K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM Document Title 256Kx36 & 512Kx18-Bit Synchronous Pipelined Burst SRAM Revision History History Draft Date Remark 0.0 Initial draft May. 07 . 1998 Preliminary 0.1 Modify DC characteristics( Input Leakage Current test Conditions) form VDD=VSS to VDD to Max. June .08. 1998 Preliminary 0.2 Remove 119BGA Package Type. Aug. 20. 1998 Preliminary 0.3 Change DC Characteristics. ISB value from 65mA to 110mA at -72 ISB value from 60mA to 110mA at -85 ISB value from 50mA to 100mA at -10 ISB1 value from 10mA to 30mA ISB2 value from 10mA to 30mA Aug. 27. 1998 Preliminary 0.4 1. Changed t CD from 4.0ns to 4.2ns at -85. Changed tOE from 4.0ns to 4.2ns at -85. 2. Changed DC condition at Icc and parameters Icc ; from 375mA to 400mA at -72, from 340mA to 380mA at -85, from 300mA to 350mA at -10, ISB ; from 110mA to 130mA at -72, from 110mA to 130mA at -85, from 100mA to 120mA at -10 Sep. 09. 1998 Preliminary 0.5 ADD VDDQ Supply voltage( 2.5V ) Dec. 10. 1998 Preliminary 0.6 Changed V OL Max value from 0.2V to 0.4V at 2.5V I/O. Dec. 23. 1998 Preliminary 1.0 Final spec Release. Jan. 29. 1999 Final 2.0 1. Remove VDDQ Supply voltage( 2.5V I/O ) Feb. 25. 1999 Final 3.0 1. Add VDDQ Supply voltage( 2.5V I/O ) May. 13. 1999 Final Rev. No. The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters. -1- May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM 256Kx36 & 512Kx18-Bit Synchronous Pipelined Burst SRAM FEATURES GENERAL DESCRIPTION • Synchronous Operation. • 2 Stage Pipelined operation with 4 Burst. • On-Chip Address Counter. • Self-Timed Write Cycle. • On-Chip Address and Control Registers. • 3.3V+0.165V/-0.165V Power Supply. • I/O Supply Voltage 3.3V+0.165V/-0.165V for 3.3V I/O or 2.5V+0.4V/-0.125V for 2.5V I/O • 5V Tolerant Inputs Except I/O Pins. • Byte Writable Function. • Global Write Enable Controls a full bus-width write. • Power Down State via ZZ Signal. • LBO Pin allows a choice of either a interleaved burst or a linear burst. • Three Chip Enables for simple depth expansion with No Data Contention only for TQFP ; 2cycle Enable, 2cycle Disable. • Asynchronous Output Enable Control. • ADSP, ADSC, ADV Burst Control Pins. • TTL-Level Three-State Output. • 100-TQFP-1420A Package The K7A803601M and K7A801801M are 9,437,184-bit Synchronous Static Random Access Memory designed for high performance second level cache of Pentium and Power PC based System. It is organized as 256K(512K) words of 36(18) bits and integrates address and control registers, a 2-bit burst address counter and added some new functions for high performance cache RAM applications; GW, BW, LBO, ZZ. Write cycles are internally self-timed and synchronous. Full bus-width write is done by GW, and each byte write is performed by the combination of WEx and BW when GW is high. And with CS 1 high, ADSP is blocked to control signals. Burst cycle can be initiated with either the address status processor(ADSP) or address status cache controller(ADSC) inputs. Subsequent burst addresses are generated internally in the system′s burst sequence and are controlled by the burst address advance(ADV) input. LBO pin is DC operated and determines burst sequence(linear or interleaved). ZZ pin controls Power Down State and reduces Stand-by current regardless of CLK. The K7A803601M and K7A801801M are fabricated using SAMSUNG′s high performance CMOS technology and is available in a 100pin TQFP package. Multiple power and ground pins are utilized to minimize ground bounce. FAST ACCESS TIMES -10 Unit Cycle Time PARAMETER Symbol -14 -11 tCYC 7.2 8.5 10 ns Clock Access Time tCD 4.0 4.2 4.5 ns Output Enable Access Time tOE 4.0 4.2 4.5 ns LOGIC BLOCK DIAGRAM CLK LBO BURST CONTROL LOGIC CONTROL REGISTER ADV ADSC 256Kx36 , 512Kx18 MEMORY ARRAY A′0~A′1 A0~A1 A0~A17 or A0~A18 ADSP ADDRESS REGISTER A2~A17 or A2~A18 DATA-IN REGISTER CONTROL REGISTER CS1 CS2 CS2 GW BW WEx (x=a,b,c,d or a,b) BURST ADDRESS COUNTER OUTPUT REGISTER CONTROL LOGIC BUFFER OE ZZ DQa0 ~ DQd7 or DQa0 ~ DQb7 DQPa ~ DQPd DQPa,DQPb -2- May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM ADV A8 A9 82 81 49 50 A16 ADSP A15 ADSC 84 83 OE 85 48 BW 86 A14 GW 87 47 CLK 88 A13 VSS 89 46 VDD 90 A12 CS2 91 45 WEa 92 A11 WEb 93 44 WEc 94 A10 WEd 95 43 CS2 96 A17 CS1 97 42 A7 98 N.C. A6 99 100 Pin TQFP (20mm x 14mm) 31 32 33 34 35 36 37 38 39 40 41 A4 A3 A2 A1 A0 N.C. N.C. VSS VDD K7A803601M(256Kx36) A5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LBO DQPc DQc0 DQc1 VDDQ VSSQ DQc2 DQc3 DQc4 DQc5 VSSQ VDDQ DQc6 DQc7 N.C. VDD N.C. VSS DQd0 DQd1 VDDQ VSSQ DQd2 DQd3 DQd4 DQd5 VSSQ VDDQ DQd6 DQd7 DQPd 100 PIN CONFIGURATION(TOP VIEW) 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 DQPb DQb7 DQb6 VDDQ VSSQ DQb5 DQb4 DQb3 DQb2 VSSQ VDDQ DQb1 DQb0 VSS N.C. VDD ZZ DQa7 DQa6 VDDQ VSSQ DQa5 DQa4 DQa3 DQa2 VSSQ VDDQ DQa1 DQa0 DQPa PIN NAME SYMBOL A0 - A17 PIN NAME TQFP PIN NO. Address Inputs 32,33,34,35,36,37,43 44,45,46,47,48,49,50 81,82,99,100 ADV Burst Address Advance 83 ADSP Address Status Processor 84 ADSC Address Status Controller 85 CLK Clock 89 CS1 Chip Select 98 CS2 Chip Select 97 CS2 Chip Select 92 WEx(x=a,b,c,d) Byte Write Inputs 93,94,95,96 OE Output Enable 86 GW Global Write Enable 88 BW Byte Write Enable 87 ZZ Power Down Input 64 LBO Burst Mode Control 31 SYMBOL PIN NAME TQFP PIN NO. VDD VSS N.C. Power Supply(+3.3V) Ground No Connect 15,41,65,91 17,40,67,90 14,16,38,39,42,66 DQa 0~a7 DQb 0~b7 DQc0~c7 DQd 0~d7 DQPa~P d VDDQ Data Inputs/Outputs 52,53,56,57,58,59,62,63 68,69,72,73,74,75,78,79 2,3,6,7,8,9,12,13 18,19,22,23,24,25,28,29 51,80,1,30 4,11,20,27,54,61,70,77 VSSQ Output Power Supply (2.5V or 3.3V) Output Ground 5,10,21,26,55,60,71,76 Note : 1. A0 and A 1 are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired. 2. The pin 42 is reserved for address bit for the 16Mb . -3- May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM ADV A8 A9 82 81 49 50 A17 ADSP A16 ADSC 84 83 OE 85 48 BW 86 A15 GW 87 47 CLK 88 A14 VSS 89 46 VDD 90 A13 CS2 91 45 WEa 92 A12 WEb 93 44 N.C. 94 A11 N.C. 95 43 CS2 96 A18 CS1 97 42 A7 98 N.C. A6 99 100 Pin TQFP (20mm x 14mm) 31 32 33 34 35 36 37 38 39 40 41 A4 A3 A2 A1 A0 N.C. N.C. VSS VDD K7A801801M(512Kx18) A5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 LBO N.C. N.C. N.C. VDDQ VSSQ N.C. N.C. DQb0 DQb1 VSSQ VDDQ DQb2 DQb3 N.C. VDD N.C. VSS DQb4 DQb5 VDDQ VSSQ DQb6 DQb7 DQPb N.C. VSSQ VDDQ N.C. N.C. N.C. 100 PIN CONFIGURATION(TOP VIEW) 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 A10 N.C. N.C. VDDQ VSSQ N.C. DQPa DQa7 DQa6 VSSQ VDDQ DQa5 DQa4 VSS N.C. VDD ZZ DQa3 DQa2 VDDQ VSSQ DQa1 DQa0 N.C. N.C. VSSQ VDDQ N.C. N.C. N.C. PIN NAME SYMBOL PIN NAME A0 - A 18 Address Inputs ADV ADSP ADSC CLK CS1 CS2 CS2 WEx OE GW BW ZZ LBO Burst Address Advance Address Status Processor Address Status Controller Clock Chip Select Chip Select Chip Select Byte Write Inputs Output Enable Global Write Enable Byte Write Enable Power Down Input Burst Mode Control TQFP PIN NO. SYMBOL 32,33,34,35,36,37,43 44,45,46,47,48,49,50 80,81,82,99,100 83 84 85 89 98 97 92 93,94 86 88 87 64 31 PIN NAME TQFP PIN NO. VDD VSS N.C. Power Supply(+3.3V) Ground No Connect 15,41,65,91 17,40,67,90 1,2,3,6,7,14,16,25,28,29, 30,38,39,42,51,52,53,56, 57,66,75,78,79,95,96 DQa0 ~ a 7 DQb0 ~ b 7 DQPa, Pb VDDQ Data Inputs/Outputs 58,59,62,63,68,69,72,73 8,9,12,13,18,19,22,23 74,24 4,11,20,27,54,61,70,77 VSSQ Output Power Supply (2.5V or 3.3V) Output Ground 5,10,21,26,55,60,71,76 Note : 1. A0 and A1 are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired. 2. The pin 42 is reserved for address bit for the 16Mb . -4- May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM FUNCTION DESCRIPTION The K7A803601M and K7A801801M are synchronous SRAM designed to support the burst address accessing sequence of the Power PC based microprocessor. All inputs (with the exception of OE, LBO and ZZ) are sampled on rising clock edges. The start and duration of the burst access is controlled by ADSC, ADSP and ADV and chip select pins. The accesses are enabled with the chip select signals and output enabled signals. Wait states are inserted into the access with ADV. When ZZ is pulled high, the SRAM will enter a Power Down State. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM normally operates after 2cycles of wake up time. ZZ pin is pulled down internally. Read cycles are initiated with ADSP(regardless of WEx and ADSC)using the new external address clocked into the on-chip address register whenever ADSP is sampled low, the chip selects are sampled active, and the output buffer is enabled with OE. In read operation the data of cell array accessed by the current address, registered in the Data-out registers by the positive edge of CLK, are carried to the Data-out buffer by the next positive edge of CLK. The data, registered in the Data-out buffer, are projected to the output pins. ADV is ignored on the clock edge that samples ADSP asserted, but is sampled on the subsequent clock edges. The address increases internally for the next access of the burst when WEx are sampled High and ADV is sampled low. And ADSP is blocked to control signals by disabling CS1. All byte write is done by GW(regaedless of BW and WEx.), and each byte write is performed by the combination of BW and WEx when GW is high. Write cycles are performed by disabling the output buffers with OE and asserting WEx. WEx are ignored on the clock edge that samples ADSP low, but are sampled on the subsequent clock edges. The output buffers are disabled when WEx are sampled Low(regaedless of OE). Data is clocked into the data input register when WEx sampled Low. The address increases internally to the next address of burst, if both WEx and ADV are sampled Low. Individual byte write cycles are performed by any one or more byte write enable signals(WEa, WEb, WEc or WEd) sampled low. The WEa control DQa0 ~ DQa7 and DQPa, WEb controls DQb0 ~ DQb7 and DQPb, WEc controls DQc0 ~ DQc7 and DQPc, and WEd control DQd0 ~ DQd7 and DQPd. Read or write cycle may also be initiated with ADSC, instead of ADSP. The differences between cycles initiated with ADSC and ADSP as are follows; ADSP must be sampled high when ADSC is sampled low to initiate a cycle with ADSC. WEx are sampled on the same clock edge that sampled ADSC low(and ADSP high). Addresses are generated for the burst access as shown below, The starting point of the burst sequence is provided by the external address. The burst address counter wraps around to its initial state upon completion. The burst sequence is determined by the state of the LBO pin. When this pin is Low, linear burst sequence is selected. When this pin is High, Interleaved burst sequence is selected. BURST SEQUENCE TABLE LBO PIN (Interleaved Burst) Case 1 HIGH A1 0 0 1 1 First Address Fourth Address Case 2 A0 0 1 0 1 A1 0 0 1 1 Case 3 A0 1 0 1 0 A1 1 1 0 0 Case 4 A0 0 1 0 1 A1 1 1 0 0 BQ TABLE LBO PIN A0 1 0 1 0 (Linear Burst) Case 1 LOW A1 0 0 1 1 First Address Fourth Address Case 2 A0 0 1 0 1 A1 0 1 1 0 Case 3 A0 1 0 1 0 A1 1 1 0 0 Case 4 A0 0 1 0 1 A1 1 0 0 1 A0 1 0 1 0 Note : 1. LBO pin must be tied to High or Low, and Floating State must not be allowed. ASYNCHRONOUS TRUTH TABLE OPERATION ZZ OE I/O Status Sleep Mode H X High-Z L L DQ Read L H High-Z Write L X Din, High-Z Deselected L X High-Z Notes 1. X means "Don′t Care". 2. ZZ pin is pulled down internally 3. For write cycles that following read cycles, the output buffers must be disabled with OE, otherwise data bus contention will occur. 4. Sleep Mode means power down state of which stand-by current does not depend on cycle time. 5. Deselected means power down state of which stand-by current depends on cycle time. -5- May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM TRUTH TABLES SYNCHRONOUS TRUTH TABLE CS1 CS2 CS2 ADV WRITE CLK ADDRESS ACCESSED OPERATION H X X ADSP ADSC X L X X ↑ N/A Not Selected L L X L X X X ↑ N/A Not Selected L X H L X X X ↑ N/A Not Selected L L X X L X X ↑ N/A Not Selected L X H X L X X ↑ N/A Not Selected L H L L X X X ↑ External Address Begin Burst Read Cycle L H L H L X L ↑ External Address Begin Burst Write Cycle L H L H L X H ↑ External Address Begin Burst Read Cycle X X X H H L H ↑ Next Address Continue Burst Read Cycle H X X X H L H ↑ Next Address Continue Burst Read Cycle X X X H H L L ↑ Next Address Continue Burst Write Cycle H X X X H L L ↑ Next Address Continue Burst Write Cycle X X X H H H H ↑ Current Address Suspend Burst Read Cycle H X X X H H H ↑ Current Address Suspend Burst Read Cycle X X X H H H L ↑ Current Address Suspend Burst Write Cycle H X X X H H L ↑ Current Address Suspend Burst Write Cycle Notes : 1. X means "Don′t Care". 2. The rising edge of clock is symbolized by ↑. 3. WRITE = L means Write operation in WRITE TRUTH TABLE. WRITE = H means Read operation in WRITE TRUTH TABLE. 4. Operation finally depends on status of asynchronous input pins(ZZ and OE). WRITE TRUTH TABLE (x36) GW BW WEa WEb WEc WEd OPERATION H H X X X X READ H L H H H H READ H L L H H H WRITE BYTE a H L H L H H WRITE BYTE b H L H H L L WRITE BYTE c and d H L L L L L WRITE ALL BYTEs L X X X X X WRITE ALL BYTEs Note : 1. X means "Don′t Care". 2. All inputs in this table must meet setup and hold time around the rising edge of CLK(↑). WRITE TRUTH TABLE(x18) GW BW WEa WEb OPERATION H H X X READ H L H H READ H L L H WRITE BYTE a H L H L WRITE BYTE b H L L L WRITE ALL BYTEs L X X X WRITE ALL BYTEs Note : 1. X means "Don′t Care". 2. All inputs in this table must meet setup and hold time around the rising edge of CLK(↑). -6- May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM PASS-THROUGH TRUTH TABLE PREVIOUS CYCLE OPERATION PRESENT CYCLE WRITE OPERATION NEXT CYCLE CS1 WRITE OE Write Cycle, All bytes Address=An-1, Data=Dn-1 All L Initiate Read Cycle Address=An Data=Qn-1 for all bytes L H L Read Cycle Data=Qn Write Cycle, All bytes Address=An-1, Data=Dn-1 All L No new cycle Data=Qn-1 for all bytes H H L No carryover from previous cycle Write Cycle, All bytes Address=An-1, Data=Dn-1 All L No new cycle Data=High-Z H H H No carryover from previous cycle Write Cycle, One byte Address=An-1, Data=Dn-1 One L Initiate Read Cycle Address=An Data=Qn-1 for one byte L H L Read Cycle Data=Qn Write Cycle, One byte Address=An-1, Data=Dn-1 One L No new cycle Data=Qn-1 for one byte H H L No carryover from previous cycle Note : 1. This operation makes written data immediately available at output during a read cycle preceded by a write cycle. ABSOLUTE MAXIMUM RATINGS* PARAMETER SYMBOL RATING UNIT Voltage on V DD Supply Relative to VSS VDD -0.3 to 4.6 V Voltage on V DDQ Supply Relative to VSS VDDQ VDD V Voltage on Input Pin Relative to VSS VIN -0.3 to 4.6 V Voltage on I/O Pin Relative to VSS VIO -0.3 to VDDQ+0.5 V Power Dissipation PD 1.6 W Storage Temperature TSTG -65 to 150 °C Operating Temperature TOPR 0 to 70 °C Storage Temperature Range Under Bias TBIAS -10 to 85 °C *Note : Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. OPERATING CONDITIONS at 3.3V I/O(0°C ≤ TA ≤ 70°C) PARAMETER Supply Voltage Ground SYMBOL MIN Typ. MAX UNIT VDD 3.135 3.3 3.465 V VDDQ 3.135 3.3 3.465 V VSS 0 0 0 V OPERATING CONDITIONS at 2.5V I/O(0°C ≤ TA ≤ 70°C) PARAMETER Supply Voltage Ground SYMBOL MIN Typ. MAX UNIT VDD 3.135 3.3 3.465 V VDDQ 2.375 2.5 2.9 V VSS 0 0 0 V CAPACITANCE*(TA=25°C, f=1MHz) PARAMETER Input Capacitance Output Capacitance SYMBOL TEST CONDITION MIN MAX UNIT CIN VIN=0V - 6 pF COUT VOUT=0V - 8 pF *Note : Sampled not 100% tested. -7- May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM DC ELECTRICAL CHARACTERISTICS(VDD=3.3V+0.165V/-0.165V, TA=0°C to +70°C) PARAMETER SYMBOL Input Leakage Current(except ZZ) IIL VDD =Max ; VIN=VSS to VDD Output Leakage Current IOL Output Disabled, VOUT=VSS to VDDQ Operating Current ICC ISB Standby Current ISB1 ISB2 TEST CONDITIONS MIN MAX UNIT -2 +2 µA µA -2 +2 -14 - 400 ZZ≤VIL , Cycle Time ≥ tCYC Min -11 - 380 -10 - 350 Device deselected, IOUT=0mA, -14 - 130 ZZ≤VIL, f=Max, All Inputs≤0.2V or ≥ -11 - 130 VDD-0.2V -10 - 120 - 30 mA - 30 mA Device Selected, IOUT=0mA, Device deselected, IOUT=0mA, ZZ≤0.2V, f =0, All Inputs=fixed (VDD-0.2V or 0.2V) Device deselected, IOUT=0mA, ZZ≥VDD-0.2V, f=Max, All Inputs≤VIL or ≥VIH NOTES mA 1,2 mA Output Low Voltage(3.3V I/O) VOL IOL=8.0mA - 0.4 V Output High Voltage(3.3V I/O) VOH IOH=-4.0mA 2.4 - V Output Low Voltage(2.5V I/O) VOL IOL=1.0mA - 0.4 V Output High Voltage(2.5V I/O) VOH IOH=-1.0mA Input Low Voltage(3.3V I/O) VIL Input High Voltage(3.3V I/O) Input Low Voltage(2.5V I/O) Input High Voltage(2.5V I/O) 2.0 - V -0.3* 0.8 V VIH 2.0 VDD+0.5** V VIL -0.3* 0.7 V VIH 1.7 VDD+0.5** V 3 3 Notes : 1. Reference AC Operating Conditions and Characteristics for input and timing. 2. Data states are all zero. 3. In Case of I/O Pins, the Max. VIH=VDDQ+0.3V VIH VSS VSS- 1.0V 20% tCYC(MIN) TEST CONDITIONS (VDD=3.3V+0.165V/-0.165V,VDDQ=3.3V+0.165/-0.165V or VDD=3.3V+0.165V/-0.165V,VDDQ=2.5V+0.4V/-0.125V, TA=0to70°C) PARAMETER VALUE Input Pulse Level(for 3.3V I/O) 0 to 3.0V Input Pulse Level(for 2.5V I/O) 0 to 2.5V Input Rise and Fall Time(Measured at 20% to 80% for 3.3V I/O) 1.0V/ns Input Rise and Fall Time(Measured at 20% to 80% for 2.5V I/O) 1.0V/ns Input and Output Timing Reference Levels for 3.3V I/O 1.5V Input and Output Timing Reference Levels for 2.5V I/O VDDQ/2 Output Load See Fig. 1 -8- May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM Output Load(B), (for tLZC, tLZOE, tHZOE & tHZC) Output Load(A) +3.3V for 3.3V I/O /+2.5V for 2.5V I/O RL=50Ω Dout Zo=50Ω 30pF* VL=1.5V for 3.3V I/O VDDQ/2 for 2.5V I/O 319Ω / 1667Ω Dout 353Ω / 1538Ω 5pF* * Including Scope and Jig Capacitance Fig. 1 AC TIMING CHARACTERISTICS(VDD=3.3V+0.165V/-0.165V, TA=0°C to +70°C) PARAMETER SYMBOL -14 MIN -11 MAX MIN -10 MAX MIN MAX UNIT Cycle Time tCYC 7.2 - 8.5 - 10 - ns Clock Access Time tCD - 4.0 - 4.2 - 4.5 ns Output Enable to Data Valid tOE - 4.0 - 4.2 - 4.5 ns Clock High to Output Low-Z tLZC 0 - 0 - 0 - ns tOH 1.5 - 1.5 - 1.5 - ns Output Enable Low to Output Low-Z Output Hold from Clock High tLZOE 0 - 0 - 0 - ns Output Enable High to Output High-Z tHZOE - 3.5 - 3.5 - 4.0 ns Clock High to Output High-Z tHZC 1.5 3.5 1.5 3.5 1.5 4.0 ns Clock High Pulse Width tCH 2.5 - 2.5 - 3.0 - ns Clock Low Pulse Width tCL 2.5 - 2.5 - 3.0 - ns Address Setup to Clock High tAS 2.0 - 2.0 - 2.0 - ns Address Status Setup to Clock High tSS 2.0 - 2.0 - 2.0 - ns Data Setup to Clock High tDS 2.0 - 2.0 - 2.0 - ns Write Setup to Clock High (GW, BW, WEX) tWS 2.0 - 2.0 - 2.0 - ns Address Advance Setup to Clock High tADVS 2.0 - 2.0 - 2.0 - ns Chip Select Setup to Clock High tCSS 2.0 - 2.0 - 2.0 - ns Address Hold from Clock High tAH 0.5 - 0.5 - 0.5 - ns Address Status Hold from Clock High tSH 0.5 - 0.5 - 0.5 - ns Data Hold from Clock High tDH 0.5 - 0.5 - 0.5 - ns Write Hold from Clock High (GW, BW, WEX) tWH 0.5 - 0.5 - 0.5 - ns Address Advance Hold from Clock High tADVH 0.5 - 0.5 - 0.5 - ns Chip Select Hold from Clock High tCSH 0.5 - 0.5 - 0.5 - ns ZZ High to Power Down tPDS 2 - 2 - 2 - cycle ZZ Low to Power Up tPUS 2 - 2 - 2 - cycle Notes : 1. All address inputs must meet the specified setup and hold times for all rising clock edges whenever ADSC and/or ADSP is sampled low and CS is sampled low. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected. 2. Both chip selects must be active whenever ADSC or ADSP is sampled low in order for the this device to remain enabled. 3. ADSC or ADSP must not be asserted for at least 2 Clock after leaving ZZ state. 4. At any given voltage and temperature, tHZC is less than tLZC -9- May 1999 Rev 3.0 - 10 - Data Out OE ADV CS WRITE ADDRESS ADSC ADSP CLOCK tCSS tAS tSS A1 tADVS tCSH tWS tAH tSH Q1-1 A2 tHZOE tSH Q2-1 tCD tOH Q2-2 A3 Q2-3 (ADV INSERTS WAIT STATE) BURST CONTINUED WITH NEW BASE ADDRESS tCYC tCL NOTES : WRITE = L means GW = L, or GW = H, BW = L, WEx = L CS = L means CS1 = L, CS2 = H and CS2 = L CS = H means CS1 = H, or CS1 = L and CS2 = H, or CS1 = L, and CS2 = L tLZOE tOE tADVH tWH tSS tCH TIMING WAVEFORM OF READ CYCLE Q2-4 Q3-1 Q3-2 Q3-3 Undefined Don′t Care Q3-4 tHZC K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM May 1999 Rev 3.0 - 11 - Data Out Data In OE ADV CS WRITE ADDRESS ADSC ADSP CLOCK Q0-3 tCSS tAS tSS tCSH tHZOE Q0-4 A1 tAH tSH D1-1 tCL tCYC tCH A2 D2-1 D2-2 (ADV SUSPENDS BURST) D2-2 D2-3 (ADSC EXTENDED BURST) TIMING WAVEFORM OF WRTE CYCLE D2-4 D3-1 A3 tDS tADVS tWS tSS D3-2 tDH tADVH tWH tSH D3-3 Undefined Don′t Care D3-4 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM May 1999 Rev 3.0 - 12 - Data Out Data In OE ADV CS WRITE ADDRESS ADSP CLOCK tHZC tSS A1 tSH tLZC tCD tAS Q1-1 A2 tHZOE tDS tADVS D2-1 tCL tWS tCYC tAH tCH tDH tADVH tWH tOE tLZOE A3 Q2-1 Q3-1 Q3-2 tOH Q3-3 TIMING WAVEFORM OF COMBINATION READ/WRTE CYCLE(ADSP CONTROLLED , ADSC=HIGH) Undefined Don′t Care Q3-4 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM May 1999 Rev 3.0 - 13 - Data In Data Out OE ADV CS WRITE ADDRESS ADSC CLOCK tCSS tSS A1 tCSH tSH tOE tLZOE A2 Q1-1 A3 Q2-1 A4 Q3-1 Q4-1 tHZOE D5-1 A5 tDS tWS D6-1 A6 tDH tWH D7-1 A7 tCL tWS tCYC tCH A8 tCD tWH Q7-1 A9 TIMING WAVEFORM OF SINGLE READ/WRITE CYCLE(ADSC CONTROLLED , ADSP=HIGH) Q8-1 Undefined Don′t Care Q9-1 tOH K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM May 1999 Rev 3.0 - 14 - ZZ Data Out Data In OE ADV CS WRITE ADDRESS ADSC ADSP CLOCK tCSS tAS tSS A1 tCSH tAH tSH tOE tLZOE Q1-1 ZZ Setup Cycle tPDS tHZC Sleep State ZZ Recovery Cycle tPUS tCL tCYC tCH TIMING WAVEFORM OF POWER DOWN CYCLE tWS Normal Operation Mode tHZOE A2 D2-1 tWH Undefined Don′t Care D2-2 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM APPLICATION INFORMATION DEPTH EXPANSION The Samsung 256Kx36 Synchronous Pipelined Burst SRAM has two additional chip selects for simple depth expansion. This permits easy secondary cache upgrades from 256K depth to 512K depth without extra logic. I/O[0:71] Data Address A[0:18] A[18] A[0:17] A[18] A[0:17] Address Data CLK CS2 CS2 CS2 CS2 CLK Microprocessor Address ADSC CLK Address Data 256Kx36 SPB SRAM WEx OE Cache Controller ADSC WEx (Bank 0) 256Kx36 SPB SRAM (Bank 1) OE CS1 CS1 ADV CLK ADV ADSP ADSP ADS INTERLEAVE READ TIMING (Refer to non-interleave write timing for interleave write timing) (ADSP CONTROLLED , ADSC=HIGH) Clock tSS tSH ADSP tAS ADDRESS [0:n*] tAH A2 A1 tWS tWH WRITE tCSS tCSH CS1 Bank 0 is selected by CS2, and Bank 1 deselected by CS2 An+1* tADVS Bank 0 is deselected by CS2 , and Bank 1 selected by CS2 tADVH ADV OE tOE Data Out (Bank 0) tLZOE tHZC Q1-1 Q1-2 Q1-3 Q1-4 tCD tLZC Data Out (Bank 1) *Notes : n = 14 32K depth , 16 128K depth , 18 512K depth 15 64K depth 17 256K depth Q2-1 Q2-2 Q2-3 Q2-4 Don′t Care - 15 - Undefined May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM APPLICATION INFORMATION DEPTH EXPANSION The Samsung 512Kx18 Synchronous Pipelined Burst SRAM has two additional chip selects for simple depth expansion. This permits easy secondary cache upgrades from 512K depth to 1M depth without extra logic. I/O[0:71] Data Address A[0:19] A[0:18] A[19] A[19] Address Data CLK Microprocessor CS2 CS2 CS2 ADSC CLK WEx OE Cache Controller Address Data CS2 CLK Address A[0:18] 512Kx18 SPB SRAM CLK 512Kx18 SPB SRAM ADSC WEx (Bank 0) CS1 CS1 ADV (Bank 1) OE ADV ADSP ADSP ADS INTERLEAVE READ TIMING (Refer to non-interleave write timing for interleave write timing) (ADSP CONTROLLED , ADSC=HIGH) Clock tSS tSH ADSP tAS ADDRESS [0:n*] tAH A2 A1 tWS tWH WRITE tCSS tCSH CS1 Bank 0 is selected by CS2, and Bank 1 deselected by CS2 An+1* tADVS Bank 0 is deselected by CS2 , and Bank 1 selected by CS2 tADVH ADV OE tOE Data Out (Bank 0) tLZOE tHZC Q1-1 Q1-2 Q1-3 Q1-4 tCD tLZC Data Out (Bank 1) *Notes : n = 14 32K depth , 16 128K depth , 18 512K depth , 15 64K depth 17 256K depth 19 1M depth Q2-1 Q2-2 Q2-3 Q2-4 Don′t Care - 16 - Undefined May 1999 Rev 3.0 K7A803601M K7A801801M 256Kx36 & 512Kx18 Synchronous SRAM PACKAGE DIMENSIONS 100-TQFP-1420A Units ; millimeters/Inches 0~8° 22.00 ±0.30 0.127 +- 0.10 0.05 20.00 ±0.20 16.00 ±0.30 14.00 ±0.20 0.10 MAX (0.83) 0.50 #1 0.65 ±0.10 (0.58) 0.30 ±0.10 0.10 MAX 1.40 ±0.10 1.60 MAX 0.50 ±0.10 - 17 - 0.05 MIN May 1999 Rev 3.0