Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 INTRODUCTION 16−TSSOP−0044 The KB8825 is a high performance dual frequency synthesizer with two integrated high frequency pre-scalers for RF operation up to 1.1 GHz. The KB8825 is composed of modulus pre-scalers providing 64 and 66, no dead-zone PFD, selectable charge pump current, selectable power down mode circuits, lock detector output, and loop filter’s time constant switch. It is fabricated using the ASP5HB Bi-CMOS process and is available 16-TSSOP with surface mount plastic packaging. Serial data is transferred into the KB8825 via three-wire interface (CK, DATA, EN). FEATURES • Two systems for receiver and transmitter • Very low operating current consumption: Icc = Typ. 5.5mA @ 3.0V • Low operating power supply voltage : 2.2 ~ 5.5V ( 200MHz ~ 550MHz Operating ) 2.7 ~ 3.6V ( 550MHz ~ 1.1GHz Operating ) • Modulus pre-scaler: 64 / 66 • No dead-zone PFD • Colpitt type local oscillation • Selectable charge pump current • Selectable power down mode • TSSOP 16-pin package (0.65 mm pitch) ORDERING INFORMATION Device Package Operating Temperature +KB8825 16−TSSOP−0044 −30 °C to + 85 °C +: New product APPLICATIONS • Cordless telephone systems • Portable wireless communications (PCS) • Wireless Local Area Networks (WLANs) • Other wireless communication systems 1 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL BLOCK DIAGRAM Fin1 1 VCC 1/2 Prescaler 1 32, 33 Prescaler 1 32, 33 Buffer Buffer 2 CP1 3 GND 4 LD 5 CK 6 DATA 7 EN Pre_Amp Charge Pump 1/2 2 Channel 1 Programable Divider Channel 2 Programable Divider Lock Detector 6 Control Circuit 17 12 Reference Divider Charge Pump 14 CP2 Phase Detector 13 GND Switch 12 Local OSC 11 OSCI Buffer PIN CONFIGURATION Fin1 1 16 VCC 2 15 VCC CP1 3 14 CP2 GND 4 13 GND LD 5 12 SW CK 6 11 OSCI DATA 7 10 OSCO EN 8 9 BO 16TSSOP 2 SW 10 OSCO 1/2 8 KB8825 16 Fin2 15 VCC 2 Phase Detector Pre_Amp Fin2 9 BO Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 PIN DESCRIPTION Pin No. Symbol I/O Description 1 Fin1 I Input terminal of channel 1 RF signal. 2, 15 Vcc − Power supply voltage input. PIN2 and PIN15 are connected together. 3 CP1 O Output terminal of channel 1 charge pump. Charge pump is constant current output circuit, and output current is selected by input serial data. 4, 13 GND − Terminal of GND. PIN4 and PIN13 are connected in common. 5 LD O Output terminal of lock detection. It is the open drain output. 6 CK I Input terminal of clock. 7 DATA I Input terminal of data. 8 EN I Input terminal of enable signal. 9 BO O Output terminal of buffer amplifier. The signal of local oscillation is output through the buffer amplifier. 10 OSCO O Output terminal of local oscillation signal. 11 OSCI I Input terminal of local oscillation signal. In case of external input, connecting it to this terminal. 12 SW O Switchover terminal for the time constant of loop filter. It is an open drain output. If you don’t switch the time constant of loop filter, general output is available. 14 CP2 0 Output terminal of channel 2 charge pump. Charge pump is a constant current output circuit, and the output current is selected by input serial data. 16 Fin2 I Input terminal of channel 2 RF signal. ABSOLUTE MAXIMUM RATINGS Characteristic Symbol Value Unit Power Supply Voltage Vcc 6 V Power Dissipation PD 600 mW Operating temperature TOPR −30 ~ + 85 °C Storage temperature TSTG −55~ +150 °C Take care ! ESD sensitive device 3 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL ELECTRICAL CHARACTERISTICS (Ta = 25°C, VCC = 3V, unless otherwise specified) Characteristic Symbol Test Conditions Min. Typ. Max. Unit Fin1=Fin2= 200MHz ~ 550MHz 2.2 3.0 5.5 V Fin1=Fin2= 550MHz ~ 1.1GHz 2.7 3.0 3.6 V 3.5 5.5 7.5 mA − 0 10 µA 200 − 1100 MHz Vcc=2.2V − 15 − 0 Vcc=3.0V − 15 − 0 Vcc=5.5V − 10 − 0 Vcc=2.2V −15 − 0 Vcc=3.0V −15 − 0 Vcc=5.5V − 10 − 0 Vcc=2.7V − 10 − 0 Vcc=3.0V − 10 − 0 Vcc=3.6V − 10 − 0 5 - 25 Vcc=2.2V − 10 0 5 Vcc=3.0V − 10 0 5 Vcc=5.5V 0 - 5 Vcc=2.2V − 10 0 5 Vcc=3.0V − 10 0 5 Vcc=5.5V −5 0 5 Operating Power supply voltage VCC Operating current consumption ICC Fin1=Fin2=1.1GHz/ -5dBm input Standby current ISB Standby mode Fin operating frequency Fin Fin1 = Fin2 = − 5dBm Fin1 = Fin2 = 200MHz Fin input sensitivity Fin Fin1 = Fin2 = 550MHz Fin1 = Fin2 = 1.1GHz OSCI operating frequency Fosc VFin = 0dBm, sinewave fosc = 10MHz OSCI input voltage Vosc fosc = 20MHz dBm MHz dBm Serial data input high voltage (CK, DATA, EN) VIH VCC = 2.2 to 5.5V VCC − 0.4 − − V Serial data input low voltage (CK, DATA, EN) VIL VCC = 2.2 to 5.5V − − 0.4 V ICP1 CP1 = 0, CP2 = 0 VCP = 1.5 V – ± 100 − µA ICP2 CP1 = 0, CP2 = 1 VCP = 1.5V – ± 200 − µA ICP3 CP1 = 1, CP2 = 0 VCP = 1.5V − ± 400 − µA ICP4 CP1 = 1, CP2 = 1 VCP = 1.5V − ± 800 − µA ICPL Standby mode, Vcp = 1.5V −1 − +1 µA Charge pump output current Charge pump leakage 4 Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 FUNCTIONAL DESCRIPTIONS SERIAL DATA INPUT AND TIMING CK (Pin6), DATA (Pin7), EN (Pin8) terminals in KB8825 are used for MICOM (MPU) serial data interface (MSB: 1st input data; LSB: Last input data). Serial data controls the programmable reference divider, programmable divider (CH1), programmable divider (CH2), and control latch separately by means of group code. Binary serial data is entered via the DATA pin. One bit of data is shifted into the internal shift register on the rising edge of the clock. When EN pin is high, stored data is latched. The three terminals, CK, DATA, and EN, contain Schmitt trigger circuits to keep the data from errors caused by noise, etc. < Notice > 1. When power supply of KB8825 is disconnected, CLK, DATA, EN port from MCU should be pulled low. 2. When power goes up first, R counter data should be entered earlier than N1 and N2 counter data. 3. When power goes up first, control data should be entered earlier than N1 and N2 counter data. ≥ 1us CK DATA MSB N1 (R1) ≥ 0.2us ≥ 0.2us ≥ ≥0.2us N2 (R2) LSB N3 (R3) N16 (R11) N17 (R12) GC2 GC1 ≥0.1us ≥ 0.1us MSB EN ≥ 0.2us ≥ 0.2us Figure 1. NOTE: Start data input with MSB first SERIAL DATA GROUP AND GROUP CODE The IC can be controlled through 4 kinds of group selection. Each group is identified by selective a 2-bit group code given below. Serial Bits Group Location GC1 (LSB) GC2 (LSB-1) 0 0 Control Latch 0 1 Ch 1 N Latch 1 0 Ch 2 N Latch 1 1 OSC R Latch 5 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL CONTROL LATCH The control register executes the following functions: • Mode selection (H: test mode, L: normal mode) • Charge pump’s polarity and output current selection for each channel. • Output state selection for Lock Detector. • Standby control of each channel and reference divider. • ON / OFF control in filter switch. MSB T CH1 CP CP1 CH2 CP2 SB1 CP1 LSB CP2 SB2 SBR LD1 LD2 SW GC2 "0" GC1 "0" Group Code Figure 2. Bit Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Name T CP CP1 CP2 SB1 CP1 CP2 Description test mode charge pump out polarity channel 1 charge pump output current channel 1 charge pump output current channel 1 standby channel 2 charge pump output current channel 2 charge pump output current Bit Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Name SB2 SBR LD1 LD2 SW GC2 GC1 Description channel 2 standby reference divider standby lock detector control 1 lock detector control 2 filter switch group code “0” group code “0” 6 Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 CHARGE PUMP OUTPUT POLARITY (CP) In normal operation, the CP should be “0”. In reverse operation, the CP should be “1”. Depending upon VCO characteristics, CP should be set accordingly; When VCO characteristics are like (1), CP should be set low When VCO characteristics are like (2), CP should be set high. VCO Characteristics (1) VCO Output Frequency (2) VCO Input Voltage CHARGE PUMP OUTPUT CURRENT (CP1, CP2) The KB8825 includes a constant current output type charge pump circuit. Output current is varied according to control bit “CP1” and “CP2”. In order to get high speed lock-up, select the best charge pump output current. Control Bit CP1 CP2 Charge Pump Output Current 0 0 ±100 µA 0 1 ±200 µA 1 0 ±400 µA 1 1 ±800 µA 7 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL TEST MODE AND LOCK DETECTOR OUTPUT (T, LD1, LD2) When T is normal “0”, LD (Pin5)state is varied by controlling “SB1”, “SB2”, “LD1” and “LD2”. When T is high “1”, LD (Pin5) state is changed to be useful for test T SB1 SB2 0 0 1 0 0 1 1 1 0 1 0 8 1 LD1 LD2 LD Output State 0 0 low 0 1 channel2 1 0 channel1 1 1 channel1. AND. channel2 0 0 low 0 1 high 1 0 channel1 1 1 channel1 0 0 low 0 1 channel2 1 0 high 1 1 channel2 0 0 low 0 1 high 1 0 high 1 1 high 0 0 low 0 1 pres2 1 0 fpll2 1 1 fref 0 0 div4 0 1 pres1 1 0 fpll1 1 1 fosc/2 1 1 × × low 0 0 × × low Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 LOCK DETECTOR OUTPUT When the phase comparator detects a phase difference, LD (Pin5) outputs “L”. When the phase comparator locks, LD outputs “H”. On standby, it outputs “H”. When T is less than 2/fosc (T<2 /fosc ) for more than three cycles of reference divider output as in the figure below, the lock detector outputs “H”. A B Reference Divider output Channel Divider output T Charge pump output T<2/fosc Lock detector output Figure 3. Lock Detector Output fosc: OSCI operating frequency (LOCAL OSC). T: time difference of the pulse between reference divider output and channel divider output. A = B = Number of divisions by reference divider fosc 2 fosc (s) (s) PROGRAMMABLE STANDBY MODE (SB1, SB2, SBR) Standby mode can be controlled by 3-control bits such as SB1, SB2 and SBR. SB1 and SB2 can control standby mode of channel 1 and channel2. The “SBR” bit can do ON / OFF control of reference divider. Control Bit Standby Mode State SB1 SB2 SBR CH1 CH2 REF Mode Status 0 0 × ON ON ON Inter locking Mode 0 1 × ON OFF ON CH1 Locking Mode 1 0 × OFF ON ON CH2 Locking Mode 1 1 0 OFF OFF ON REF On Mode 1 1 1 OFF OFF OFF Standby Mode 9 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL FILTER SWITCH CONTROL (SW) The operation mode of the SW terminal is set by bit “SW”. SW control is useful for switching the time canstant of the loop filter. Output type of this terminal is an open drain output. High lock mode or normal lock mode can be used, taking advantage of filter switch control (SW) with the charge pump output current. When fast lock function can’t be used, normal lock mode is available. Control Bits Operation Mode SW CP1 CP2 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 (SW and LPF example) The third order LPF Normal Lock Mode CP1 R R SW R High Lock Mode GND CRYSTAL OSCILLATOR CIRCUIT (OSCI, OSCO) AND BUFFER OUT (BO) External capacitors C1, C2, C3, and C4 are required to set the proper crystal’s load capacitance and oscillation frequency as shown in figure 4. The value of the capacitors is dependent on the crystal chosen. The BO (Pin9) outputs local oscillation signal with buffer amplifier. This terminal (Pin9) can be applied to the 2nd mixer input C4 1000pF OSCI OSCI C1 C2 OSCO OSCO 1000pF 1000pF BO 2'nd MIX or OPEN BO Figure 4. 10 Reference Oscillator C3 C2 2'nd MIX or OPEN Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 PROGRAMMABLE REFERENCE COUNTER This block generates the reference frequency for the PLL. The reference divider is composed of 12-bit reference divider and a half fixed divider Sending certain data to the reference divider allows the setting of any of 6 to 8190 divisions (multiple of two). MSB R1 LSB R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 Division Ratio of the R counter, R GC2 "1" GC1 "1" Group Code R = R1 × 20 + R2 × 21 + … + R12 × 211 Division ratio: 2 × R = 2 × (3~4095) = 6 ~ 8190 Data is shifted in MSB first. Division Ratio R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 3 0 0 0 0 0 0 0 0 0 0 1 1 4 0 0 0 0 0 0 0 0 0 1 0 0 • • • • • • • • • • • • • 4095 1 1 1 1 1 1 1 1 1 1 1 1 Example) A 21.25MHz X-tal oscillator is connected, and divided into 25kHz steps. (Reference frequency is 12.5kHz) 21.25 MHz ÷ 12.5 kHz = 1700 1700 = 2 × R R = (850)10 = (1101010010)2 MSB 0 LSB 1 0 0 1 0 1 0 1 1 0 0 1 1 11 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL CHANNEL 1, CHANNEL 2 PROGRAMMABLE N COUNTER These programmable dividers are composed of a 5-bit swallow counter (5-bit programmable divider), 12-bit programmable main counter, and two-modulus prescalers providing 64 and 66 divisions. Sending certain data to the swallow counter and the 12-bit programmable main counter allows the setting of any of 2048 to 262142 divisions (multiple of two). The 12-bit programmable divider and swallow counter are set by each channel; each channel is identified by a group code. MSB N1 Swallow counter N2 N3 N4 LSB main counter N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 Division Ratio of the N Counter, N N18 N19 Group Code CH1 = "10" CH2 = "01" Figure 5. 5-BIT SWALLOW COUNTER DIVISION RATIO (A COUNTER) A = N1 × 20 + N2 × 21 … N5 × 24 Division ratio: 0 to 31, B ≥ A Division Ratio (A) N5 N4 N3 N2 N1 0 0 0 0 0 0 1 0 0 0 0 1 • • • • • • 31 1 1 1 1 1 12-BIT MAIN COUNTER DIVISION RATIO (B COUNTER) B = N6 × 20 + N7 × 21 + N7 × 22 … N17× 211 Division ratio: 3 to 4095 Data is shifted in MSB first Division Ratio (B) N17 N16 N15 N14 N13 N12 N11 N10 N9 N8 N7 N6 3 0 0 0 0 0 0 0 0 0 0 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 • • • • • • • • • • • • • 4095 1 1 1 1 1 1 1 1 1 1 1 1 12 Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 Channel1 and 2 Programmable Counter Division Ratio, N N = 2 × (32 × B + A), B ≥ A Division ratio: 192 ~ 262142 Example) A Signal of 453 MHz is entered into Fin1, and divided into 25 kHz steps. (Reference frequency is 12.5 kHz) 453 MHz ÷ 12.5 kHz = 36240 36240 = 2 × (32 × B + A) ∴ B = (1132)10 = (10001101100)2, A = (16)10 = (10000)2 MSB LSB 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 0 Example) A Signal of 462.9 MHz is entered into Fin2, and divided into 25 kHz step. (Reference frequency is 12.5 kHz) 462.9 MHz ÷ 12.5 kHz = 37032 37032 = 2 × (32 × B + A) ∴ B = (1157)10 = (10010000101)2, A = (8)10 = (01000)2 MSB 0 LSB 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 PHASE DETECTOR AND CHARGE PUMP CHARACTERISTICS Phase difference detection Range: -2 π ~ +2 π When SW = Low fr fp LD CPO fr > fp fr = fp fr < fp fr < fp fr < fp Figure 6. 13 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL APPLICATION CIRCUIT ( HANDSET ) RX_VCC RX_VCC 2 3 2 3 9 1 10 1 RSSI 1 IIFLT2 7 2 IFLT3 5 IFLT4 4 6 OSC DECPL 8 1 2 2 1 100p 1 1 1 1 1 2 R18 2 2 2 1K 2 2 2 1 1 R212 OSCI 7 1 2 R31R30R29 1K 1K 1K 1 3 1 1 1 2 L10 C4228 TP6 2 1 2 Q10 3p CP2 R40 1 5.6K 23 2 2 R36 1 2 1 R35 2 1 2 1 1SV239 10N 1 2 1 C55 1 2 220N 2 1 R37 2 1 560 2 1 R38 C57 15K 1N C54 10N 1 C56 C60 2p R34 30K D2 2 2p 1 2 0.5X1.0X1.5t 7.5K 1 10K 2 1p 1 220 10K L9 1 C63 2 R41 C59 1 1 2 R39 3p 2 2 3p 2 1 2p C58 1 1p C62 1 C65 2 2 1 C61 1 Q9 C4228 2 1 1 220N 2 C67 2 2 C53 C52 100p 2 RX_VCC 2 1 3 1 100p 1 100 1 1 R32 2 2 1 2 2 2 8 1 2 2 1 47p EN DATA 5 2 1 1 1 1 2 BO 4 RX_VCC TX_VCC 18K C68 OSCO 3 6 GND 2 LD CP1 1 CLK VCC 2 51 L11 R43 C70 9 S/W FIN1 1 TX VCO 220N 5.6K 10 11 1 1 1 R33 1 15p C64 100N R44 12 2 2 2 2 GND 1 1 2 KB8825 RX_VCO TX_VCC 1 1N 100 L6 220 CP2 1 2 R19 C36 220N 0.5X1.0X1.5t C66 VCC 2 FIN2 1 1 1 2 2 2p R421 C34 2 51K C41 220N 13 8.2N 14 R20 16 8.2N 15 C38 C37 1SV239 2 47p 2 2.2K 2 D1 1 2 10K 1 10K 2 1 2 1p 1 1 C71 2 2 2 2 1 C44 3p 2p R23 R25 R22 1 C40 1 3p 2p C35 1 C39 1 1 1 1 N.A 2 1 14 3 1 IFLT1 3 100N1.5N 1 1 3 C43 2 C73 39p 2~6p Y1 C69 Q11 2 C32 C31 C33 C27C26 1 2 2 1 TX_VCO1 1 C4228 470 10.63MHz C42 2 220 L12 RFIN+ VCC 2 1 1 2 2 2 925~927MHz 100N 1 2 1 1 2 Q7 C4228 2p C72 R16 1 1 15p 3p TX_VCC 220 1 100N 5.6K C45 1N 2 C29 4.7N 10K 1 C30 R17 CP1 R24 L7 2 L13 R45 RSSI AF_OUT C25 TP5 23 Q8 1 2 RX VCO RX_VCC C4228 C51C48 C74 11 13 RFIN- 2 1 220N 2 C46 100N 1 1 1 2 6p 2 560p 18K 2 1 15N 1 4 RX_VCO 12 14 TMC GND DEMO 1 C28 1 2 6 1 1 TP41 2 2 AFO AFLT2 AFLT1 2 R272 C47 C49 1 100 KA8532 2 1 2 1 4p U1 2 2 1 L8 R26 1 Q5 1 2 1 2 2 2 F2 SF X033H 1 2 5 3 Q6 KSC1623Y 2 R15 Q4 680 3.9nH 2 1 RSSI KSC1623Y RX_VCC 220 R28 7p 6.8K 100N 3 2 1 1 6p C50 1 6.8N TP3 1 R131 2 2 2 2 N.A 560 15 1 1 2 902~905MHz C75 16 1 2 10N 2 C1510.7MHz R7 10N C1 4.7K 1 C16 1 KSC2223Y C12 10K F1 2 1 6p C14 1N 2 2 2 1 2 8.2nH 22K 1 2 2p L15 L14 5p 1 6p C10 R6 10N R9 150p 3 4 SGM2016M 1 C7 L1 C76 6p C4228 C5 1 2 2 Q2 1 1 C4228 2 1 1 5p Q3 2 3 2 C13 2 2 2 1 3 Q1 1 2 2 2 2 L3 1 47K 220N 3.3uH 100K C24 1 2 1 1 R1 L4 C9 R4 1 C11 L5 1 2 C4 4.7K 2 10N L2 R2 1 2 2 1 10N ANT1 C8 1 C3 2 1 1 1 220 1 1 2 1 2 1 2 R3 2 C18 220N220 2.7K R11 C23 6.8K 2.2K R12 2 R10 C6 R5 220N 1 IF 1 1 10N 330 R14 1 1 1 1 TP2 C22 220p 1 TP11 1 AF_OUT 1 2 C17R8 C2 2 2 100p 1.2N 1 C20 C21 2 2 C19 1.5N CNT1 11 RX VCC 9 AF_OUT 7 GND GND 5 RSSI LDT TX VCC CLK 3 DATA 1 AF IN GND EN 12 10 8 6 4 2 Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 APPLICATION CIRCUIT ( BASESET ) RX_VCC RX_VCC 2 3 2 3 1 1 3 9 10 11 1 RSSI 1 IIFLT2 IFLT1 2 7 IFLT3 IFLT4 5 6 4 DECPL VCC OSC 8 1 2 2 1 C32 C31 100p 1 39p 1 1 C33 1~10p 1 1 C27C26 100N1.5N 2 R18 2 2 2 2 1 1.8K 2 2 23 Y1 1 1 10.63MHz 1 2 C42 2 2 C39 1 2 2 1 R212 1 1 R31R30R29 C52 2 2 RX_VCC CNT1 11 RX VCC 9 AF_OUT 7 GND GND 5 RSSI LDT CLK 3 TX VCC DATA 1 AF IN GND EN 12 10 8 6 4 2 2 2 2 2 1 C53 3 220N 1 1 2 2 Q10 2p 1 2 L15 C4228 TP6 2 1 C67 N.A 100p 1K 1K 1K 1 1 3 1 100p 1 2 2 100 1 1 R32 220N 1 2 2 1 47p 8 TX_VCC 2 2 2 C68 2 9 7 4 6 3 RX_VCC 51 1 1 1 1 1 EN 2 2 TX VCO 18K C70 BO GND 1 5 CP1 CLK VCC DATA FIN1 LD 1 1 R33 1 L14 R43 2 OSCO OSCI KB8825 C64 5.6K 10 11 12 S/W 100 RX_VCO 1 R421 TX_VCC 15p 100N GND 2 2 1 C66 R44 13 1 1 2 2 0.5X1.0X1.5t 220 CP2 1 2 R19 C36 220N L12 2 VCC 2 FIN2 1 1 2 2 1p 2 1 1N 51K C41 220N 14 8.2N 16 R20 15 C38 C37 8.2N C34 2 2 2 2.2K 2 47p 1 1 2 2 1p 1 1 C71 10K 1SV239 2p 10K 1 2 1 1 C44 2 D1 C40 R23 R25 1 3p 2 2 3p 2p 1 2 1 R22 1 1 1 C43 C35 1 1 3 1 2 1 2 Q7 C4228 TX_VCC Q11 2 RFIN+ 3 1 470 C69 L13 R16 1 1 15p 3p 220 C4228 1 100N 5.6K 1 TX_VCO1 1 C73 2 C29 4.7N 10K 1 2 1 2 4 2 925~927MHz 220N RSSI AF_OUT C25 CP1 L10 R24 2p C72 1 TP5 C45 220 2 2 2 1 C30 R17 1 6 1 1 Q8 1 R26 2 1N RFIN- GND 2 RX VCO RX_VCC L11 C74 12 AFO 1 C28 2 220N C4228 C51C48 R45 13 14 TMC 1 2 1 C46 18K 2 6p 100 1 DEMO 2 1 2 2 2 1 TP4 1 RX_VCO Q5 KSC1623Y 560p 100N L9 4p Q6 KSC1623Y 15N C47 C49 1 1 6.8K 2 KA8532 2 680 F2 SF X034B 1 2 5 3 100N 1 RSSI R131 2 2 1 2 1 R28 7p 1 6.8N U1 R272 1 220 C50 100K C24 TP3 1 R15 Q4 1 2 1 1 2 2 2 2 2 RX_VCC 3.9nH C75 AFLT2 AFLT1 2 N.A 560 R11 2 1 C1510.7MHz 10N 6p 902~905MHz 2 2.2K 2.7K 3 10N 2 15 1 C16 1 R7 C12 10K 16 1 2 F1 2 KSC2223Y 2 6p C14 1N C1 4.7K 1 22K 1 SGM2016M C10 R6 10N R9 150p 3 4 2 2 2 1 2 8.2nH C13 2 2p 1 2 1 C7 6p L7 L8 5p 6p C4228 C5 L6 C76 1 Q2 1 1 R1 5p C4228 2 1 Q1 1 3 2 2 Q3 2 1 2 1 220N 3.3uH 2 1 L4 1 2 2 2 ANT1 C9 2 3 1 C4 C11 L1 L2 47K L3 4.7K 2 10N R4 1 2 2 10N R2 1 2 1 2 1 1 C8 1 C3 2 1 1 1 220 1 1 2 1 2 1 2 220N C23 6.8K C18 220N220 R14 R12 2 2 1 R10 C6 R5 R3 1 1 IF 1 1 1 1 TP2 10N 330 C22 220p 1 TP11 1 AF_OUT 1 2 C17R8 C2 2 2 100p 1.2N 1 C20 C21 2 2 C19 1.5N CP2 R40 1 5.6K 23 2 2 2 R36 1 1 R35 2 1 30K 1SV239 10N 10N 1 C60 C55 1 1 2 2p C54 1 C56 2 D2 2 0.5X1.0X1.5t R34 1 2 2p 1 7.5K 2 L16 1 2p 2 C63 220 10K 1 R39 R41 C59 1 2 2 2 1 3p 3.5p 2 1p 2 1 1 2p C58 1 10K C62 1 C65 2 2 1 C61 1 Q9 C4228 220N 2 1 2 R37 1 560 2 1 R38 C57 15K 1N 2 1 15 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL CHARACTERISTIC GRAPH 800§Ë 400§Ë 200§Ë 100§Ë 100§Ë 200§Ë 400§Ë 800§Ë 16 Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 100§Ë 200§Ë 400§Ë 800§Ë 800§Ë 400§Ë 200§Ë 100§Ë 17 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL INPUT SENSITIVITY Vin1 (dBm) INPUT SENSITIVITY -INPUT FREQUENCY (Fin1) 30 20 10 0 . -10 -20 -30 -40 0 100 200 300 400 500 600 700 800 900 1000 1100 INPUT FREQUENCY Fin1 (MHz) INPUT SENSITIVITY Vin1 (dBm) INPUT SENSITIVITY - POWER SUPPLY VOLTAGE (Fin1) 30 20 10 0 500M_min -10 1100M_mi 500M_Max 1100M_Max -20 -30 -40 2.2 2.5 3 3.5 4 4.5 5 INPUT FREQUENCY Fin1 (MHz ) 18 5.5 6 Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 INPUT SENSITIVITY Vin2 (dBm) INPUT SENSITIVITY -INPUT FREQUENCY (Fin2) 30 20 10 0 -10 -20 -30 0 100 200 300 400 500 600 700 800 900 1000 1100 INPUT FREQUENCY Fin2 (MHz) INPUT SENSITIVITY - POWER SUPPLY VOLTAGE (Fin2) INPUT SENSITIVITY Vin2 (dBm) 30 20 10 0 500_min 500_Max -10 1 1 0 0 _ min 1100_Max -20 -30 -40 2.2 2.5 3 3.5 4 4.5 5 5.5 6 INPUT FREQUENCY Fin2 (MHz) 19 Final version ( 99.4.30 ) KB8825 1.1GHZ DUAL PLL X I N I N P U T S E N S IT IV IT Y 30 20 Vxin (dBm) 10 0 -1 0 -2 0 -3 0 -4 0 5 10 15 20 25 Fxin (M Hz ) CURRENT CONSUMPTION- POWER SUPPLY VOLTAGE CURRENT CONSUMPTION Icc (mA) 7 6 5 4 3 2 1 0 0 1 2 3 4 POWER SUPPLY VOLTAGE VCC (V) 20 5 6 Final version ( 99.4.30 ) 1.1GHZ DUAL PLL KB8825 NOTES 21