1SMB3EZ11 THRU 1SMB3EZ200 SURFACE MOUNT SILICON ZENER DIODE VOLTAGE - 11 TO 200 Volts Power - 3.0 Watts FEATURES l For surface mounted applications in order to optimize board space l Low profile package l Built-in strain relief l l Glass passivated junction Low inductance l l Excellent clamping capability Typical ID less than 1 £gA above 11V l High temperature soldering : 260 ¢J /10 seconds at terminals l Plastic package has Underwriters Laboratory Flammability Classification 94V-O DO-214AA MODIFIED J-BEND MECHANICAL DATA Case: JEDEC DO-214AA, Molded plastic over passivated junction Terminals: Solder plated, solderable per MIL-STD-750, method 2026 Polarity: Color band denotes positive end (cathode) except Bidirectional Standard Packaging: 12mm tape(EIA-481) Weight: 0.003 ounce, 0.093 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 ¢J ambient temperature unless otherwise specified. SYMBOL Peak Pulse Power Dissipation (Note A) PD Derate above 75 ¢J Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated IFSM load(JEDEC Method) (Note B) Operating Junction and Storage Temperature Range TJ,TSTG NOTES: 2 A. Mounted on 5.0mm (.013mm thick) land areas. B. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle = 4 pulses per minute maximum. VALUE 3 24 15 UNITS Watts mW/¢J Amps -55 to +150 ¢J 1SMB3EZ11 THRU 1SMB3EZ200 ELECTRICAL CHARACTERISTICS (T A=25 ¢J unless otherwise noted) VF=1.2 V max , IF=500 mA for all types Type No. (Note 1.) 1SMB3EZ11 1SMB3EZ12 1SMB3EZ13 1SMB3EZ14 1SMB3EZ15 1SMB3EZ16 1SMB3EZ17 1SMB3EZ18 1SMB3EZ19 1SMB3EZ20 1SMB3EZ22 1SMB3EZ24 1SMB3EZ27 1SMB3EZ28 1SMB3EZ30 1SMB3EZ33 1SMB3EZ36 1SMB3EZ39 1SMB3EZ43 1SMB3EZ47 1SMB3EZ51 1SMB3EZ56 1SMB3EZ62 1SMB3EZ68 1SMB3EZ75 1SMB3EZ82 1SMB3EZ91 1SMB3EZ100 1SMB3EZ110 1SMB3EZ120 1SMB3EZ130 1SMB3EZ140 1SMB3EZ150 1SMB3EZ160 1SMB3EZ170 1SMB3EZ180 1SMB3EZ190 1SMB3EZ200 Nominal Test Zener Voltage current Maximum Zener Impedance Vz @ IZT IZT (Note 3.) volts mA Z ZT @ IZT ZZk @ IZK IZK (Note 2.) 11 12 13 14 15 16 17 18 19 20 22 24 27 28 30 33 36 39 43 47 51 56 62 68 75 82 91 100 110 120 130 140 150 160 170 180 190 200 68 63 58 53 50 47 44 42 40 37 34 31 28 27 25 23 21 19 17 16 15 13 12 11 10 9.1 8.2 7.5 6.8 6.3 5.8 5.3 5 4.7 4.4 4.2 4 3.7 Ohms Ohms mA 4 4.5 4.5 5 5.5 5.5 6 6 7 7 8 9 10 12 16 20 22 28 33 38 45 50 55 70 85 95 115 160 225 300 375 475 550 625 650 700 800 875 700 700 700 700 700 700 750 750 750 750 750 750 750 750 1000 1000 1000 1000 1500 1500 1500 2000 2000 2000 2000 3000 3000 3000 4000 4500 5000 5000 6000 6500 7000 7000 8000 8000 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 Leakage Current IR £g A Max VR @ 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Maximum Surge Zener Current Current @ TA = 25 ¢J IZM ir - mA Madc (Note 4.) Volts 8.4 9.1 9.9 10.6 11.4 12.2 13 13.7 14.4 15.2 16.7 18.2 20.6 21 22.5 25.1 27.4 29.7 32.7 35.6 38.8 42.6 47.1 51.7 56 62.2 69.2 76 83.6 91.2 98.8 106.4 114 121.6 130.4 136.8 144.8 152 225 246 208 193 180 169 150 159 142 135 123 112 100 96 90 82 75 69 63 57 53 48 44 40 36 33 30 27 25 22 21 19 18 17 16 15 14 13 1.82 1.66 1.54 1.43 1.33 1.25 1.18 1.11 1.05 1 0.91 0.83 0.74 0.71 0.67 0.61 0.56 0.51 0.45 0.42 0.39 0.36 0.32 0.29 0.27 0.24 0.22 0.2 0.18 0.16 0.15 0.14 0.13 0.12 0.12 0.11 0.1 0.1 NOTES: 1. TOLERANCES - Suffix indicates 5% tolerance any other tolerance will be considered as a special device. 2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when measured at 40 ms ¡Ó 10ms from the diode body, and an ambient temperature of 25 ¢J (¡Ï 8 ¢J , -2 ¢J ). 3.ZENER IMPEDANCE (Zz) DERIVATION - The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms falue equal to 10% of the dc zener current (IZT or IZK) is superimposed on IZT or IZK. 4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, IZT, per JEDEC standards, however, actual device capability is as described in Figure 3. Device Marking Code 11B 12B 13B 14B 15B 16B 17B 18B 19B 20B 22B 24B 27B 28B 30B 33B 36B 39B 43B 47B 51B 56B 62B 68B 75B 82B 91B 100B 110B 120B 130B 140B 150B 160B 170B 180B 190B 200B RATING AND CHARACTERISTICS CURVES 1SMB3EZ11 THRU 1SMB3EZ200 £c JL (t,D) TRANSIENT THERMAL RESISTANCE JUNCTION-TO-LEAD(¢J/W) 30 D = 0.5 20 10 0.2 7 5 0.1 3 0.05 2 NOTE BELOW 0.1 SECOND, THERMAL RESPONSE CURVE IS APPLICABLE TO ANY LEAD LENGTH (L) 0.02 1 0.7 0.5 0.01 0.3 0.0001 D=0 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05 SINGLE PULSE £GTJL = £KJL(t)PPK REPETITIVE PULSES £GTJL = £KJL(t,D)PPK 0.1 0.2 0.5 1 2 5 10 IR, REVERSE LEADAGE(uAdc) @VR AS SPECIFIED IN ELEC. CHAR. TABLE 1K 500 RECTANGULAR NONREPETITIVE WAVEFORM TJ = 25¢J PRIOR TO INITIAL PULSE 300 200 100 50 30 20 10 .1 .2 .3 5 1 2 3 5 10 20 50 100 0.1 0.05 0.03 0.02 0.01 0.005 0.003 0.002 0.001 0.0005 0.0003 0.0002 0.0001 1 2 5 10 20 50 100 200 500 1K P.W. PULSE WIDTH (ms) NOMINAL VZ (VOLTS) Fig. 3-MAXIMUM SURGE POWER Fig. 4-TYPICAL REVERSE LEAKAGE 8 200 6 4 2 RANGE 0 -2 -4 3 4 6 8 10 12 £c VZ, TEMPERATURE COEFFICIENT(mV/¢J) @ IZT £c VZ, TEMPERATURE COEFFICIENT(mV/¢J ) @ IZT PPK, PEAK SURGE POWER(WATTS) Fig. 2-TYPICAL THERMAL RESPONSE L, 100 RANGE 50 40 30 20 10 0 20 40 60 80 100 120 140 160 180 VZ, ZENER VOLTAGE @IZT (VOLTS) VZ, ZENER VOLTAGE @IZT (VOLTS) Fig. 5-UNITS TO 12 VOLTS Fig. 6-UNITS 10 TO 200 VOLTS 200 RATING AND CHARACTERISTICS CURVES 1SMB3EZ11 THRU 1SMB3EZ200 100 IZ, ZENER CURRENT (mA) IZ, ZENER CURRENT (mA) 100 50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 50 30 20 10 5 3 2 1 0.5 0.3 0.2 0.1 0 9 10 10 IZ, ZENER CURRENT (mA) 5 3 2 1 0.5 0.3 0.2 0.1 100 120 140 160 180 200 70 80 90 100 Fig. 8-VZ = 12 THRU 82 VOLTS £c JL, JUNCTION-LEAD THERMAL RESISTANCE (¢J/W) Fig. 7-VZ = 3.9 THRU 10 VOLTS 50 30 20 10 50 60 VZ, ZENER VOLTAGE (VOLTS) VZ, ZENER VOLTAGE (VOLTS) 100 20 30 40 80 70 60 PRIMARY PATH OF CONDUCTION IS THROUGH THE CATHODE LEAD 50 40 30 20 10 0 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 VZ, ZENER VOLTAGE (VOLTS) L, LEAD LENGTH TO HEAT SINK (INCH) Fig. 9-VZ = 100 THRU 200 VOLTS Fig. 10-TYPICAL THERMAL RESISTANCE APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, TL, should be determined from: TL = £c LAPD + TA £c LA is the lead-to-ambient thermal resistance (¢J /W) and PD is the power dissipation. The value for £c LA will vary and depends on the device mounting method. £c LA is generally 30-40 ¢J /W for the various chips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: TJ = TL + £GTJL £GTJL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses or from Figure 10 for dc power. £GTJL = £c LAPD For worst-case design, using expected limits of Iz, limits of PD and the extremes of TJ (£GTJL ) may be estimated. Changes in voltage, Vz, can then be found from: £GV = £c VZ £GTJ £c VZ , the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly be the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.