/write bit enables the clock monitor. CMON can be set when both ICLK and ECLK have been on and stable for at least one bus cycle (ICGON, ECGON, ICGS, and ECGS are all set). CMON is MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 141 Internal Clock Generator Module (ICG) forced set when CMF is set, to avoid inadvertent clearing of CMF. CMON is forced clear when either ICGON or ECGON is clear or during reset. 1 = Clock monitor output enabled 0 = Clock monitor output disabled CS — Clock Select Bit This read/write bit determines which clock will generate the oscillator output clock (CGMXCLK). This bit can be set when ECGON and ECGS have been set for at least one bus cycle and can be cleared when ICGON and ICGS have been set for at least one bus cycle. This bit is forced set when the clock monitor determines the internal clock (ICLK) is inactive or when ICGON is clear. This bit is forced clear when the clock monitor determines that the external clock (ECLK) is inactive, when ECGON is clear, or during reset. 1 = External clock (ECLK) sources CGMXCLK 0 = Internal clock (ICLK) sources CGMXCLK ICGON — Internal Clock Generator On Bit This read/write bit enables the internal clock generator. ICGON can be cleared when the CS bit has been set and the CMON bit has been clear for at least one bus cycle. ICGON is forced set when the CMON bit is set, the CS bit is clear, or during reset. 1 = Internal clock generator enabled 0 = Internal clock generator disabled ICGS — Internal Clock Generator Stable Bit This read-only bit indicates when the internal clock generator has determined that the internal clock (ICLK) is within about 5 percent of the desired value. This bit is forced clear when the clock monitor determines the ICLK is inactive, when ICGON is clear, when the ICG multiplier factor is written, or during reset. 1 = Internal clock is within 5 percent of the desired value. 0 = Internal clock may not be within 5 percent of the desired value. Advance Information 142 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) I/O Registers ECGON — External Clock Generator On Bit This read/write bit enables the external clock generator. ECGON can be cleared when the CS and CMON bits have been clear for at least one bus cycle. ECGON is forced set when the CMON bit or the CS bit is set. ECGON is forced clear during reset. 1 = External clock generator enabled 0 = External clock generator disabled ECGS — External Clock Generator Stable Bit This read-only bit indicates when at least 4096 external clock (ECLK) cycles have elapsed since the external clock generator was enabled. This is not an assurance of the stability of ECLK but is meant to provide a startup delay. This bit is forced clear when the clock monitor determines ECLK is inactive, when ECGON is clear, or during reset. 1 = 4096 ECLK cycles have elapsed since ECGON was set. 0 = External cock is unstable, inactive, or disabled. 8.8.2 ICG Multiplier Register Address: $0037 Bit 7 6 5 4 3 2 1 Bit 0 R N6 N5 N4 N3 N2 N1 N0 0 0 0 1 0 1 0 1 R = Reserved Read: Write: Reset: Figure 8-12. ICG Multiplier Register (ICGMR) N6–N0 — ICG Multiplier Factor Bits These read/write bits change the multiplier used by the internal clock generator. The internal clock (ICLK) will be (307.2 kHz ±25 percent) * N. A value of $00 in this register is interpreted the same as a value of $01. This register cannot be written when the CMON bit is set. Reset sets this factor to $15 (decimal 21) for default frequency of 6.45 MHz ±25 percent (1.613 MHz ±25 percent bus). MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 143 Internal Clock Generator Module (ICG) 8.8.3 ICG Trim Register Address: $0038 Bit 7 6 5 4 3 2 1 Bit 0 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 Read: Write: Reset: Figure 8-13. ICG Trim Register (ICGTR) TRIM7–TRIM0 — ICG Trim Factor Bits These read/write bits change the size of the internal capacitor used by the internal clock generator. By testing the frequency of the internal clock and incrementing or decrementing this factor accordingly, the accuracy of the internal clock can be improved to ±2 percent. Incrementing this register by 1 decreases the frequency by 0.195 percent of the unadjusted value. Decrementing this register by one increases the frequency by 0.195 percent. This register cannot be written when the CMON bit is set. Reset sets these bits to $80, centering the range of possible adjustment. NOTE: It is recommended that the user preserve a copy of the contents of the ICG trim register (ICGTR) in non-volitale memory. Address $7FEF is reserved for an optional factory-determined ICG trim value. Consult with a local Motorola representative for more information and availability of this option. Advance Information 144 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Internal Clock Generator Module (ICG) I/O Registers 8.8.4 ICG DCO Divider Register Address: $0039 Bit 7 6 5 4 3 2 1 Bit 0 R R R R DDIV3 DDIV2 DDIV1 DDIV0 0 0 0 0 U U U U Read: Write: Reset: R = Reserved U = Unaffected Figure 8-14. ICG DCO Divider Register (ICGDVR) DDIV3–DDIV0 — ICG DCO Divider Control Bits These bits indicate the number of divide-by-twos (DDIV) that follow the digitally controlled oscillator. Incrementing DDIV will add another divide-by-two, doubling the period (halving the frequency). Decrementing has the opposite effect. DDIV cannot be written when ICGON is set to prevent inadvertent frequency shifting. When ICGON is set, DDIV is controlled by the digital loop filter. The range of valid values for DDIV is from $0 to $9. Values of $A–$F are interpreted the same as $9. Since the DCO is active during reset, reset has no effect on DSTG and the value may vary. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Internal Clock Generator Module (ICG) 145 Internal Clock Generator Module (ICG) 8.8.5 ICG DCO Stage Register Address: $003A Bit 7 6 5 4 3 2 1 Bit 0 DSTG7 DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 Read: Write: Reset: Unaffected by reset Figure 8-15. ICG DCO Stage Register (ICGDSR) DSTG7–DSTG0 — ICG DCO Stage Control Bits These bits indicate the number of stages DSTG (above the minimum) in the digitally controlled oscillator. The total number of stages is approximately equal to $1FF, so changing DSTG from $00 to $FF will approximately double the period. Incrementing DSTG will increase the period (decrease the frequency) by 0.202 percent to 0.368 percent (decrementing has the opposite effect). DSTG cannot be written when ICGON is set to prevent inadvertent frequency shifting. When ICGON is set, DSTG is controlled by the digital loop filter. Since the DCO is active during reset, reset has no effect on DSTG and the value may vary. Advance Information 146 MC68HC908RF2 — Rev. 1 Internal Clock Generator Module (ICG) MOTOROLA Advance Information — MC68HC908RF2 Section 9. Configuration Register (CONFIG) 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.2 Introduction This section describes the configuration register (CONFIG). The configuration register enables or disables these options: • Stop mode recovery time (32 CGMXCLK cycles or 4,096 CGMXCLK cycles) • COP timeout period (218 – 24 or 213 – 24 CGMXCLK cycles) • STOP instruction • Computer operating properly module (COP) • Low-voltage inhibit (LVI) module control 9.3 Functional Description The CONFIG register is used in the initialization of various options and can be written once after each reset. The register is set to the documented value during reset. Since the various options affect the operation of the MCU, it is recommended that these registers be written immediately after reset. The configuration register is located at $001F. NOTE: On a FLASH device, the options are one-time writable by the user after each reset. The CONFIG register is not in the FLASH memory but is a special register containing one-time writable latches after each reset. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Configuration Register (CONFIG) 147 Configuration Register (CONFIG) Upon a reset, the CONFIG register defaults to predetermined settings as shown in Figure 2-1. Memory Map. Address: $001F BIt 7 6 5 4 3 2 1 Bit 0 LVIRST LVIPWR COPRS SSREC STOP COPD 1 1 0 0 0 0 Read: EXTSLOW LVISTOP Write: Reset: 0 0 Figure 9-1. Configuration Register (CONFIG) EXTSLOW — Slow External Crystal Enable Bit The EXTSLOW bit has two functions. It configures the ICG module for a fast (1 MHz–8 MHz) or slow (30 kHz–100 kHz) speed crystal. The option also configures the clock monitor operation in the ICG module to expect an external frequency higher (307.2 kHz–32 MHz) or lower (60 Hz–307.2 kHz) than the base frequency of the internal oscillator. (See Section 8. Internal Clock Generator Module (ICG).) 1 = ICG set for slow external crystal operation 0 = ICG set for fast external crystal operation LVISTOP — LVI Enable in Stop Mode Bit When the LVIPWR bit is set, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. 1 = LVI enabled during stop mode 0 = LVI disabled during stop mode LVIRST — LVI Reset Enable Bit LVIRST enables the reset signal from the LVI module. (See Section 12. Low-Voltage Inhibit (LVI).) 1 = LVI module resets enabled 0 = LVI module resets disabled LVIPWR — LVI Power Enable Bit LVIPWR disables the LVI module. (See Section 12. Low-Voltage Inhibit (LVI).) 1 = LVI module power enabled 0 = LVI module power disabled Advance Information 148 MC68HC908RF2 — Rev. 1 Configuration Register (CONFIG) MOTOROLA Configuration Register (CONFIG) Functional Description COPRS — COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. (See Section 11. Computer Operating Properly Module (COP).) 1 = COP timeout period = 213 – 24 CGMXCLK cycles 0 = COP timeout period = 218 – 24 CGMXCLK cycles SSREC — Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay. 1 = Stop mode recovery after 32 CGMXCLK cycles 0 = Stop mode recovery after 4096 CGMXCLK cycles NOTE: Exiting stop mode by pulling reset will result in the long stop recovery. If using the internal clock generator module or an external crystal oscillator, do not set the SSREC bit. The LVI has an enable time of ten. The system stabilization time for power-on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the MCU is not protected from a low-power condition. However, when using the short stop recovery configuration option, the 32 CGMXCLK delay must be greater than the LVI’s turn on time to avoid a period in startup where the LVI is not protecting the MCU. STOP — STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD — COP Disable Bit COPD disables the COP module. (See Section 11. Computer Operating Properly Module (COP).) 1 = COP module disabled 0 = COP module enabled MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Configuration Register (CONFIG) 149 Configuration Register (CONFIG) Advance Information 150 MC68HC908RF2 — Rev. 1 Configuration Register (CONFIG) MOTOROLA Advance Information — MC68HC908RF2 Section 10. Monitor Read-Only Memory (MON) 10.1 Contents 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.4.1 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 10.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 10.4.7 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.2 Introduction This section describes the monitor read-only memory (MON). The MON allows complete testing of the MCU through a single-wire interface with a host computer. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Monitor Read-Only Memory (MON) 151 Monitor Read-Only Memory (MON) 10.3 Features Features of the monitor ROM include: • Normal user-mode pin functionality • One pin dedicated to serial communication between monitor ROM and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • 9600 baud communication with host computer when using a 9.8304-MHz crystal • Execution of code in random-access memory (RAM) or FLASH • FLASH security • FLASH programming 10.4 Functional Description Monitor ROM receives and executes commands from a host computer. Figure 10-1 shows a sample circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. While simple monitor commands can access any memory address, the MC68HC908RF2 has a FLASH security feature to prevent external viewing of the contents of FLASH. Proper procedures must be followed to verify FLASH content. Access to the FLASH is denied to unauthorized users of customer-specified software (see 10.4.7 Security). In monitor mode, the MCU can execute host-computer code in RAM while all MCU pins except PTA0 retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor. Advance Information 152 MC68HC908RF2 — Rev. 1 Monitor Read-Only Memory (MON) MOTOROLA Monitor Read-Only Memory (MON) Functional Description VDD 68HC908RK2 10 kΩ RST 0.1 µF VHI 10 kΩ IRQ1 1 10 µF + 3 4 10 µF MC145407 20 + OSC1 20 pF 17 + + 10 µF 18 2 19 DB-25 2 5 16 3 6 15 10 µF X1 9.8304 MHz 10 MΩ OSC2 VDD 20 pF VSS VDD VDD 0.1 µF 7 VDD 1 MC74HC125 14 2 3 6 5 VDD 10 kΩ PTA0 4 VDD 7 10 kΩ 10 kΩ PTB0 PTB2 Figure 10-1. Monitor Mode Circuit MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Monitor Read-Only Memory (MON) 153 Monitor Read-Only Memory (MON) 10.4.1 Monitor Mode Entry Table 10-1 shows the pin conditions for entering monitor mode. IRQ Pin PTB0 Pin PTB2 Pin PTA0 Pin Table 10-1. Monitor Mode Entry CGMOUT(2) VHI(1) 1 0 1 CGMXCLK ----------------------------2 Bus Frequency CGMOUT -------------------------2 1. For V HI, see 17.7 3.0-Volt DC Electrical Characteristics Excluding UHF Module and 17.3 Absolute Maximum Ratings. 2. If the high voltage (VHI) is removed from the IRQ1 pin while in monitor mode, the clock select bit (CS) controls the source of CGMOUT. Enter monitor mode by either: NOTE: • Executing a software interrupt instruction (SWI), or • Applying a logic 0 and then a logic 1 to the RST pin Upon entering monitor mode, an interrupt stack frame plus a stacked H register will leave the stack pointer at address $00F9. Once out of reset, the MCU waits for the host to send eight security bytes (see 10.4.7 Security). After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host computer, indicating that it is ready to receive a command. Monitor mode uses alternate vectors for reset, SWI, and break interrupt. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. The COP module is disabled in monitor mode as long as VHI (see Section 17. Preliminary Electrical Specifications) is applied to either the IRQ1 pin or the RST pin. (See Section 6. System Integration Module (SIM) for more information on modes of operation.) The ICG module is bypassed in monitor mode as long as VHI is applied to the IRQ1 pin. RST does not affect the ICG. Advance Information 154 MC68HC908RF2 — Rev. 1 Monitor Read-Only Memory (MON) MOTOROLA Monitor Read-Only Memory (MON) Functional Description Table 10-2 is a summary of the differences between user mode and monitor mode. Table 10-2. Mode Differences Functions Modes COP Reset Vector High Reset Vector Low Break Vector High Break Vector Low SWI Vector High SWI Vector Low User Enabled $FFFE $FFFF $FFFC $FFFD $FFFC $FFFD Monitor Disabled(1) $FEFE $FEFF $FEFC $FEFD $FEFC $FEFD 1. If the high voltage (VHI) is removed from the IRQ1 pin while in monitor mode, the SIM asserts its COP enable output. The COP is a mask option enabled or disabled by the COPD bit in the configuration register. See 17.7 3.0-Volt DC Electrical Characteristics Excluding UHF Module. 10.4.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 10-2 and Figure 10-3.) The data transmit and receive rate is determined by the crystal. Transmit and receive baud rates must be identical. START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT NEXT START BIT 1, 2, 3 Notes: 1 = Echo delay (2 bit times) 2 = Data return delay (2 bit times) 3 = Wait 1 bit time before sending next byte. Figure 10-2. Monitor Data Format $A5 START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT NEXT START BIT 1, 2, 3 BREAK START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 Notes: 1 = Echo delay (2 bit times) 2 = Data return delay (2 bit times) 3 = Wait 1 bit time before sending next byte. STOP BIT NEXT START BIT 1, 2, 3 Figure 10-3. Sample Monitor Waveforms MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Monitor Read-Only Memory (MON) 155 Monitor Read-Only Memory (MON) 10.4.3 Echoing As shown in Figure 10-4, the monitor ROM immediately echoes each received byte back to the PTA0 pin for error checking. Any result of a command appears after the echo of the last byte of the command. SENT TO MONITOR READ READ ADDR. HIGH 1 3 ADDR. HIGH 1 ADDR. LOW 3 ADDR. LOW 1 DATA 2 ECHO RESULT Notes: 1 = Echo delay (2 bit times) 2 = Data return delay (2 bit times) 3 = Wait 1 bit time before sending next byte. Figure 10-4. Read Transaction 10.4.4 Break Signal A start bit followed by nine low bits is a break signal. (See Figure 10-5.) When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits before echoing the break signal. MISSING STOP BIT 2-STOP-BIT DELAY BEFORE ZERO ECHO 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Figure 10-5. Break Transaction Advance Information 156 MC68HC908RF2 — Rev. 1 Monitor Read-Only Memory (MON) MOTOROLA Monitor Read-Only Memory (MON) Functional Description 10.4.5 Commands The monitor ROM uses these commands: • READ, read memory • WRITE, write memory • IREAD, indexed read • IWRITE, indexed write • READSP, read stack pointer • RUN, run user program A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map. Table 10-3. READ (Read Memory) Command Description Read byte from memory Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of specified address Opcode $4A Command Sequence SENT TO MONITOR READ READ 1 ADDR. HIGH 3 ADDR. HIGH 1 ADDR. LOW 3 ECHO ADDR. LOW 1 DATA 2 RESULT Notes: 1 = Echo delay (2 bit times) 2 = Data return delay (2 bit times) 3 = Wait 1 bit time before sending next byte. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Monitor Read-Only Memory (MON) 157 Monitor Read-Only Memory (MON) Table 10-4. WRITE (Write Memory) Command Description Write byte to memory Operand Specifies 2-byte address in high byte:low byte order; low byte followed by data byte Data Returned None Opcode $49 Command Sequence SENT TO MONITOR WRITE WRITE 1 ADDR. HIGH 2 ADDR. HIGH 1 ADDR. LOW 2 ADDR. LOW DATA 1 2 DATA 1 ECHO Notes: 1 = Echo delay (2 bit times) 2 = Wait 1 bit time before sending next byte. Table 10-5. IREAD (Indexed Read) Command Description Read next 2 bytes in memory from last address accessed Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of next two addresses Opcode $1A Command Sequence SENT TO MONITOR IREAD IREAD 1 DATA 2 DATA 2 RESULT ECHO Notes: 1 = Echo delay (2 bit times) 2 = Data return delay (2 bit times) Advance Information 158 MC68HC908RF2 — Rev. 1 Monitor Read-Only Memory (MON) MOTOROLA Monitor Read-Only Memory (MON) Functional Description Table 10-6. IWRITE (Indexed Write) Command Description Write to last address accessed + 1 Operand Specifies single data byte Data Returned None Opcode $19 Command Sequence SENT TO MONITOR IWRITE IWRITE 1 DATA DATA 2 1 ECHO Notes: 1 = Echo delay (2 bit times) 2 = Wait 1 bit time before sending next byte. Table 10-7. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data Returned Returns stack pointer plus one in high byte:low byte order. The plus one is due to the use of the TSX instruction. Opcode $0C Command Sequence SENT TO MONITOR READSP READSP 1 SP HIGH 2 SP LOW 2 RESULT ECHO Notes: 1 = Echo delay (2 bit times) 2 = Data return delay (2 bit times) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Monitor Read-Only Memory (MON) 159 Monitor Read-Only Memory (MON) Table 10-8. RUN (Run User Program) Command Description Executes RTI instruction Operand None Data Returned None Opcode $28 Command Sequence SENT TO MONITOR RUN RUN 1 ECHO Note 1 = Echo delay (2 bit times) 10.4.6 Baud Rate With a 9.8304-MHz crystal, data is transferred between the monitor and host at 9600 baud. If a 14.7456-MHz crystal is used, the monitor baud rate is 14400. NOTE: While in monitor mode with VHI applied to IRQ1, the MCU bus clock is always driven from the external clock. 10.4.7 Security A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight consecutive security bytes that match the bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data. NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons, program locations $FFF6–$FFFD even if they are not used for vectors. If FLASH is unprogrammed, the eight security byte values to be sent are $00, the unprogrammed state of the FLASH. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PA0. Advance Information 160 MC68HC908RF2 — Rev. 1 Monitor Read-Only Memory (MON) MOTOROLA Monitor Read-Only Memory (MON) Functional Description IRQ1 SEE NOTE VDD 4096 + 32 CGMXCLK CYCLES RST 24 CGMXCLK CYCLES COMMAND BYTE 8 $FFFD BYTE 2 $FFF7 BYTE 1 $FFF6 Note: Any delay between rising IRQ1 and rising VDD will guarantee that the MCU bus is driven by the external clock. FROM HOST PA0 3 BYTE 8 ECHO 2 1 COMMAND ECHO 1 BREAK 1 BYTE 2 ECHO FROM MCU 3 1 BYTE 1 ECHO 256 CGMXCLK CYCLES ONE BIT TIME Notes: 1 = Echo delay (2 bit times) 2 = Data return delay (2 bit times) 3 = Wait 1 bit time before sending next byte. Figure 10-6. Monitor Mode Entry Timing If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. After the host bypasses security, any reset other than a power-on reset requires the host to send another eight bytes, but security remains bypassed regardless of the data that the host sends. If the received bytes do not match the data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading FLASH locations returns undefined data, and trying to execute code from FLASH causes an illegal address reset. After the host fails to bypass security, any reset other than a power-on reset causes an endless loop of illegal address resets. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Monitor Read-Only Memory (MON) 161 Monitor Read-Only Memory (MON) After receiving the eight security bytes from the host, the MCU transmits a break character signalling that it is ready to receive a command. NOTE: The MCU does not transmit a break character until after the host sends the eight security bytes. Advance Information 162 MC68HC908RF2 — Rev. 1 Monitor Read-Only Memory (MON) MOTOROLA Advance Information — MC68HC908RF2 Section 11. Computer Operating Properly Module (COP) 11.1 Contents 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 11.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 11.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 11.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.4.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 11.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.4.7 COPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.4.8 COPRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 11.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 11.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 11.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 11.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 11.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 11.9 COP Module During Break Interrupts . . . . . . . . . . . . . . . . . . .168 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Computer Operating Properly Module (COP) 163 Computer Operating Properly Module (COP) 11.2 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by periodically clearing the COP counter. 11.3 Functional Description 12-BIT COP PRESCALER CLEAR STAGES 5–12 STOP INSTRUCTION INTERNAL RESET SOURCES RESET VECTOR FETCH CLEAR ALL STAGES CGMXCLK COPCTL WRITE RESET RESET STATUS REGISTER 6-BIT COP COUNTER COPD FROM CONFIG RESET COPCTL WRITE CLEAR COP COUNTER COPRS FROM CONFIG Figure 11-1. COP Block Diagram Advance Information 164 MC68HC908RF2 — Rev. 1 Computer Operating Properly Module (COP) MOTOROLA Computer Operating Properly Module (COP) I/O Signals The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 213 – 24 or 218 – 24 CGMXCLK cycles, depending on the state of the COP rate select bit, COPRS, in the configuration register. When COPRS = 1, a 4.9152-MHz crystal gives a COP timeout period of 53.3 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 5 through 12 of the prescaler. NOTE: Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the COP bit in the SIM reset status register (SRSR). In monitor mode, the COP is disabled if the RST pin or the IRQ1 pin is held at VHI. During the break state, VHI on the RST pin disables the COP. NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. 11.4 I/O Signals The following paragraphs describe the signals shown in Figure 11-1. 11.4.1 CGMXCLK CGMXCLK is the oscillator output signal. See 8.4.5 Clock Selection Circuit for a description of CGMXCLK. 11.4.2 STOP Instruction The STOP instruction clears the COP prescaler. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Computer Operating Properly Module (COP) 165 Computer Operating Properly Module (COP) 11.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see 11.5 COP Control Register) clears the COP counter and clears stages 12 through 5 of the COP prescaler. Reading the COP control register returns the reset vector. 11.4.4 Power-On Reset The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up. 11.4.5 Internal Reset An internal reset clears the COP prescaler and the COP counter. 11.4.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler. 11.4.7 COPD The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. (See Section 9. Configuration Register (CONFIG)). 11.4.8 COPRS The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. (See Section 9. Configuration Register (CONFIG)). Advance Information 166 MC68HC908RF2 — Rev. 1 Computer Operating Properly Module (COP) MOTOROLA Computer Operating Properly Module (COP) COP Control Register 11.5 COP Control Register The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. Address: $FFFF Bit 7 6 5 4 3 Read: Low byte of reset vector Write: Clear COP counter Reset: Unaffected by reset 2 1 Bit 0 Figure 11-2. COP Control Register (COPCTL) 11.6 Interrupts The COP does not generate CPU interrupt requests. 11.7 Monitor Mode The COP is disabled in monitor mode when VHI is present on the IRQ1 pin or on the RST pin. 11.8 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 11.8.1 Wait Mode The COP remains active in wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Computer Operating Properly Module (COP) 167 Computer Operating Properly Module (COP) 11.8.2 Stop Mode Stop mode turns off the CGMXCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. The STOP bit (see Section 9. Configuration Register (CONFIG)) enables the STOP instruction. To prevent inadvertently turning off the COP with a STOP instruction, disable the STOP instruction by clearing the STOP bit. 11.9 COP Module During Break Interrupts The COP is disabled during a break interrupt when VHI is present on the RST pin. Advance Information 168 MC68HC908RF2 — Rev. 1 Computer Operating Properly Module (COP) MOTOROLA Advance Information — MC68HC908RF2 Section 12. Low-Voltage Inhibit (LVI) 12.1 Contents 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 12.4.1 False Trip Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 12.4.2 Short Stop Recovery Option. . . . . . . . . . . . . . . . . . . . . . . . 171 12.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 12.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 12.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 12.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 12.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 12.2 Introduction The low-voltage inhibit (LVI) module monitors the voltage on the VDD pin and will set a low voltage sense bit when VDD voltage falls to the LVI sense voltage. The LVI will force a reset when the VDD voltage falls to the LVI trip voltage. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Low-Voltage Inhibit (LVI) 169 Low-Voltage Inhibit (LVI) 12.3 Features Features of the LVI module include: • Two levels of low-voltage condition are detected: – Low-voltage detection – Low-voltage reset • User-configurable for stop mode 12.4 Functional Description Figure 12-1 shows the structure of the LVI module. The LVI module contains a bandgap reference circuit and two comparators. The LVI monitors VDD voltage during normal MCU operation. When enabled, the LVI module generates a reset when VDD falls below the VLVR threshold. In addition to forcing a reset condition, the LVI module has a second circuit dedicated to low-voltage detection. When VDD falls below VLVS, the output of the low-voltage comparator asserts the LOWV flag in the LVI status register (LVISR). In applications that require detecting low batteries, software can monitor by polling the LOWV bit. VDD STOP INSTRUCTION LVI STOP BIT IN CONFIGURATION REGISTER LVI PWR BIT IN CONFIGURATION REGISTER LVIRST BIT IN CONFIGURATION REGISTER WEAK BATTERY DETECTOR DEAD BATTERY DETECTOR VDD > VLVR = 0 VDD ≤ VLVR = 1 VDD DIGITAL FILTER RESET LVITRIP CGMXCLK VDD > VLVS = 0 LOWV VDD ≤ VLVS = 1 LOWV FLAG Figure 12-1. LVI Module Block Diagram Advance Information 170 MC68HC908RF2 — Rev. 1 Low-Voltage Inhibit (LVI) MOTOROLA Low-Voltage Inhibit (LVI) Functional Description 12.4.1 False Trip Protection The VDD pin level is digitally filtered to reduce false dead battery detection due to power supply noise. For the LVI module to reset due to a low-power supply, VDD must remain at or below the VLVR level for a minimum 32–40 CGMXCLK cycles. See Table 12-1. Table 12-1. LOWV Bit Indication VDD Result At Level: For Number of CGMXCLK Cycles: VDD > VLVR ANY Filter counter remains clear VDD < VLVR < 32 CGMXCLK cycles No reset, continue counting CGMXCLK VDD < VLVR Between 32 & 40 CGMXCLK cycles LVI may generate a reset after 32 CGMXCLK cycles VDD < VLVR > 40 CGMXCLK cycles LVI is guaranteed to generate a reset 12.4.2 Short Stop Recovery Option The LVI has an enable time of tEN. The system stabilization time for power-on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the MCU is not protected from a low-power condition. However, when using the short stop recovery configuration option, the 32 CGMXCLK delay must be greater than the LVI turn on time to avoid a period in startup where the LVI is not protecting the MCU. NOTE: The LVI is enabled automatically after reset or stop recovery, if the LVISTOP of the CONFIG register is set. (See Section 9. Configuration Register (CONFIG).) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Low-Voltage Inhibit (LVI) 171 Low-Voltage Inhibit (LVI) 12.5 LVI Status Register The LVI status register flags VDD voltages below the VLVR and VLVS levels. Address: $FE0F Bit 7 Read: LVIOUT 6 5 4 3 2 1 Bit 0 0 LOWV 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: 0 = Unimplemented Figure 12-2. LVI Status Register (LVISR) LVIOUT — LVI Output Bit The read-only flag becomes set when the VDD voltage falls below the VLVR voltage for 32 to 40 CGMXCLK cycles. Reset clears the LVIOUT bit. LOWV— LVI Low Indicator Bit This read-only flag becomes set when the LVI is detecting VDD voltage below the VLVS threshold. 12.6 LVI Interrupts The LVI module does not generate CPU interrupt requests. 12.7 Low-Power Modes The STOP and WAIT instructions put the MCU in low powerconsumption standby modes. Advance Information 172 MC68HC908RF2 — Rev. 1 Low-Voltage Inhibit (LVI) MOTOROLA Low-Voltage Inhibit (LVI) Low-Power Modes 12.7.1 Wait Mode The LVI module remains active in wait mode. The LVI module can generate a reset if a VDD voltage below the VLVR voltage is detected. 12.7.2 Stop Mode The LVI can be enabled or disabled in stop mode by setting the LVISTOP bit in the CONFIG register. (See Section 9. Configuration Register (CONFIG).) NOTE: To minimize STOP IDD, disable the LVI in stop mode. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Low-Voltage Inhibit (LVI) 173 Low-Voltage Inhibit (LVI) Advance Information 174 MC68HC908RF2 — Rev. 1 Low-Voltage Inhibit (LVI) MOTOROLA Advance Information — MC68HC908RF2 Section 13. Input/Output (I/O) Ports 13.1 Contents 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 13.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 13.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 178 13.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 13.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 13.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 181 13.2 Introduction Twelve bidirectional input/output (I/O) pins form two parallel ports in the 32-pin low-profile quad flat pack (LQFP). All I/O pins are programmable as inputs or outputs. Port A bits PTA6–PTA1 have keyboard wakeup interrupts and internal pullup resistors. NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Input/Output (I/O) Ports 175 Input/Output (I/O) Ports Addr. $0000 $0001 Register Name Read: Port A Data Register (PTA) Write: See page 177. Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 Unaffected by reset Read: Port B Data Register (PTB) Write: See page 180. Reset: Read: Data Direction Register A DDRA7 $0004 (DDRA) Write: See page 178. Reset: 0 Read: Data Direction Register B MCLKEN $0005 (DDRB) Write: See page 181. Reset: 0 PTB3 Unaffected by reset DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 = Unimplemented Figure 13-1. I/O Port Register Summary Advance Information 176 MC68HC908RF2 — Rev. 1 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port A 13.3 Port A Port A is an 8-bit special function port that shares six of its pins with the keyboard interrupt module (KBD). PTA6–PTA1 contain pullup resistors enabled when the port pin is enabled as a keyboard interrupt. Port A pins are also high-current port pins with 3-mA sink capabilities. 13.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the eight port A pins. Address: $0000 Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 KBD2 KBD1 Read: Write: Reset: Alternate Function: Unaffected by reset KBD6 KBD5 KBD4 KBD3 = Unimplemented Figure 13-2. Port A Data Register (PTA) PTA[7:0] — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. KBD[6:1] — Keyboard Wakeup Pins The keyboard interrupt enable bits, KBIE[6:1], in the keyboard interrupt control register enable the port A pin as external interrupt pins and related internal pullup resistor. See Section 14. Keyboard/External Interrupt Module (KBI). NOTE: The enabling of a keyboard interrupt pin will override the corresponding definition of the pin in the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Input/Output (I/O) Ports 177 Input/Output (I/O) Ports 13.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer. Address: $0004 Bit 7 6 5 4 3 2 1 Bit 0 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 13-3. Data Direction Register A (DDRA) DDRA[7:0] — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 13-4 shows the port A I/O logic. When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-1 summarizes the operation of the port A pins. Advance Information 178 MC68HC908RF2 — Rev. 1 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port A READ DDRA ($0004) VDD INTERNAL DATA BUS WRITE DDRA ($0004) KBIEX INTERNAL PULLUP DEVICE DDRAx RESET WRITE PTA ($0000) PTAx PTAx READ PTA ($0000) Figure 13-4. Port A I/O Circuit Table 13-1. Port A Pin Functions KBIE(2) Bit DDRA Bit 1 X X(1) 0 0 0 1 PTA Bit I/O Pin Mode Accesses to DDRA Accesses to PTA Read/Write Read Write Input, VDD(4) DDRA[7:0] Pin PTA[7:0](3) X Input, Hi-Z(5) DDRA[7:0] Pin PTA[7:0](3) X Output DDRA[7:0] PTA[7:0] PTA[7:0] Notes: 1. X = Don’t care 2. Keyboard interrupt enable bit (see 14.6.2 Keyboard Interrupt Enable Register) 3. Writing affects data register, but does not affect input. 4. I/O pin pulled up to VDD by internal pullup device 5. Hi-Z = High impedance NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Input/Output (I/O) Ports 179 Input/Output (I/O) Ports 13.4 Port B Port B is a 4-bit special function port that shares two of its pins with the timer (TIM) module and one with the buffered internal bus clock MCLK. 13.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the four port B pins. Address: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PTB3 PTB2 PTB1 PTB0 Read: Write: Reset: Unaffected by reset Alternate Functions: TCLK TCH0 MCLK = Unimplemented Figure 13-5. Port B Data Register (PTB) PTB[3:0] — Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. TCH0 — Timer Channel I/O Bit The PTB2/TCH0 pin is the TIM channel 0 input capture/output compare pin. The edge/level select bits, ELS0B:ELS0A, determine whether the PTB2/TCH0 pin is a timer channel I/O or a generalpurpose I/O pin. See Section 15. Timer Interface Module (TIM). TCLK — Timer Clock Bit The PTB3/TCLK pin is the external clock input for TIM. The prescaler select bits, PS[2:0], select PTB3/TCLK as the TIM clock input. (See 15.9.1 TIM Status and Control Register.) When not selected as the TIM clock, PTB3/TCLK is available for general-purpose I/O. Advance Information 180 MC68HC908RF2 — Rev. 1 Input/Output (I/O) Ports MOTOROLA Input/Output (I/O) Ports Port B MCLK — Bus Clock Bit The bus clock (MCLK) is driven out of pin PTB0/MCLK when enabled by the MCLKEN bit in port B data direction register bit 7. 13.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. Address: $0005 Bit 7 Read: 6 5 4 3 2 1 Bit 0 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 MCLKEN Write: Reset: 0 0 0 0 = Unimplemented Figure 13-6. Data Direction Register B (DDRB) MCLKEN — MCLK Enable Bit This read/write bit enables MCLK to be an output signal on PTB0. If MCLK is enabled, PTB0 is under the control of MCLKEN. Reset clears this bit. 1 = MCLK output enabled 0 = MCLK output disabled DDRB[3:0] — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[3:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Input/Output (I/O) Ports 181 Input/Output (I/O) Ports Figure 13-7 shows the port B I/O logic. READ DDRB ($0005) INTERNAL DATA BUS WRITE DDRB ($0005) DDRBx RESET WRITE PTB ($0001) PTBx PTBx READ PTB ($0001) Figure 13-7. Port B I/O Circuit When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-2 summarizes the operation of the port B pins. Table 13-2. Port B Pin Functions DDRB Bit PTB Bit I/O Pin Mode Accesses to DDRB Accesses to PTB Read/Write Read Write 0 X Input, Hi-Z DDRB[7] DDRB[3:0] Pin PTB[3:0](1) 1 X Output DDRB[7] DDRB[3:0] PTB[3:0] PTB[3:0] X = Don’t care Hi-Z = High impedance 1. Writing affects data register, but does not affect input. Advance Information 182 MC68HC908RF2 — Rev. 1 Input/Output (I/O) Ports MOTOROLA Advance Information — MC68HC908RF2 Section 14. Keyboard/External Interrupt Module (KBI) 14.1 Contents 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.4.1 External Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 14.4.2 IRQ1 Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 14.4.3 KBI Module During Break Interrupts. . . . . . . . . . . . . . . . . . 189 14.4.4 Keyboard Interrupt Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.4.5 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 14.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 14.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 14.6 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 14.6.1 IRQ and Keyboard Status and Control Register . . . . . . . . 193 14.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 195 14.2 Introduction This section describes the maskable external interrupt (IRQ1) input and six independently maskable keyboard wakeup interrupt pins. MC68HC908RF2 MOTOROLA Advance Information Keyboard/External Interrupt Module (KBI) 183 Keyboard/External Interrupt Module (KBI) 14.3 Features Features of the KBI include: • Dedicated external interrupt pin (IRQ1) • Six keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask • Internal pullup resistor • Hysteresis buffer • Programmable edge-only or edge- and level-interrupt sensitivity • Automatic interrupt acknowledge 14.4 Functional Description This section provides a functional description of the keyboard/external interrupt module (KBI). 14.4.1 External Interrupt A logic 0 applied to the external interrupt pin (IRQ1) can latch a CPU interrupt request. Figure 14-1 shows the structure of the external (IRQ1) interrupt of the KBI module. A logic 0 applied to one or more of the keyboard interrupt pins can latch a CPU interrupt request. Figure 14-4 shows the structure of the keyboard interrupts of the KBI module See Figure 14-2 for a summary of the interrupt and keyboard input/output (I/O) registers. Advance Information 184 MC68HC908RF2 Keyboard/External Interrupt Module (KBI) MOTOROLA Keyboard/External Interrupt Module (KBI) Functional Description ACKI INTERNAL ADDRESS BUS RESET TO CPU FOR BIL/BIH INSTRUCTIONS VECTOR FETCH DECODER VDD INTERNAL PULLUP DEVICE VDD IRQ1F D CLR Q CK IRQ1 IRQ1 INTERRUPT REQUEST SYNCHRONIZER IRQ1 LATCH IMASKI KEYBOARD INTERRUPT REQUEST IRQ1/KEYBOARD INTERRUPT REQUEST MODEI HIGH VOLTAGE DETECT TO MODE SELECT LOGIC Figure 14-1. IRQ Block Diagram Addr. Register Name Bit 7 6 IRQ and Keyboard Status Read: and Control Register $001A Write: (INTKBSCR) See page 193. Reset: IRQ1F 0 Read: Keyboard Interrupt Enable $001B Register (INTKBIER) Write: See page 195. Reset: 0 5 4 IMASKI MODEI 3 2 KEYF 0 R ACKK 1 Bit 0 IMASKK MODEK 0 R ACKI 0 0 0 0 0 0 0 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 0 0 0 0 0 0 = Unimplemented R 0 0 0 = Reserved Figure 14-2. IRQ and Keyboard I/O Register Summary MC68HC908RF2 MOTOROLA Advance Information Keyboard/External Interrupt Module (KBI) 185 Keyboard/External Interrupt Module (KBI) Interrupt signals on the IRQ1 pin are latched into the IRQ1 latch. Keyboard interrupts are latched in the keyboard interrupt latch. An interrupt latch remains set until one of these actions occurs: • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears IRQ1 latch and keyboard interrupt latch. • Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (INTKBSCR). Writing a logic 1 to the ACKI bit clears the IRQ1 latch. Writing a logic 1 to the ACKK bit clears the keyboard interrupt latch. • Reset — A reset automatically clears both interrupt latches. The IRQ1 pin and keyboard interrupt pins are falling-edge triggered and are software-configurable to be both falling-edge and low-level triggered. The MODEI and MODEK bits in the INTKBSCR controls the triggering sensitivity of the IRQ1 pin and keyboard interrupt pins. When an interrupt pin is edge-triggered only, the interrupt latch remains set until a vector fetch, software clear, or reset occurs. When an interrupt pin is both falling-edge and low-level-triggered, the interrupt latch remains set until both of these occur: • Vector fetch or software clear • Return of the interrupt pin to logic 1 The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch, the MODEI and MODEK control bits, thereby clearing the interrupt even if the pin stays low. When set, the IMASKI and IMASKK bits in the INTKBSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the corresponding IMASK<x> bit is clear. Advance Information 186 MC68HC908RF2 Keyboard/External Interrupt Module (KBI) MOTOROLA Keyboard/External Interrupt Module (KBI) Functional Description NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. See Figure 14-3. FROM RESET YES I BIT SET? NO INTERRUPT? YES NO STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 14-3. IRQ Interrupt Flowchart MC68HC908RF2 MOTOROLA Advance Information Keyboard/External Interrupt Module (KBI) 187 Keyboard/External Interrupt Module (KBI) 14.4.2 IRQ1 Pin A logic 0 on the IRQ1 pin can latch an interrupt request into the IRQ1 latch. A vector fetch, software clear, or reset clears the IRQ1 latch. If the MODEI bit is set, the IRQ1 pin is both falling-edge sensitive and low-level sensitive. With MODEI set, both of these actions must occur to clear the IRQ1 latch: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKI bit in the IRQ and keyboard status and control register (INTKBSCR). The ACKI bit is useful in applications that poll the IRQ1 pin and require software to clear the IRQ1 latch. Writing to the ACKI bit can also prevent spurious interrupts due to noise. Setting ACKI does not affect subsequent transitions on the IRQ1 pin. A falling edge on IRQ1 that occurs after writing to the ACKI bit latches another interrupt request. If the IRQ1 mask bit, IMASKI, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • Return of the IRQ1 pin to logic 1 — As long as the IRQ1 pin is at logic 0, the IRQ1 latch remains set. The vector fetch or software clear and the return of the IRQ1 pin to logic 1 can occur in any order. The interrupt request remains pending as long as the IRQ1 pin is at logic 0. A reset will clear the latch and the MODEI control bit, thereby clearing the interrupt even if the pin stays low. If the MODEI bit is clear, the IRQ1 pin is falling-edge sensitive only. With MODEI clear, a vector fetch or software clear immediately clears the IRQ1 latch.The IRQ1F bit in the INTKBSCR register can be used to check for pending interrupts. The IRQ1F bit is not affected by the IMASKI bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ1 pin. NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. Advance Information 188 MC68HC908RF2 Keyboard/External Interrupt Module (KBI) MOTOROLA Keyboard/External Interrupt Module (KBI) Functional Description 14.4.3 KBI Module During Break Interrupts The system integration module (SIM) controls whether the IRQ1 or keyboard interrupt latches can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. (See 6.8.3 SIM Break Flag Control Register.) To allow software to clear the IRQ1 or keyboard latches during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACKI or ACKK bits in the IRQ and keyboard status and control register during the break state has no effect on the IRQ1 or keyboard latches. 14.4.4 Keyboard Interrupt Pins Writing to the KBIE6–KBIE1 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A logic 0 applied to an enabled keyboard interrupt pin latches an IRQ1/keyboard interrupt request. An IRQ1/keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. • If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. • If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low. MC68HC908RF2 MOTOROLA Advance Information Keyboard/External Interrupt Module (KBI) 189 Keyboard/External Interrupt Module (KBI) INTERNAL BUS KBD1 ACKK VDD VECTOR FETCH DECODER KEYF RESET . TO PULLUP ENABLE D CLR Q SYNCHRONIZER . CK KB1IE KEYBOARD INTERRUPT REQUEST . KEYBOARD INTERRUPT LATCH KBD6 TO PULLUP ENABLE IMASKK MODEK IRQ1/KEYBOARD IRQ1 INTERRUPT INTERRUPT REQUEST REQUEST KB6IE Figure 14-4. Keyboard Interrupt Block Diagram If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of these actions must occur to clear a keyboard interrupt request: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register (INTKBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine also can prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • Return of all enabled keyboard interrupt pins to logic 1. As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. Advance Information 190 MC68HC908RF2 Keyboard/External Interrupt Module (KBI) MOTOROLA Keyboard/External Interrupt Module (KBI) Functional Description The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the IRQ and keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register. NOTE: Setting a keyboard interrupt enable bit (KBIE<x>) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. 14.4.5 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore, a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. MC68HC908RF2 MOTOROLA Advance Information Keyboard/External Interrupt Module (KBI) 191 Keyboard/External Interrupt Module (KBI) An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A. 2. Write logic 1s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 14.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 14.5.1 Wait Mode The IRQ1/keyboard interrupts remain active in wait mode. Clearing the IMASKI or IMASKK bits in the IRQ and keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 14.5.2 Stop Mode The IRQ1/keyboard interrupt remains active in stop mode. Clearing the IMASKI or IMASKK bit in the IRQ and keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. Advance Information 192 MC68HC908RF2 Keyboard/External Interrupt Module (KBI) MOTOROLA Keyboard/External Interrupt Module (KBI) I/O Registers 14.6 I/O Registers These registers control and monitor operation of the keyboard/external interrupt module: • IRQ and keyboard status and control register, INTKBSCR • Keyboard interrupt enable register, KBIER 14.6.1 IRQ and Keyboard Status and Control Register The IRQ and keyboard status and control register (INTKBSCR) controls and monitors operation of the keyboard/external interrupt module. The INTKBSCR has these functions: • Flags the keyboard interrupt requests • Acknowledges the keyboard interrupt requests • Masks the keyboard interrupt requests • Shows the state of the IRQ1 interrupt flag • Clears the IRQ1 interrupt latch • Masks the IRQ1 interrupt request • Controls the triggering sensitivity of the keyboard and IRQ1 interrupt pins Address: $001A Bit 7 6 Read: IRQ1F 0 Write: R ACKI Reset: 0 0 R 5 4 IMASKI MODEI 0 3 2 KEYF 0 R ACKK 0 0 0 1 Bit 0 IMASKK MODEK 0 0 = Reserved Figure 14-5. IRQ and Keyboard Status and Control Register (INTKBSCR) IRQ1F — IRQ1 Flag Bit This read-only status bit is high when the IRQ1 interrupt is pending. 1 = IRQ1 interrupt pending 0 = IRQ1 interrupt not pending MC68HC908RF2 MOTOROLA Advance Information Keyboard/External Interrupt Module (KBI) 193 Keyboard/External Interrupt Module (KBI) ACKI — IRQ1 Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ1 latch. ACKI always reads as logic 0. Reset clears ACKI. IMASKI — IRQ1 Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ1 interrupt requests. Reset clears IMASKI. 1 = IRQ1 interrupt requests disabled 0 = IRQ1 interrupt requests enabled MODEI — IRQ1 Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the IRQ1 pin. Reset clears MODEI. 1 = IRQ1 interrupt requests on falling edges and low levels 0 = interrupt requests on falling edges only KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK — Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only Advance Information 194 MC68HC908RF2 Keyboard/External Interrupt Module (KBI) MOTOROLA Keyboard/External Interrupt Module (KBI) I/O Registers 14.6.2 Keyboard Interrupt Enable Register The keyboard interrupt enable register (INTKBIER) enables or disables each port A pin to operate as a keyboard interrupt pin. Address: $001B Bit 7 Read: 6 5 4 3 2 1 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 0 0 0 0 0 0 Bit 0 0 0 Write: Reset: 0 0 = Unimplemented Figure 14-6. Keyboard Interrupt Enable Register (INTKBIER) KBIE6–KBIE1 — Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. These bits also enable the corresponding internal pullup resistor which is enabled only when the bit is set. Reset clears the keyboard interrupt enable register. 1 = PAx pin enabled as keyboard interrupt pin and corresponding internal pullup resistor enabled 0 = PAx pin not enabled as keyboard interrupt pin and corresponding internal pullup resistor disabled NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. MC68HC908RF2 MOTOROLA Advance Information Keyboard/External Interrupt Module (KBI) 195 Keyboard/External Interrupt Module (KBI) Advance Information 196 MC68HC908RF2 Keyboard/External Interrupt Module (KBI) MOTOROLA Advance Information — MC68HC908RF2 Section 15. Timer Interface Module (TIM) 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 15.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 15.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 15.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 15.5.4 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .202 15.5.5 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . 203 15.5.6 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 204 15.5.7 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . 205 15.5.8 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . 206 15.5.9 PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 15.6.1 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 15.6.2 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 15.6.3 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 15.7 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 209 15.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 15.8.1 TIM Clock Pin (TCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.8.2 TIM Channel I/O Pins (TCH0) . . . . . . . . . . . . . . . . . . . . . . 210 15.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 15.9.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 211 15.9.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .213 15.9.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 214 15.9.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 214 15.9.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .218 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 197 Timer Interface Module (TIM) 15.2 Introduction This section describes the timer interface module (TIM). The TIM is a 2-channel timer: • The first channel, channel 0, provides a timing reference with input capture, output compare, and pulse-width-modulation (PWM) functions. • The second channel, channel 1, provides reduced functionality as it doesn’t have an external pin. Figure 15-1 is a block diagram of the TIM. 15.3 Features Features of the TIM include: • One input capture/output compare channel: – Rising-edge, falling-edge, or any-edge input capture trigger – Set, clear, or toggle output compare action • Buffered and unbuffered PWM signal generation • Programmable TIM clock input: – 7-frequency internal bus clock prescaler selection – External TIM clock input (bus frequency ÷ 2 maximum) • Free-running or modulo up-count operation • Toggle any channel pin on overflow • TIM counter stop and reset bits Advance Information 198 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Pin Name Conventions 15.4 Pin Name Conventions The TIM module shares pins with two port B input/output (I/O) port pins. The full names of the TIM I/O pins and generic pin names are listed in Table 15-1. Table 15-1. Pin Name Conventions TIM Generic Pin Names TCH0 TCLK Full TIM Pin Names PTB2/TCH0 PTB3/TCLK 15.5 Functional Description Figure 15-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH and TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The TIM channel 0 is programmable independently as input capture or output compare. The TIM channel 1 is programmable only as output compare. The output compare is detected only through an interrupt. WARNING: TIM channel 1 should not be configured as an input capture because this would result in a floating input that would cause a higher IDD. Refer to Figure 15-2 for a summary of the TIM I/O registers. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 199 Timer Interface Module (TIM) PTB3/TCLK PRESCALER SELECT INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 PS0 16-BIT COUNTER TOF TOIE INTERRUPT LOGIC 16-BIT COMPARATOR TMODH:TMODL TOV0 ELS0B CHANNEL 0 ELS0A CH0MAX PORT LOGIC PTB2/TCH0 16-BIT COMPARATOR TCH0H:TCH0L CH0F 16-BIT LATCH MS0A CH0IE INTERRUPT LOGIC MS0B INTERNAL BUS TOV1 ELS1B CHANNEL 1 ELS1A CH1MAX PORT LOGIC N/C* 16-BIT COMPARATOR TCH1H:TCH1L CH1F 16-BIT LATCH MS1A CH1IE INTERRUPT LOGIC *This pin is not available on the MC68HC908RF2. Figure 15-1. TIM Block Diagram Addr. Register Name Bit 7 Read: Timer Status and Control $0020 Register (TSC) Write: See page 211. Reset: TOF 0 0 1 0 Read: Timer Counter Register High (TCNTH) Write: See page 213. Reset: Bit 15 14 13 0 0 0 $0021 6 5 TOIE TSTOP 0 4 3 2 1 Bit 0 0 0 PS2 PS1 PS0 0 0 0 0 12 11 10 9 Bit 8 0 0 0 0 0 TRST = Unimplemented Figure 15-2. TIM I/O Register Summary Advance Information 200 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description Addr. $0022 $0023 Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: Timer Counter Register Low (TCNTL) Write: See page 213. Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Read: Timer Counter Modulo Register High (TMODH) Write: See page 214. Reset: Timer Counter Read: Modulo Register Low Write: $0024 (TMODL) See page 214. Reset: $0025 Read: Timer Channel 0 Status and Control Register Write: (TSC0) See page 215. Reset: Read: Timer Channel 0 Register $0026 High (TCH0H) Write: See page 219. Reset: Read: Timer Channel 0 Register $0027 Low (TCH0L) Write: See page 219. Reset: $0028 Read: Timer Channel 1 Status and Control Register Write: (TSC1) See page 215. Reset: Read: Timer Channel 1 Register $0029 High (TCH1H)) Write: See page 219. Reset: Read: Timer Channel 1 Register $002A Low (TCH1L)) Write: See page 219. Reset: CH0F 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CH1F 0 CH1IE MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset = Unimplemented Figure 15-2. TIM I/O Register Summary (Continued) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 201 Timer Interface Module (TIM) 15.5.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs or the TIM clock pin, TCLK. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source. 15.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH and TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. NOTE: TIM channel 1 should not be configured in this mode. 15.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM channel 0 can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests for both TIM channel 0 and TIM channel 1. NOTE: TIM channel 1 does not have an external pin associated with it. 15.5.4 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 15.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. Advance Information 202 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use these methods to synchronize unbuffered changes in the output compare value on channel x: • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable channel x TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. 15.5.5 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the PTB2/TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 203 Timer Interface Module (TIM) buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. NOTE: In buffered output compare operation, do not write new output compare values to the currently active channel registers. Writing to the active channel registers is the same as generating unbuffered output compares. 15.5.6 Pulse-Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a pulse-width modulation (PWM) signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 15-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear channel 0 pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0. OVERFLOW OVERFLOW OVERFLOW PERIOD PULSE WIDTH PTB2/TCH0 OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE Figure 15-3. PWM Period and Pulse Width Advance Information 204 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000. See 15.9.1 TIM Status and Control Register. The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50 percent. 15.5.7 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 15.5.6 Pulse-Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. Use these methods to synchronize unbuffered changes in the PWM pulse width on channel: • When changing to a shorter pulse width, enable channel output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. • When changing to a longer pulse width, enable channel TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 205 Timer Interface Module (TIM) the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. NOTE: In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 15.5.8 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. Writing to the active channel registers is the same as generating unbuffered PWM signals. Advance Information 206 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Functional Description 15.5.9 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use this initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH and TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH and TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB and MSxA. See Table 15-3. b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB and ELSxA. The output action on compare must force the output to the complement of the pulse width level. See Table 15-3. NOTE: In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H and TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 207 Timer Interface Module (TIM) Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0 percent duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and clearing the TOVx bit generates a 100 percent duty cycle output. See 15.9.4 TIM Channel Status and Control Registers. 15.6 Interrupts These TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The timer counter value changes on the falling edge of the internal bus clock. The timer overflow flag (TOF) bit is set on the falling edge of the internal bus clock following the timer rollover to $0000. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow interrupt requests. TOF and TOIE are in the TIM status and control registers. • TIM channel flag (CH0F) — The CH0F bit is set when an input capture or output compare occurs on channel. Channel TIM CPU interrupt requests are controlled by the channel interrupt enable bit, CH1IE. 15.6.1 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 15.6.2 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. Advance Information 208 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) TIM During Break Interrupts 15.6.3 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. 15.7 TIM During Break Interrupts A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See 6.8.3 SIM Break Flag Control Register. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. 15.8 I/O Signals Port B shares two of its pins with the TIM. TCLK can be used as an external clock input to the TIM prescaler and the TIM channel 0 I/O pin PTB2/TCH0. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 209 Timer Interface Module (TIM) 15.8.1 TIM Clock Pin (TCLK) TCLK is an external clock input that can be the clock source for the TIM counter instead of the prescaled internal bus clock. Select the TCLK input by writing logic 1s to the three prescaler select bits, PS2–PS0. See 15.9.1 TIM Status and Control Register. The minimum TCLK pulse width, TCLKLMIN or TCLKHMIN, is: 1 + tsu bus frequency The maximum TCLK frequency is: bus frequency ÷ 2 Refer to 17.10 Control Timing. TCLK is available as a general-purpose I/O pin when not used as the TIM clock input. When the TCLK pin is the TIM clock input, it is an input regardless of the state of the DDRB3 bit in data direction register B. 15.8.2 TIM Channel I/O Pins (TCH0) The channel I/O pins are programmable independently as an input capture pin or an output compare pin. TCH0 can be configured as buffered output compare or buffered PWM pins. 15.9 I/O Registers These I/O registers control and monitor operation of the TIM: • TIM status and control register, TSC • TIM control registers, TCNTH and TCNTL • TIM counter modulo registers, TMODH and TMODL • TIM channel status and control registers, TSC0 and TSC1 • TIM channel registers, TCH0H, TCH0L, TCH1H, and TCH1L Advance Information 210 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers 15.9.1 TIM Status and Control Register The TIM status and control register (TSC): • Enables TIM overflow interrupts • Flags TIM overflows • Stops the TIM counter • Resets the TIM counter • Prescales the TIM counter clock Address: $0020 Bit 7 Read: 6 5 TOIE TSTOP TOF Write: 0 Reset: 0 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 TRST 0 1 0 0 = Unimplemented Figure 15-4. TIM Status and Control Register (TSC) TOF — TIM Overflow Flag Bit This read/write flag is set when the TIM counter resets to $0000 after reaching the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value. 0 = TIM counter has not reached modulo value. TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 211 Timer Interface Module (TIM) TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. PS2–PS0 — Prescaler Select Bits These read/write bits select either the TCLK pin or one of the seven prescaler outputs as the input to the TIM counter as Table 15-2 shows. Reset clears the PS2–PS0 bits. Table 15-2. Prescaler Selection PS2–PS0 TIM Clock Source 000 Internal bus clock ÷1 001 Internal bus clock ÷ 2 010 Internal bus clock ÷ 4 011 Internal bus clock ÷ 8 100 Internal bus clock ÷ 16 101 Internal bus clock ÷ 32 110 Internal bus clock ÷ 64 111 TCLK Advance Information 212 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers 15.9.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break. Register Name and Address: TCNTH—$0021 Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Write: Reset: Register Name and Address: TCNTL—$0022 Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 15-5. TIM Counter Registers (TCNTH and TCNTL) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 213 Timer Interface Module (TIM) 15.9.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. Register Name and Address: TMODH—$0023 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Read: Write: Reset: Register Name and Address: TMODL—$0024 Read: Write: Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 Figure 15-6. TIM Counter Modulo Registers (TMODH and TMODL) NOTE: Reset the TIM counter before writing to the TIM counter modulo registers. 15.9.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers (TSC0 and TSC1): • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on TIM overflow • Selects 100 percent PWM duty cycle • Selects buffered or unbuffered output compare/PWM operation Advance Information 214 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers Register Name and Address: TSC0—$0025 Bit 7 Read: CH0F Write: 0 Reset: 0 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 4 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 Register Name and Address: TSC1—$0028 Bit 7 Read: CH1F Write: 0 Reset: 0 6 CH1IE 0 5 0 0 = Unimplemented Figure 15-7. TIM Channel Status and Control Registers (TSC0 and TSC1) CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupts on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 215 Timer Interface Module (TIM) MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM channel 0 and TIM channel 1 status and control registers. Setting MS0B disables the TIM channel 1 status and control register. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:A ≠ 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 15-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCH0 pin. See Table 15-3. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high NOTE: Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA — Edge/Level Select Bits When channel 0 is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to port B, and pin PTB0/TCH0 is available as a general-purpose I/O pin. Table 15-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. NOTE: TIM channel 1 does not have an external pin associated with it. Advance Information 216 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers Table 15-3. Mode, Edge, and Level Selection MSxB:MSxA ELSxB:ELSxA X0 00 Mode Output preset NOTE: Configuration Pin under port control; initial output level high X1 00 Pin under port control; initial output level low 00 01 Capture on rising edge only 00 10 00 11 01 01 01 10 01 11 1X 01 1X 10 1X 11 Input capture Capture on falling edge only Capture on rising or falling edge Output compare or PWM Buffered output compare or buffered PWM Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare Before enabling a TIM channel register for input capture operation, make sure that the PTB/TCH0 pin is stable for at least two bus clocks. TOVx — Toggle On Overflow Bit When channel 0 is an output compare channel, this read/write bit controls the behavior of the channel 0 output when the TIM counter overflows. When channel 0 is an input capture channel, TOV0 has no effect. Reset clears the TOV0 bit. 1 = Channel x pin toggles on TIM counter overflow. 0 = Channel x pin does not toggle on TIM counter overflow. NOTE: The state of TOV1 has no effect since there is no pin. When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. Channel 1 should not be configured in input capture mode. WARNING: The user must configure TIM channel 1 in a mode other than input capture. It is recommended that this procedure be part of the initialization of the system after reset. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 217 Timer Interface Module (TIM) &+[0$;²&KDQQHO[0D[LPXP'XW\&\FOH%LW When the TOVx bit is at logic 1 and clear output on compare is selected, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100 percent. As Figure 15-8 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at 100 percent duty cycle level until the cycle after CHxMAX is cleared. NOTE: The PWM 0 percent duty cycle is defined as output low all of the time. To generate the 0 percent duty cycle, select clear output on compare and then clear the TOVx bit (CHxMAX = 0). The PWM 100 percent duty cycle is defined as output high all of the time. To generate the 100 percent duty cycle, use the CHxMAX bit in the TSCx register. OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD PTBx/TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 15-8. CHxMAX Latency 15.9.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. Advance Information 218 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) I/O Registers In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Register Name and Address: TCH0H—$0026 Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Write: Reset: Indeterminate after reset Register Name and Address: TCH0L—$0027 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 15-9. TIM Channel 0 Registers (TCH0H and TCH0L) Register Name and Address: TCH1H—$0029 Read: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Write: Reset: Indeterminate after reset Register Name and Address: TCH1L—$002A Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 15-10. TIM Channel 1 Registers (TCH1H and TCH1L) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Timer Interface Module (TIM) 219 Timer Interface Module (TIM) Advance Information 220 MC68HC908RF2 — Rev. 1 Timer Interface Module (TIM) MOTOROLA Advance Information — MC68HC908RF2 Section 16. PLL Tuned UHF Transmitter Module 16.1 Contents 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 16.3 Transmitter Functional Description . . . . . . . . . . . . . . . . . . . . . 223 16.4 Phase-Lock Loop (PLL) and Local Oscillator . . . . . . . . . . . . . 223 16.5 RF Output Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16.6 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16.7 Microcontroller Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 16.8 State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225 16.9 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 16.10 Data Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 16.11 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.11.1 Application Schematics in OOK and FSK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 16.11.2 Complete Application Schematic . . . . . . . . . . . . . . . . . . . . 232 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information PLL Tuned UHF Transmitter Module 221 PLL Tuned UHF Transmitter Module 16.2 Introduction This section describes the integrated radio frequency (RF) module. This module integrates an ultra high frequency (UHF) transmitter offering these key features: • Switchable frequency bands: 315, 434, and 868 MHz • On/off keying (OOK) and frequency shift keying (FSK) modulation • Adjustable output power range • Fully integrated voltage-controlled oscillator (VCO) • Supply voltage range: 1.9 to 3.7 V • Very low standby current: 0.5 nA @ TA = 25°C • Low supply voltage shutdown • Data clock output for microcontroller • Low external component count Architecture of the module is described in Figure 16-1. BAND REXT VCO VCC MODE DATA PFD FIRST ORDER GND CONTROL ENABLE ÷32 ÷2 ENABLE ENABLE_FSK DATA_OOK DATA_FSK XTAL0 RFOUT GNDRF XCO CFSK PA ÷64 DRIVER DATACLK XTAL1 Figure 16-1. Simplified Integrated RF Module Block Diagram Advance Information 222 MC68HC908RF2 — Rev. 1 PLL Tuned UHF Transmitter Module MOTOROLA PLL Tuned UHF Transmitter Module Transmitter Functional Description 16.3 Transmitter Functional Description The transmitter is a phase-locked loop (PLL) tuned low-power UHF transmitter. The different modes of operation are controlled by the microcontroller through several digital input pins. The power supply voltage ranges from 1.9 V to 3.7 V allowing operation with a single lithium cell. 16.4 Phase-Lock Loop (PLL) and Local Oscillator The VCO is a completely integrated relaxation oscillator. The phase frequency detector (PFD) and the loop filter are fully integrated.The exact output frequency is equal to: fRFOUT = fXTAL x PLL divider ratio The frequency band of operation is selected through the BAND pin. Table Table 16-1 provides details for each frequency band selection. Table 16-1. Frequency Band Selection and Associated Divider Ratios BAND Input Level Frequency Band (MHz) PLL Divider Ratio 315 High Crystal Oscillator Frequency (MHz) 9.84 32 434 13.56 Low 868 64 An out-of-lock function is performed by monitoring the internal PFD output voltage. When it exceeds its limits, the RF output stage is disabled. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information PLL Tuned UHF Transmitter Module 223 PLL Tuned UHF Transmitter Module 16.5 RF Output Stage The output stage is a single-ended square wave switched current source. Harmonics will be present in the output current drive. Their radiated absolute level depends on the antenna characteristics and output power. Typical application demonstrates compliance to European Telecommunications Standards Institute (ETSI) standard. A resistor REXT connected to the REXT pin controls the output power allowing a tradeoff between radiated power and current consumption. The output voltage is internally clamped to VCC ± 2 VBE (typically VCC ±1.5 V @ TA = 25°C). 16.6 Modulation If a low-logic level is applied on pin MODE, then the on/off keying (OOK) modulation is selected. This modulation is performed by switching on/off the RF output stage. The logic level applied on pin DATA controls the output stage state: DATA = 0 → output stage off DATA = 1 → output stage on If a high-logic level is applied on pin MODE, then frequency shift keying (FSK) modulation is selected. This modulation is achieved by modulating the frequency of the reference oscillator. This frequency change is performed by switching the external crystal load capacitor. The logic level applied on pin DATA controls the internal switch connected to pin CFSK: DATA = 0 → switch off DATA = 1 → switch on In case of Figure 16-5, where the two capacitors C6 and C9 are in series: DATA = 0 leads to the high value of the carrier frequency DATA = 1 leads to the low value of the carrier frequency Advance Information 224 MC68HC908RF2 — Rev. 1 PLL Tuned UHF Transmitter Module MOTOROLA PLL Tuned UHF Transmitter Module Microcontroller Interfaces This crystal pulling solution implies that the RF output frequency deviation equals the crystal frequency deviation multipled by the PLL divider ratio (see Table 16-1). 16.7 Microcontroller Interfaces Four digital input pins (ENABLE, DATA, BAND, and MODE) enable the circuit to be controlled by a microcontroller. It is recommended to configure the band frequency and the modulation type before enabling the circuit. In a typical application the input pins BAND and MODE are hardwired. One digital output (DATACLK) provides the microcontroller a reference frequency for data clocking. This frequency is equal to the crystal oscillator frequency divided by 64 (see Table 16-2). Table 16-2. DATACLK Frequency versus Crystal Oscillator Frequency Crystal Oscillator Frequency (MHz) DATACLK Frequency (kHz) 9.84 154 13.56 212 16.8 State Machine Figure 16-2 details the main state machine. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information PLL Tuned UHF Transmitter Module 225 PLL Tuned UHF Transmitter Module POWER ON AND ENABLE = 0 STATE 1 STANDBY MODE ENABLE = 0 ENABLE = 1 STATE 2 PLL ENABLED BUT OUT OF LOCK-IN RANGE PLL IN LOCK-IN RANGE PLL OUT OF LOCK-IN RANGE ENABLE = 0 STATE 6 SHUTDOWN MODE VBattery < VShutdoown STATE 3 PLL ACQUISITION, READY TO TRANSMIT DATA STATE 4 TRANSMISSION MODE PLL IN LOCK-IN RANGE PLL OUT OF LOCK-IN RANGE STATE 5 PLL OUT OF LOCK-IN RANGE Figure 16-2. Main State Machine Advance Information 226 MC68HC908RF2 — Rev. 1 PLL Tuned UHF Transmitter Module MOTOROLA PLL Tuned UHF Transmitter Module State Machine State 1 The circuit is in standby mode and draws only a leakage current from the power supply. State 2 In this state, tKHPLL is enabled but out of the lock-in range. Therefore the RF output stage is switched off preventing any data transmission. DDWDFORFNLVDYDLODEOHRQSLQ'$7$&/.In normal operation, this state is transitional. State 3 In this state, the PLL is within the lock-in range. If t < tPLL_Lock_In, then the PLL can still be in acquisition mode. If t ≥ tPLL_Lock_In, then the PLL is locked. The circuit is ready to transmit in band and is waiting for the first data (see Figure 16-3). State 4 A rising edge on pin DATA starts the transmission. Data entered on pin DATA are output on pin RFOUT. The modulation is the one selected through the level applied on pin MODE. State 5 An out-of-lock condition has been detected. The RF output stage is switched off preventing any data transmission. DDWDFORFNLVDYDLODEOH RQSLQ'$7$&/. State 6 When the supply voltage falls below the shutdown voltage threshold (VSDWN) the whole circuit is switched off. Applying a low level on pin ENABLE is the only condition to get out of this state. Figure 16-3 shows the waveforms of the main signals for a typical application cycle MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information PLL Tuned UHF Transmitter Module 227 PLL Tuned UHF Transmitter Module ENABLE DATACLK tDATACLK_Settling tPLL_Lock_In SEE NOTE DATA MODE = 0, OOK MODULATION fCarrier RFOUT MODE = 1, FSK MODULATION fCarrier1 STATE 1 STATE 2 fCarrier fCarrier2 STATE 3 fCarrier1 fCarrier2 STATE 4 STATE 1 Note: PLL locked, circuit ready to tramsmit in band. Figure 16-3. Signals, Waveforms, and Timing Definitions 16.9 Power Management When the battery voltage falls below the shutdown voltage threshold (VSDWN) the whole circuit is switched off. NOTE: After this shutdown, the circuit is latched until a low level is applied on pin ENABLE (see state 6 under 16.8 State Machine). 16.10 Data Clock When the data clock starts, the high-to-low ratio may be uneven. Similarly the clock is switched off asynchronously so the last period length is not guaranteed. Advance Information 228 MC68HC908RF2 — Rev. 1 PLL Tuned UHF Transmitter Module MOTOROLA PLL Tuned UHF Transmitter Module Application Information 16.11 Application Information This subsection provides application information for the usage of the UHF transmitter module. 16.11.1 Application Schematics in OOK and FSK Modulation Figure 16-4 and Figure 16-5 show application schematics in OOK and FSK modulation for the 315-MHz and 434-MHz frequency bands. For 868-MHz band application, the input pin BAND must be wired to GND. See component description in Table 16-4 and Table 16-5. VCC VCC TO MCU DATACLK DATA ENABLE BAND VCC GND GNDRF XTAL1 RFOUT XTAL0 VCC Y1 REXT C6 R2 MODE CFSK MATCHING NETWORK ANTENNA NC C7 C8 NC = NO CONNECTION Figure 16-4. Application Schematic in OOK Modulation, 315-MHz and 434-MHz Frequency Bands MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information PLL Tuned UHF Transmitter Module 229 PLL Tuned UHF Transmitter Module VCC VCC TO MCU C6 DATACLK MODE DATA ENABLE BAND VCC GND GNDRF XTAL1 RFOUT XTAL0 VCC Y1 REXT MATCHING NETWORK CFSK C7 R2 C9 ANTENNA C8 Figure 16-5. Application Schematic in FSK Modulation, 315-MHz and 434-MHz Frequency Bands Table 16-3. Component Description Component Y1 Function Crystal R2 RF output level setting resistor (R EXT) C6 Crystal load capacitor C7 Value Unit 315-MHz band: 9.84, see Table 16-5 MHz 434-MHz band: 13.56, see Table 16-5 MHz 868-MHz band: 13.56, see Table 16-5 MHz 12 kΩ OOK modulation: 18 pF FSK modulation: 22 pF 10 nF 100 pF see Table 16-5 pF Power supply decoupling capacitor C8 C9 Crystal pulling capacitor for FSK modulation only Advance Information 230 MC68HC908RF2 — Rev. 1 PLL Tuned UHF Transmitter Module MOTOROLA PLL Tuned UHF Transmitter Module Application Information A example of crystal reference is: Tokyo Denpa TTS-3B 13568.750 kHz, see Table 16-4. Table 16-4. Recommended Crystal Characteristics (SMD Ceramic Package) Parameter Value Unit Load capacitance 20 pF Motional capacitance 6.7 fF Static capacitance 2 pF Loss resistance 40 W Table 16-5. Crystal Pulling Capacitor Value versus Carrier Frequency Total Deviation Carrier Frequency (MHz) 434 868 Carrier Frequency Total Deviation (kHz) Capacitor Value (pF) 40 18 70 10 100 6.8 80 18 140 10 200 6.8 MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information PLL Tuned UHF Transmitter Module 231 PLL Tuned UHF Transmitter Module 16.11.2 Complete Application Schematic Figure 16-6 gives a complete application schematic using the Motorola MC68HC908RF2. 22.PRGXODWLRQLVVHOHFWHGI&DUULHU 0+] IRQ1 RST PTA7 PTA6/KBD6 PTA5/KBD5 PTA4/KBD4 SW2 PTA3/KBD3 PTA2/KBD2 SW1 25 26 27 28 29 30 32 31 VBATT PTA1/KBD1 1 24 2 23 PTA0 20 6 19 7 18 8 17 PTB3/TCLK DATACLK DATA DATA BAND VBATT 16 XTAL0 MC68HC908RF2 5 9 Y1 C3 10 nF OSC1 15 XTAL1 21 14 GND C10 18 pF 4 13 PTB2/TCH0 DATA 22 12 ENABLE 3 11 PTB1 VSS OSC2 10 PTB0/MCLK VDD MODE ENABLE VCC GNDDRF RFOUT VCC CFSK REXT 13.56 MHz R2 12 K ENABLE VBATT C9 2.2 pF C6 10 nF C5 100 pF Figure 16-6. Complete Application Schematic in OOK Modulation, 434-MHz Frequency Band Advance Information 232 MC68HC908RF2 — Rev. 1 PLL Tuned UHF Transmitter Module MOTOROLA Advance Information — MC68HC908RF2 Section 17. Preliminary Electrical Specifications 17.1 Contents 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 17.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 234 17.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 235 17.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 17.6 1.8-Volt to 3.3-Volt DC Electrical Characteristics Excluding UHF Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 17.7 3.0-Volt DC Electrical Characteristics Excluding UHF Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 17.8 2.0-Volt DC Electrical Characteristics Excluding UHF Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 17.9 UHF Transmitter Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 17.9.1 UHF Module Electrical Characteristics. . . . . . . . . . . . . . . . 239 17.9.2 UHF Module Output Power Measurement . . . . . . . . . . . . . 244 17.10 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 17.11 Internal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . 246 17.12 LVI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 17.13 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 17.2 Introduction This section contains preliminary electrical and timing specifications. NOTE: The timing specifications, electrical, and thermal characteristic values outlined in this section are design targets and have not yet been fully tested. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Preliminary Electrical Specifications 233 Preliminary Electrical Specifications 17.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 17.6 1.8-Volt to 3.3-Volt DC Electrical Characteristics Excluding UHF Module, 17.7 3.0-Volt DC Electrical Characteristics Excluding UHF Module, 17.8 2.0-Volt DC Electrical Characteristics Excluding UHF Module, and 17.9.1 UHF Module Electrical Characteristics for guaranteed operating conditions. Characteristic(1) Symbol Value Unit Supply voltage VDD –0.3 to +3.6 V Input voltage VIn VSS –0.3 to VDD +0.3 V ESD HBM voltage capability on each pin(2) — ± 2000 V ESD MM voltage capability on each pin(3) — ± 150 V I ± 15 mA IPTA7–IPTA0 ± 25 mA Maximum current out of VSS IMVSS 100 mA Maximum current into VDD IMVDD 100 mA Storage temperature TSTG –55 to +150 °C Maximum current per pin Excluding VDD, VSS, PTA7–PTA0, and UHF module pins Maximum current for pins PTA7–PTA0 1. Voltages referenced to VSS. 2. Human Body Model, AEC-Q100-002 Rev. C 3. Machine Model, AEC-Q100-003 Rev. D NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIn and VOut be constrained to the range VSS ≤ (VIn or VOut) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD). Advance Information 234 MC68HC908RF2 — Rev. 1 Preliminary Electrical Specifications MOTOROLA Preliminary Electrical Specifications Functional Operating Range 17.4 Functional Operating Range Characteristic Operating temperature range(1) Operating voltage range Symbol Min Max Unit TA –40 85 °C VDD 1.8 3.6 V 1. Extended temperature range to be determined 17.5 Thermal Characteristics Characteristic Symbol Value Unit Thermal resistance LQFP (32 pin) θJA TBD °C/W I/O pin power dissipation PI/O User determined W Power dissipation(1) PD PD = (IDD x VDD) + PI/O = K/(TJ + 273°C) W Constant(2) K Average junction temperature Maximum junction temperature PD x (TA + 273°C) + PD2 x θJA W/°C TJ TA + (PD x θJA) °C TJM 100 °C 1. Power dissipation is a function of temperature. 2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, P D and TJ can be determined for any value of TA. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Preliminary Electrical Specifications 235 Preliminary Electrical Specifications 17.6 1.8-Volt to 3.3-Volt DC Electrical Characteristics Excluding UHF Module Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILoad = –1.2 mA) (ILoad = –2.0 mA) VOH VDD –0.3 VDD –1.0 — — — — V Output low voltage (ILoad = 1.2 mA) (ILoad = 3.0 mA) (ILoad = 3.0 mA) PTA7–PTA0 only VOL — — — — — — 0.3 1.0 0.3 Input high voltage, all ports, IRQ1, OSC1 VIH 0.7 x VDD — VDD + 0.3 V Input low voltage, all ports, IRQ1, OSC1 VIL VSS — 0.3 x VDD V — — — — 4.3 1.2 mA mA — — — — 10 — 50 — — 100 — 350 nA nA µA µA V VDD supply current Run(3) (fop= 2.0 MHz) Wait (4) (fop= 2.0 MHz) Stop(5) IDD 25°C –40°C to 85°C 25°C with LVI enabled –40°C to 85°C with LVI enabled I/O ports high-impedance leakage current(6) IIL — — ±1 µA Input current IIn — — ±1 µA Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF POR re-arm voltage(7) VPOR 0 — 200 mV POR reset voltage(8) VPOR 0 700 800 mV POR rise time ramp rate(9) RPOR 0.02 — — V/ms Monitor mode entry voltage VHI VDD + 2.5 — 8 V Pullup resistor, PTA6–PTA1, IRQ1 RPU 50 80 120 kΩ 1. Parameters are design targets at VDD = 1.8 V to 3.3 V, VSS = 0 Vdc, TA = –40oC to +85oC, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using internal clock generator module (fop= 2.0 MHz). VDD = 3.3 Vdc. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. CL = 20 pF. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using internal clock generator module, fop = 2.0 MHz. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. C L = 20 pF. OSC2 capacitance linearly affects wait IDD. All ports configured as inputs. 5. Stop IDD measured with no port pins sourcing current, all modules disabled except as noted. 6. Pullups and pulldowns are disabled. 7. Maximum is highest voltage that POR is guaranteed. 8. Maximum is highest voltage that POR is possible. 9. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. Advance Information 236 MC68HC908RF2 — Rev. 1 Preliminary Electrical Specifications MOTOROLA Preliminary Electrical Specifications 3.0-Volt DC Electrical Characteristics Excluding UHF Module 17.7 3.0-Volt DC Electrical Characteristics Excluding UHF Module Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILoad = –2.0 mA) (ILoad = –8.0 mA) VOH VDD –0.3 VDD –1.0 — — — — V Output low voltage (ILoad = 2.0 mA) (ILoad = 6.5 mA) (ILoad = 5.0 mA) PTA7–PTA0 only VOL — — — — — — 0.3 1.0 0.3 Input high voltage, all ports, IRQ1, OSC1 VIH 0.7 x VDD — VDD + 0.3 V Input low voltage, all ports, IRQ1, OSC1 VIL VSS — 0.3 x VDD V — — — — 8.6 1.2 mA mA — — — — 10 — 50 — — 100 — 350 nA nA µA µA V VDD supply current Run(3) (fop= 4.0 MHz) Wait (4) (fop= 4.0 MHz) Stop(5) IDD 25°C –40°C to 85°C 25°C with LVI enabled –40°C to 85°C with LVI enabled I/O ports high-impedance leakage current(6) IIL — — ±1 µA Input current IIn — — ±1 µA Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF POR re-arm voltage(7) VPOR 0 — 200 mV POR reset voltage(8) VPOR 0 700 800 mV POR rise time ramp rate(9) RPOR 0.02 — — V/ms Monitor mode entry voltage VHI VDD+ 2.5 — 8 V Pullup resistor, PTA6–PTA1, IRQ1 RPU 50 80 120 kΩ 1. Parameters are design targets at VDD = 3.0 ± 10%, VSS = 0 Vdc, TA = –40oC to +85oC, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using internal clock generator module (fop= 4.0 MHz). VDD = 3.3 Vdc. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. CL = 20 pF. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using internal clock generator module, fop = 4.0 MHz. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. C L = 20 pF. OSC2 capacitance linearly affects wait IDD. All ports configured as inputs. 5. Stop IDD measured with no port pins sourcing current, all modules disabled except as noted. 6. Pullups and pulldowns are disabled. 7. Maximum is highest voltage that POR is guaranteed. 8. Maximum is highest voltage that POR is possible. 9. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Preliminary Electrical Specifications 237 Preliminary Electrical Specifications 17.8 2.0-Volt DC Electrical Characteristics Excluding UHF Module Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILoad = –1.2 mA) (ILoad = –2.0 mA) VOH VDD –0.3 VDD –1.0 — — — — V Output low voltage (ILoad = 1.2 mA) (ILoad = 3.0 mA) (ILoad = 3.0 mA) PTA7–PTA0 only VOL — — — — — — 0.3 1.0 0.3 Input high voltage, all ports, IRQ1, OSC1 VIH 0.7 x VDD — VDD + 0.3 V Input low voltage, all ports, IRQ1, OSC1 VIL VSS — 0.3 x VDD V — — — — 2.5 850 mA µA — — — — 10 — 50 — — 100 — 350 nA nA µA µA V VDD supply current Run(3) (fop= 2.0 MHz) Wait (4) (fop= 2.0 MHz) Stop(5) IDD 25°C –40 °C to 85°C 25°C with LVI enabled –40°C to 85°C with LVI enabled I/O ports high-impedance leakage current(6) IIL — — ±1 µA Input current IIn — — ±1 µA Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF POR re-arm voltage(7) VPOR 0 — 200 mV POR reset voltage(8) VPOR 0 700 800 mV POR rise time ramp rate(9) RPOR 0.02 — — V/ms Monitor mode entry voltage VHI VDD+ 2.5 — 8 V Pullup resistor, PTA6–PTA1, IRQ1 RPU 50 80 120 kΩ 1. Parameters are design targets at VDD = 2.0 ± 10%, VSS = 0 Vdc, TA = –40oC to +85oC, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using internal clock generator module (fop= 2.0 MHz). VDD = 2.0 Vdc. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. CL = 20 pF. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using internal clock generator module, fop = 2.0 MHz. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. C L = 20 pF. OSC2 capacitance linearly affects wait IDD. All ports configured as inputs. 5. Stop IDD measured with no port pins sourcing current, all modules disabled except as noted. 6. Pullups and pulldowns are disabled. 7. Maximum is highest voltage that POR is guaranteed. 8. Maximum is highest voltage that POR is possible. 9. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. Advance Information 238 MC68HC908RF2 — Rev. 1 Preliminary Electrical Specifications MOTOROLA Preliminary Electrical Specifications UHF Transmitter Module 17.9 UHF Transmitter Module This subsection provides electrical specifications and timing definitions for the UHF transmitter module. 17.9.1 UHF Module Electrical Characteristics Unless otherwise specified: • VCC = 3 V • REXT = 12 kΩ • Operating temperature range (TA) = –40°C to 85°C • RF output frequency: fCarrier = 433.92 MHz • Reference frequency: fReference =13.56 MHz • OOK modulation selected • Output load is 50 Ω resistor (see Figure 17-4) Values refer to the circuit shown in the recommended application schematic (see Figure 16-4. Application Schematic in OOK Modulation, 315-MHz and 434-MHz Frequency Bands). Typical values reflect average measurement at VCC = 3 V, TA = 25°C. NOTE: Electrical characteristics shown at 125°C are for information only. These values have not been tested. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Preliminary Electrical Specifications 239 Preliminary Electrical Specifications Parameter Test Conditions and Comments Min Typ Max Unit TA ≤ 25°C — 0.1 5 nA TA = 60°C — 7 30 nA TA = 85°C — 40 100 nA TA = 125°C — 800 1700 nA 315 and 434 MHz bands, continuous wave, TA ≤ 85°C — 11.6 13.5 mA 315 and 434 MHz bands, DATA = 0, –40°C ≤ TA ≤ 125°C — 4.4 6.0 mA 868 MHz band, DATA = 0, –40°C ≤ TA ≤ 125°C — 4.6 6.2 mA 315 and 434 MHz bands, continuous wave, –40°C ≤ TA ≤ 125°C — 11.6 14.9 mA 868 MHz band, continuous wave, –40°C ≤ TA ≤ 125°C — 11.8 15.1 mA — 3 3.7 V TA = –40°C — 2.04 2.11 V TA = –20°C — 1.99 2.06 V TA = 25°C — 1.86 1.95 V TA = 60°C — 1.76 1.84 V TA = 85°C — 1.68 1.78 V TA = 125°C — 1.56 1.67 V General Parameters Supply current in standby mode Supply current in transmission mode Supply voltage Shutdown voltage threshold RF Parameters (assuming a 50 Ω matching network connected to the D.U.T. output) REXT value Output power 12 — 21 kΩ 315 and 434 MHz bands, with 50 Ω matching network — 5 — dBm 868 MHz band, with 50 Ω matching network — 1 — dBm 315 and 434 MHz bands, –40°C ≤ TA ≤ 125°C –3 0 3 dBm 868 MHz band, –40°C ≤ TA ≤ 125°C –7 –3 0 dBm — Continued — Advance Information 240 MC68HC908RF2 — Rev. 1 Preliminary Electrical Specifications MOTOROLA Preliminary Electrical Specifications UHF Transmitter Module Parameter Current and output power variation vs REXT value Harmonic 2 level Harmonic 3 level Spurious level @ fCarrier ± f DATACLK Spurious level @ fCarrier ± f Reference Spurious level @ fCarrier/2 RF spectrum Test Conditions and Comments Min Typ Max Unit 314 and 434 MHz bands, with 50 Ω matching network — –0.35 — dB/kΩ mA/kΩ 315 and 434 MHz bands, with 50 Ω matching network — –34 — dBc 868 MHz band, with 50 Ω matching network — –49 — dBc 315 and 434 MHz bands — –23 –17 dBc 868 MHz band — –38 –27 dBc 315 and 434MHz bands, with 50 Ω matching network — –32 — dBc 868 MHz band, with 50 Ω matching network — –57 — dBc 315 and 434 MHz bands — –21 –15 dBc 868 MHz band — –48 –39 dBc 315 and 434 MHz bands — –36 –24 dBc –29 –17 dBc 868 MHz band 315 MHz band — –37 –30 dBc 434 MHz band — –44 –34 dBc 868 MHz band — –37 –27 dBc 315 MHz bands — –62 –53 dBc 434 MHz bands — –80 –60 dBc 868 MHz band — –45 –39 dBc 434 MHz bands See Figure 17-1, Figure 17-2, and Figure 17-3 — 315 and 434 MHz bands, ±175 kHz from f Carrier — –75 –68 dBc/Hz 868 MHz band, ±175 kHz from f Carrier — –73 –66 dBc/Hz fCarrier within 30 kHz from the final value, crystal series resistor = 150 Ω — 350 1500 µs XTAL1 input capacitance — 1 2 pF Crystal resistance — 40 200 Ω Modulation depth 75 90 — dBc Data rate — — 10 kBd Phase noise PLL lock-in time, tPLL_Lock_In — Continued — MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Preliminary Electrical Specifications 241 Preliminary Electrical Specifications Parameter Test Conditions and Comments Min Typ Max Unit 0 — 0.3 x VCC V 0.7 x VCC — VCC V — — 150 mV — — 100 nA — 180 — kΩ 0 — 0.25 x VCC V 0.75 x VCC — VCC V Microcontroller Interfaces Input low voltage Pins BAND, MODE, ENABLE, and DATA Input high voltage Input hysteresis voltage Pins BAND, MODE, DATA @ high level Input current ENABLE pulldown resistor DATACLK output low voltage C Load = 2 pF DATACLK output high voltage DATACLK rising time DATACLK falling time DATACLK settling time, tDATACLK_Settling CLoad = 2 pF, measured from 20% to 80% of the voltage swing — 250 500 ns — 150 400 ns 45 < duty cycle fDATACLK < 55% — 800 1800 µs RESOLUTION BANDWIDTH: 100 KHZ RESOLUTION BANDWIDTH: 30 KHZ Figure 17-1. RF Spectrum at 434-MHz Frequency Band Displayed with a 5-MHz Span Advance Information 242 MC68HC908RF2 — Rev. 1 Preliminary Electrical Specifications MOTOROLA Preliminary Electrical Specifications UHF Transmitter Module Figure 17-2. RF Spectrum at 434-MHz Frequency Band Displayed with a 50-MHz Span Figure 17-3. RF Spectrum at 434-MHz Frequency Band Displayed with a 1.5-GHz Span MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Preliminary Electrical Specifications 243 Preliminary Electrical Specifications 17.9.2 UHF Module Output Power Measurement The RF output levels given in the 17.9.1 UHF Module Electrical Characteristics are measured whith a 50-Ω load directly connected to the pin RFOUT as shown in figure Figure 17-4. This wideband coupling method gives results independant of the application. VCC IMPEDER: TDK MMZ1608Y102CTA00 RFOUT RF OUTPUT 100 pF 50 Ω Figure 17-4. Output Power Measurement Configurations The configuration shown in Figure 17-5(a) provides a better efficiency in terms of output power and harmonics rejection. Schematic in Figure 17-5(b) gives the equivalent circuit of the pin RFOUT and impeder as well as the matching network components for 434-MHz frequency band. NOTE: Note that the impeder is moved to the load side to decrease its influence (similar to dc bias through the antenna). Figure 17-6 gives the output power versus the REXT resistor value, in both cases with 50-Ω load and with matching network. Advance Information 244 MC68HC908RF2 — Rev. 1 Preliminary Electrical Specifications MOTOROLA Preliminary Electrical Specifications UHF Transmitter Module VCC IMPEDER: TDK MMZ1608Y102CTA00 RFOUT RF OUTPUT MATCHING NETWORK (a) 50 Ω MATCHING NETWORK 330 pF L1 C3 39 nH (b) 50 Ω 3 kΩ C0 R0 1.5 pF 250 Ω RFOUT PIN RI RL IMPEDER LOAD Figure 17-5. Ouput Characteristic and Matching Network for 434-MHz Frequency Band OUTPUT POWER MEASUREMENT IN TYPICAL CONDITIONS (434 MHz – VCC = 3 V –25°C) REXT SPECIFIED RANGE 8 6 OUTPUT POWER WHEN MATCHED (dBm) –0.35 db/kΩ # –0.35 mA/kΩ RFOUT LEVEL (dBm) 4 2 0 –2 –4 OUTPUT POWER ON 50 Ω LOAD (dBm) –6 6 9 12 15 REXT (kΩ) 18 21 24 Figure 17-6. Output Power at 434-MHz Frequency Band versus REXT Value MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Preliminary Electrical Specifications 245 Preliminary Electrical Specifications 17.10 Control Timing Characteristic Symbol Min Max Unit Bus operating frequency VDD = 3.0 V ± 10% VDD = 2.0 V ± 10% fBus 32 k 32 k 4.0 M 2.0 M Hz RESET pulse width low tRL 1.5 — tcyc IRQ interrupt pulse width low (edge-triggered) tILHI 1.5 — tcyc IRQ interrupt pulse period tILIL Note 4 — tcyc tTH, tTL tTLTL tTCH, tTCL 2 Note 4 (1/fOP) + 5 — — — tcyc tcyc ns 16-bit timer (Note 2) Input capture pulse width (Note 3) Input capture period Input clock pulse width Notes: 1. VDD = 1.8 V to 3.3 V, VSS = 0 Vdc, TA = –40oC to +85oC, unless otherwise noted 2. The 2-bit timer prescaler is the limiting factor in determining timer resolution. 3. Refer to Table 15-3. Mode, Edge, and Level Selection and supporting note. 4. The minimum period tTLTL or tILIL should not be less than the number of cycles it takes to execute the capture interrupt service routine plus 2 tcyc. 17.11 Internal Oscillator Characteristics Characteristic(1) Internal oscillator base frequency without trim(2) (3) Internal oscillator base frequency with trim(2) (3) Internal oscillator multiplier(4) External clock option(5) 3 V ± 10% 2 V ± 10% Symbol Min Typ Max Unit fINTOSC 230.4 307.2 384.0 kHz fINTOSC(I) 291.8 307.2 322.6 kHz N 1 — 127 — fEXTOSC 128 k 128 k — — 16 8 MHz 1. VDD = 1.8 V to 3.3 V, VSS = 0 Vdc, TA = –40oC to +85oC, unless otherwise noted 2. Internal oscillator is selectable through software for a maximum frequency. Actual frequency will be multiplier (N) x base frequency. 3. fBus = (fINTOSC / 4) x (internal oscillator multiplier) 4. Multiplier must be chosen to limit the maximum bus frequency to the maximum listed in 17.10 Control Timing. 5. No more than 10% duty cycle deviation from 50% Advance Information 246 MC68HC908RF2 — Rev. 1 Preliminary Electrical Specifications MOTOROLA Preliminary Electrical Specifications LVI Characteristics 17.12 LVI Characteristics Characteristic(1) Symbol Min Typ Max Unit LVI low battery sense voltage(1) VLVS 1.90 2.00 2.15 V LVI trip voltage(1) VLVR 1.76 1.85 2.00 V LVI trip voltage hysteresis HLVR 50 70 90 mV VDD slew rate — rising SRR — — 0.05 V/µs VDD slew rate — falling SRF — — 0.10 V/µs Response time — SR ≤ SRmax tresp — — 6.0 µs Response time — SR > SR max tresp — — See Note 2 µs ten — — 50 µs Enable time (enable to output transition) 1. The LVI samples VDD, VLVR, and VLVS are VDD voltages. 2. V DD – V LVR V DD – V LVR ----------------------------------- – ----------------------------------- + 1.5 SR SR max MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Preliminary Electrical Specifications 247 Preliminary Electrical Specifications 17.13 Memory Characteristics Characteristic Symbol Min Typ Max Unit VRDR 1.3 — — V FLASH pages per row — 8 — 8 Pages FLASH bytes per page — 1 — 1 Bytes FLASH read bus clock frequency fRead(1) 32 K — 2.5 M Hz FLASH charge pump clock frequency (see 4.5 FLASH 2TS Charge Pump Frequency Control) fPump(2) 1.8 — 2.5 MHz tErase 100 — — ms tRowErase 30 — — ms tKill 200 — — µs tHVD 50 — — µs flsPulses(3) — — 15 Pulses FLASH page program step size tStep(4) 1.0 — 1.2 ms FLASH cumulative program time per row between erase cycles tRow(5) — — 8 Page program cycles FLASH HVEN low to MARGIN high time tHVTV 50 — — µs FLASH MARGIN high to PGM low time tVTP 150 — — µs FLASH 2TS row program endurance(6) — 104 -— -— Cycles FLASH data retention time(7) — 10 -— -— Years RAM data retention voltage FLASH block/bulk erase time FLASH row erase time FLASH high voltage kill time FLASH return to read time FLASH page program pulses 1. 2. 3. 4. 5. fRead is defined as the frequency range for which the FLASH memory can be read. fPump is defined as the charge pump clock frequency required for program, erase, and margin read operations. flsPulses is defined as the number of pulses used to program the FLASH using the required smart program algorithm. tStep is defined as the amount of time during one page program cycle that HVEN is held high. tRow is defined as the cumulative time a row can see the program voltage before the row must be erased before further programming. 6. The minimum row endurance value specifies each row of the FLASH 2TS memory is guaranteed to work for at least this many erase/program cycles. 7. The FLASH is guaranteed to retain data over the entire temperature range for at least the minimum time specified. Advance Information 248 MC68HC908RF2 — Rev. 1 Preliminary Electrical Specifications MOTOROLA Advance Information — MC68HC908RF2 Section 18. Mechanical Specifications 18.1 Contents 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 18.3 32-Pin LQFP Package (Case No. 873A) . . . . . . . . . . . . . . . . 250 18.2 Introduction This section gives dimensions for the 32-pin low-profile quad flat pack (LQFP). The following figure shows the latest package drawing at the time of this publication. To make sure that you have the latest package specifications, contact one of the following: • Local Motorola Sales Office • Worldwide Web (wwweb) at http://www.motorola.com/mcu/ Follow Worldwide Web on-line instructions to retrieve the current mechanical specifications. MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Mechanical Specifications 249 Mechanical Specifications A –T–, –U–, –Z– 18.3 32-Pin LQFP Package (Case No. 873A) 4X A1 32 0.20 (0.008) AB T–U Z 25 1 –U– –T– B V AE P B1 DETAIL Y 17 8 V1 AE DETAIL Y 9 4X –Z– 9 0.20 (0.008) AC T–U Z S1 S DETAIL AD G –AB– 0.10 (0.004) AC AC T–U Z –AC– BASE METAL ÉÉ ÉÉ ÉÉ ÉÉ F 8X M_ R J M N D 0.20 (0.008) SEATING PLANE SECTION AE–AE W K X DETAIL AD Q_ GAUGE PLANE H 0.250 (0.010) C E Advance Information 250 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE –AB– IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS –T–, –U–, AND –Z– TO BE DETERMINED AT DATUM PLANE –AB–. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE –AC–. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE –AB–. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020). 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION. DIM A A1 B B1 C D E F G H J K M N P Q R S S1 V V1 W X MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.300 0.450 1.350 1.450 0.300 0.400 0.800 BSC 0.050 0.150 0.090 0.200 0.500 0.700 12_ REF 0.090 0.160 0.400 BSC 1_ 5_ 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF INCHES MIN MAX 0.276 BSC 0.138 BSC 0.276 BSC 0.138 BSC 0.055 0.063 0.012 0.018 0.053 0.057 0.012 0.016 0.031 BSC 0.002 0.006 0.004 0.008 0.020 0.028 12_ REF 0.004 0.006 0.016 BSC 1_ 5_ 0.006 0.010 0.354 BSC 0.177 BSC 0.354 BSC 0.177 BSC 0.008 REF 0.039 REF MC68HC908RF2 — Rev. 1 Mechanical Specifications MOTOROLA Advance Information — MC68HC908RF2 Section 19. Ordering Information 19.1 Contents 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 19.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251 19.2 Introduction This section contains ordering numbers for the MC68HC908RF2. 19.3 MC Order Numbers Table 19-1. MC Order Numbers MC Order Number(1) MC68HC908RF2CFA Operating Temperature Range –40°C to +85°C 1. FA = Low-profile quad flat pack (LQFP) MC68HC908RF2 — Rev. 1 MOTOROLA Advance Information Ordering Information 251 Ordering Information Advance Information 252 MC68HC908RF2 — Rev. 1 Ordering Information MOTOROLA blank USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution P.O. Box 5405 Denver, Colorado 80217 1-303-675-2140 1-800-441-2447 TECHNICAL INFORMATION CENTER: 1-800-521-6274 JAPAN: Motorola Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu, Minato-ku Tokyo 106-8573 Japan 81-3-3440-3569 MC68HC08AS60 Technical Data How to Reach Us: ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd. Silicon Harbour Centre 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong 852-26668334 HOME PAGE: http://www.motorola.com/semiconductors/ MC68HC908RF2/D REV 1 Q4/00 REV 1