PANJIT 1SMB3EZ68

1SMB3EZ11 THRU 1SMB3EZ200
SURFACE MOUNT SILICON ZENER DIODE
VOLTAGE - 11 TO 200 Volts
Power - 3.0 Watts
FEATURES
l For surface mounted applications in order to
optimize board space
l Low profile package
l Built-in strain relief
l
l
Glass passivated junction
Low inductance
l
l
Excellent clamping capability
Typical ID less than 1 £gA above 11V
l
High temperature soldering :
260 ¢J /10 seconds at terminals
l
Plastic package has Underwriters Laboratory
Flammability Classification 94V-O
DO-214AA
MODIFIED J-BEND
MECHANICAL DATA
Case: JEDEC DO-214AA, Molded plastic over
passivated junction
Terminals: Solder plated, solderable per
MIL-STD-750, method 2026
Polarity: Color band denotes positive end (cathode)
except Bidirectional
Standard Packaging: 12mm tape(EIA-481)
Weight: 0.003 ounce, 0.093 gram
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25 ¢J ambient temperature unless otherwise specified.
SYMBOL
Peak Pulse Power Dissipation (Note A)
PD
Derate above 75 ¢J
Peak forward Surge Current 8.3ms single half sine-wave superimposed on rated
IFSM
load(JEDEC Method) (Note B)
Operating Junction and Storage Temperature Range
TJ,TSTG
NOTES:
2
A. Mounted on 5.0mm (.013mm thick) land areas.
B. Measured on 8.3ms, single half sine-wave or equivalent square wave, duty cycle = 4 pulses
per minute maximum.
VALUE
3
24
15
UNITS
Watts
mW/¢J
Amps
-55 to +150
¢J
1SMB3EZ11 THRU 1SMB3EZ200
ELECTRICAL CHARACTERISTICS (T A=25 ¢J unless otherwise noted) VF=1.2 V max , IF=500 mA for all types
Type No.
(Note 1.)
1SMB3EZ11
1SMB3EZ12
1SMB3EZ13
1SMB3EZ14
1SMB3EZ15
1SMB3EZ16
1SMB3EZ17
1SMB3EZ18
1SMB3EZ19
1SMB3EZ20
1SMB3EZ22
1SMB3EZ24
1SMB3EZ27
1SMB3EZ28
1SMB3EZ30
1SMB3EZ33
1SMB3EZ36
1SMB3EZ39
1SMB3EZ43
1SMB3EZ47
1SMB3EZ51
1SMB3EZ56
1SMB3EZ62
1SMB3EZ68
1SMB3EZ75
1SMB3EZ82
1SMB3EZ91
1SMB3EZ100
1SMB3EZ110
1SMB3EZ120
1SMB3EZ130
1SMB3EZ140
1SMB3EZ150
1SMB3EZ160
1SMB3EZ170
1SMB3EZ180
1SMB3EZ190
1SMB3EZ200
Nominal
Test
Zener Voltage current Maximum Zener Impedance
Vz @ IZT
IZT
(Note 3.)
volts
mA
Z ZT @ IZT ZZk @ IZK
IZK
(Note 2.)
11
12
13
14
15
16
17
18
19
20
22
24
27
28
30
33
36
39
43
47
51
56
62
68
75
82
91
100
110
120
130
140
150
160
170
180
190
200
68
63
58
53
50
47
44
42
40
37
34
31
28
27
25
23
21
19
17
16
15
13
12
11
10
9.1
8.2
7.5
6.8
6.3
5.8
5.3
5
4.7
4.4
4.2
4
3.7
Ohms
Ohms
mA
4
4.5
4.5
5
5.5
5.5
6
6
7
7
8
9
10
12
16
20
22
28
33
38
45
50
55
70
85
95
115
160
225
300
375
475
550
625
650
700
800
875
700
700
700
700
700
700
750
750
750
750
750
750
750
750
1000
1000
1000
1000
1500
1500
1500
2000
2000
2000
2000
3000
3000
3000
4000
4500
5000
5000
6000
6500
7000
7000
8000
8000
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
Leakage Current
IR
£g A Max
VR
@
1
1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
Maximum
Surge
Zener
Current
Current @ TA = 25 ¢J
IZM
ir - mA
Madc
(Note 4.)
Volts
8.4
9.1
9.9
10.6
11.4
12.2
13
13.7
14.4
15.2
16.7
18.2
20.6
21
22.5
25.1
27.4
29.7
32.7
35.6
38.8
42.6
47.1
51.7
56
62.2
69.2
76
83.6
91.2
98.8
106.4
114
121.6
130.4
136.8
144.8
152
225
246
208
193
180
169
150
159
142
135
123
112
100
96
90
82
75
69
63
57
53
48
44
40
36
33
30
27
25
22
21
19
18
17
16
15
14
13
1.82
1.66
1.54
1.43
1.33
1.25
1.18
1.11
1.05
1
0.91
0.83
0.74
0.71
0.67
0.61
0.56
0.51
0.45
0.42
0.39
0.36
0.32
0.29
0.27
0.24
0.22
0.2
0.18
0.16
0.15
0.14
0.13
0.12
0.12
0.11
0.1
0.1
NOTES:
1. TOLERANCES - Suffix indicates 5% tolerance any other tolerance will be considered as a special device.
2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when measured at 40 ms ¡Ó 10ms
from the diode body, and an ambient temperature of 25 ¢J (¡Ï 8 ¢J , -2 ¢J ).
3.ZENER IMPEDANCE (Zz) DERIVATION - The zener impedance is derived from the 60 cycle ac voltage,
which results when an ac current having an rms falue equal to 10% of the dc zener current (IZT or IZK) is
superimposed on IZT or IZK.
4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating listed in the electrical characteristics table is
maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse
of 1/120 second duration superimposed on the test current, IZT, per JEDEC standards, however, actual
device capability is as described in Figure 3.
Device
Marking
Code
11B
12B
13B
14B
15B
16B
17B
18B
19B
20B
22B
24B
27B
28B
30B
33B
36B
39B
43B
47B
51B
56B
62B
68B
75B
82B
91B
100B
110B
120B
130B
140B
150B
160B
170B
180B
190B
200B
RATING AND CHARACTERISTICS CURVES
1SMB3EZ11 THRU 1SMB3EZ200
£c JL (t,D) TRANSIENT THERMAL
RESISTANCE
JUNCTION-TO-LEAD(¢J/W)
30
D = 0.5
20
10
0.2
7
5
0.1
3
0.05
2
NOTE BELOW 0.1 SECOND,
THERMAL RESPONSE
CURVE IS APPLICABLE TO
ANY LEAD LENGTH (L)
0.02
1
0.7
0.5
0.01
0.3
0.0001
D=0
0.0002
0.0005
0.001
0.002
0.005
0.01
0.02
0.05
SINGLE PULSE £GTJL = £KJL(t)PPK
REPETITIVE PULSES £GTJL = £KJL(t,D)PPK
0.1
0.2
0.5
1
2
5
10
IR, REVERSE LEADAGE(uAdc)
@VR AS SPECIFIED IN ELEC.
CHAR. TABLE
1K
500
RECTANGULAR NONREPETITIVE
WAVEFORM TJ = 25¢J PRIOR TO
INITIAL PULSE
300
200
100
50
30
20
10
.1
.2 .3
5
1
2 3 5
10
20
50
100
0.1
0.05
0.03
0.02
0.01
0.005
0.003
0.002
0.001
0.0005
0.0003
0.0002
0.0001
1
2
5
10
20
50
100
200
500
1K
P.W. PULSE WIDTH (ms)
NOMINAL VZ (VOLTS)
Fig. 3-MAXIMUM SURGE POWER
Fig. 4-TYPICAL REVERSE LEAKAGE
8
200
6
4
2
RANGE
0
-2
-4
3
4
6
8
10
12
£c VZ, TEMPERATURE
COEFFICIENT(mV/¢J) @ IZT
£c VZ, TEMPERATURE
COEFFICIENT(mV/¢J ) @ IZT
PPK, PEAK SURGE POWER(WATTS)
Fig. 2-TYPICAL THERMAL RESPONSE L,
100
RANGE
50
40
30
20
10
0
20
40
60
80
100
120
140
160
180
VZ, ZENER VOLTAGE @IZT (VOLTS)
VZ, ZENER VOLTAGE @IZT (VOLTS)
Fig. 5-UNITS TO 12 VOLTS
Fig. 6-UNITS 10 TO 200 VOLTS
200
RATING AND CHARACTERISTICS CURVES
1SMB3EZ11 THRU 1SMB3EZ200
100
IZ, ZENER CURRENT (mA)
IZ, ZENER CURRENT (mA)
100
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
0
1
2 3
4
5
6 7
8
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
0
9 10
10
IZ, ZENER CURRENT (mA)
5
3
2
1
0.5
0.3
0.2
0.1
100
120
140
160
180
200
70 80 90
100
Fig. 8-VZ = 12 THRU 82 VOLTS
£c JL, JUNCTION-LEAD THERMAL
RESISTANCE (¢J/W)
Fig. 7-VZ = 3.9 THRU 10 VOLTS
50
30
20
10
50 60
VZ, ZENER VOLTAGE (VOLTS)
VZ, ZENER VOLTAGE (VOLTS)
100
20 30 40
80
70
60
PRIMARY PATH OF
CONDUCTION IS THROUGH
THE CATHODE LEAD
50
40
30
20
10
0
0
1/8
1/4
3/8
1/2
5/8
3/4
7/8
1
VZ, ZENER VOLTAGE (VOLTS)
L, LEAD LENGTH TO HEAT SINK (INCH)
Fig. 9-VZ = 100 THRU 200 VOLTS
Fig. 10-TYPICAL THERMAL RESISTANCE
APPLICATION NOTE:
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to
determine junction temperature under any set of
operating conditions in order to calculate its value. The
following procedure is recommended:
Lead Temperature, TL, should be determined from:
TL = £c LAPD + TA
£c LA is the lead-to-ambient thermal resistance (¢J /W)
and PD is the power dissipation. The value for £c LA will
vary and depends on the device mounting method.
£c LA is generally 30-40 ¢J /W for the various chips and
tie points in common use and for printed circuit board
wiring.
The temperature of the lead can also be measured using
a thermocouple placed on the lead as close as possible to
the tie point. The thermal mass connected to the tie point
is normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result
of pulsed operation once steady-state conditions are
achieved. Using the measured value of TL, the junction
temperature may be determined by:
TJ = TL + £GTJL
£GTJL is the increase in junction temperature above the
lead temperature and may be found from Figure 2 for a
train of power pulses or from Figure 10 for dc power.
£GTJL = £c LAPD
For worst-case design, using expected limits of Iz, limits
of PD and the extremes of TJ (£GTJL ) may be estimated.
Changes in voltage, Vz, can then be found from:
£GV = £c VZ £GTJ
£c VZ , the zener voltage temperature coefficient, is
found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage
will vary with time and may also be affected significantly
be the zener resistance. For best regulation, keep current
excursions as low as possible.
Data of Figure 2 should not be used to compute surge
capability. Surge limitations are given in Figure 3. They
are lower than would be expected by considering only
junction temperature, as current crowding effects cause
temperatures to be extremely high in small spots resulting
in device degradation should the limits of Figure 3 be
exceeded.