SAMSUNG KM718FV4021H-6

KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
Document Title
128Kx36 & 256Kx18 Synchronous Pipelined SRAM
Revision History
Draft Date
Remark
Rev. No.
History
Rev. 0.0
- Preliminary specification release
Rev. 0.1
- Change specification format.
No change was made in parameters.
April, 1997
Preliminary
Rev. 0.2
- Updated IDD, ISB and Input High Level.
Updated tKHKL, tKLKH, tKHQX, tKHQX1 and AC Test Conditions.
For JTAG, updated Vendor Definition and added tSVCH/tCHSX.
Jan. 1998
Preliminary
Rev. 1.0
- Final specification release
Dec. 1998
Preliminary
Final
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the
specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or cortact Headquarters.
-1-
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
128Kx36 & 256Kx18 Synchronous Pipelined SRAM
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
128Kx36 or 256Kx18 Organizations.
3.3V Core Power Supply.
LVTTL Input and Output Levels.
Differential, PECL Clock Inputs K, K.
Synchronous Read and Write Operation
Registered Input and Registered Output
Internal Pipeline Latches to Support Late Write.
Byte Write Capability(four byte write selects, one for each 9bits)
Synchronous or Asynchronous Output Enable.
Power Down Mode via ZZ Signal.
JTAG 1149.1 Compatible Test Access port.
119(7x17)Pin Ball Grid Array Package(14mmx22mm)
Cycle
Time
Access
Time
KM736FV4021H-5
5
2.5
KM736FV4021H-6
6
3.0
KM736FV4021H-7
7
3.5
KM718FV4021H-5
5
2.5
KM718FV4021H-6
6
3.0
KM718FV4021H-7
7
3.5
Organization
Part Number
128Kx36
256Kx18
Read
Address
Register
SA[0:16] or SA[0:17]
1
Write
Address
Register
CK
Latch
SS
SW
SW
Register
SW
Register
SWx
Register
SWx
Register
0
Row Decoder
FUNCTIONAL BLOCK DIAGRAM
Column Decoder
Write/Read Circuit
Latch
SWx
(x=a, b, c, d)
or (x=a, b)
128Kx36
or
256Kx18
Array
0
1
Data In
Register
SS
Register
SS
Register
Data Out
Register
G
ZZ
K
DQx[1:9]
(x=a, b, c, d)
or (x=a, b)
CK
K
PIN DESCRIPTION
Pin Name
Pin Description
K, K
Differential Clocks
SAn
Synchronous Address Input
Pin Name
VDDQ
M 1, M 2
Pin Description
Output Power Supply
Read Protocol Mode Pins ( M1=VSS, M2=VDD )
DQn
Bi-directional Data Bus
G
Asynchronous Output Enable
SW
Synchronous Global Write Enable
SS
Synchronous Select
SWa
Synchronous Byte a Write Enable
TCK
JTAG Test Clock
SWb
Synchronous Byte b Write Enable
TMS
JTAG Test Mode Select
SWc
Synchronous Byte c Write Enable
TDI
JTAG Test Data Input
SWd
Synchronous Byte d Write Enable
TDO
JTAG Test Data Output
ZZ
Asynchronous Power Down
VSS
GND
VDD
Core Power Supply
NC
No Connection
-2-
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
PACKAGE PIN CONFIGURATIONS (TOP VIEW)
KM736FV4021(128Kx36)
1
2
3
4
5
6
7
A
VDDQ
SA13
SA10
NC
SA7
SA4
VDDQ
B
NC
NC
SA9
NC
SA8
NC
NC
C
NC
SA12
SA11
VDD
SA6
SA5
NC
D
DQc8
DQc9
VSS
NC
VSS
DQb9
DQb8
E
DQc6
DQc7
VSS
SS
VSS
DQb7
DQb6
F
VDDQ
DQc5
VSS
G
VSS
DQb5
VDDQ
G
DQc3
DQc4
SWc
NC
SWb
DQb4
DQb3
H
DQc1
DQc2
VSS
NC
VSS
DQb2
DQb1
J
VDDQ
VDD
NC
VDD
NC
VDD
VDDQ
K
DQd 1
DQd2
VSS
K
VSS
DQa2
DQa1
L
DQd 3
DQd4
SWd
K
SWa
DQa4
DQa3
M
VDDQ
DQd5
VSS
SW
VSS
DQa5
VDDQ
N
DQd 6
DQd7
VSS
SA16
VSS
DQa7
DQa6
P
DQd 8
DQd9
VSS
SA0
VSS
DQa9
DQa8
R
NC
SA15
M1
VDD
M2
SA2
NC
T
NC
NC
SA14
SA1
SA3
NC
ZZ
U
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
1
2
3
4
5
6
7
A
VDDQ
SA13
SA10
NC
SA7
SA4
VDDQ
B
NC
NC
SA9
NC
SA8
NC
NC
C
NC
SA12
SA11
VDD
SA6
SA5
NC
D
DQb1
NC
VSS
NC
VSS
DQa9
NC
E
NC
DQb2
VSS
SS
VSS
NC
DQa8
F
VDDQ
NC
VSS
G
VSS
DQa7
VDDQ
G
NC
DQb3
SWb
NC
NC
NC
DQa6
H
DQb4
NC
VSS
NC
VSS
DQa5
NC
KM718FV4021(256Kx18)
J
VDDQ
VDD
NC
VDD
NC
VDD
VDDQ
K
NC
DQb5
VSS
K
VSS
NC
DQa4
L
DQb6
NC
NC
K
SWa
DQa3
NC
M
VDDQ
DQb7
VSS
SW
VSS
NC
VDDQ
N
DQb8
NC
VSS
SA16
VSS
DQa2
NC
P
NC
DQb9
VSS
SA1
VSS
NC
DQa1
R
NC
SA15
M1
VDD
M2
SA2
NC
T
NC
SA17
SA14
NC
SA3
SA0
ZZ
U
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
-3-
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
FUNCTION DESCRIPTION
The KM736FV4021 and KM718FV4021 are 4,718,592 bit Synchronous Pipeline Mode SRAM. It is organized as 131,072words of 36
bits(or 262, 144 words of 18 bits)and is implemented in SAMSUNG′s advanced CMOS technology.
Single differential PECL level K clocks are used to initiate the read/write operation and all internal operations are self-timed. At the
rising edge of K clock, All addresses, Write Enables, Synchronous Select and Data Ins are registered internally. Data outs are
updated from output registers edge of the next rising edge of the K clock. An internal write data buffer allows write data to follow one
cycle after addresses and controls. The package is 119(7x17) Ball Grid Array with balls on a 1.27mm pitch.
Read Operation
During reads, the address is registered during the frist clock edge, the internal array is read between this first edge and the secondedge, and data is captured in the output register and driven to the CPU during the second clock edge. SS is driven low during this
cycle, signaling that the SRAM should drive out the data.
During consecutive read cycles where the address is the same, the data output must be held constant without any glitches. This
characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multiple SRAM cycles to perform a single read operation.
Write(Store) Operation
All addresses and SW are sampled on the clock rising edge. SW is low on the rising clock. Write data is sampled on the rising clock,
one cycle after write address and SW have been sampled by the SRAM. SS will be driven low during the same cycle that the
Address, SW and SW[a:d] are valid to signal that a valid operation is on the Address and Control Input.
Pipelined write are supported. This is done by using write data buffers on the SRAM that capture the write addresses on one write
cycle, and write the array on the next write cycle. The "next write cycle" can actually be many cycles away, broken by a series of
read cycles. Byte writes are supported. The byte write signals SW[a:d] signal which 9-bit bytes will be writen. Timing of SW[a:d] is the
same as the SW signal.
Bypass Read Operation
Since write data is not fully written into the array on first write cycle, there is a need to sense the address in case a future read is to
be done from the location that has not been written yet. For this case, the address comparator check to see if the new read address
is the same as the contents of the stored write address Latch. If the contents match, the read data must be supplied from the stored
write data latch with standard read timing. If there is no match, the read data comes from the SRAM array. The bypassing of the
SRAM array occurs on a byte by byte basis. If one byte is written and the other bytes are not, read data from the last written will have
new byte data from the write data buffer and the other bytes from the SRAM array.
Low Power Dissipation Mode
During normal operation, asynchronous signal ZZ must be pulled low. Low Power Mode is enabled by switching ZZ high. When the
SRAM is in Power Down Mode, the outputs will go to a Hi-Z state and the SRAM will draw standby current. SRAM data will be preserved and a recovery time(tZZR) is required before the SRAM resumes to normal operation.
TRUTH TABLE
K
ZZ
G
SS
SW
SWa
SWb
SWc
SWd
DQa
DQb
DQc
DQd
X
H
X
X
X
X
X
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Power Down Mode. No Operation
Operation
X
L
H
X
X
X
X
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
Output Disabled.
Output Disabled. No Operation
↑
L
L
H
X
X
X
X
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
↑
L
L
L
H
X
X
X
X
DOUT
DOUT
DOUT
DOUT Read Cycle
↑
L
X
L
L
H
H
H
H
Hi-Z
Hi-Z
Hi-Z
Hi-Z
No Bytes Written
↑
L
X
L
L
L
H
H
H
DIN
Hi-Z
Hi-Z
Hi-Z
Write first byte
↑
L
X
L
L
H
L
H
H
Hi-Z
DIN
Hi-Z
Hi-Z
Write second byte
↑
L
X
L
L
H
H
L
H
Hi-Z
Hi-Z
DIN
Hi-Z
Write third byte
↑
L
X
L
L
H
H
H
L
Hi-Z
Hi-Z
Hi-Z
DIN
Write fourth byte
↑
L
X
L
L
L
L
L
L
DIN
DIN
DIN
DIN
Write all byte
-4-
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Value
Unit
VDD
-0.5 to 3.9
V
Core Supply Voltage Relative to VSS
Output Supply Voltage Relative to VSS
VDDQ
VDD
V
Voltage on any I/O pin Relative to VSS
VTERM
-0.5 to VDD+0.5
V
Maximum Power Dissipation
PD
3
W
Output Short-Circuit Current
IOUT
25
mA
Operating Temperature
TOPR
0 to 70
°C
Storage Temperature
TSTG
-55 to 125
°C
Note
NOTE : Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
RECOMMENDED DC OPERATING CONDITIONS
Parameter
Core Power Supply Voltage
Output Power Supply Voltage
Symbol
Min
Typ
Max
Unit
VDD
3.15
3.3
3.45
V
VDDQ
2.35
2.5
3.45
V
Input High Level
VIH
1.7
-
VDD+0.3
V
Input Low Level
VIL
-0.3
-
0.7
V
PECL Clock Input High Level
VIH-PECL
2.135
-
2.420
V
PECL Clock Input Low Level
VIL-PECL
1.490
-
1.825
V
TJ
10
-
110
°C
Operating Junction Temperature
Note
DC CHARACTERISTICS
Parameter
Average Power Supply Operating Current-x36
(VIN=VIH or VIL, ZZ & SS=VIL)
Average Power Supply Operating Current-x18
(VIN=VIH or VIL, ZZ & SS=VIL)
Symbol
Min
Max
Unit
Note
IDD5
IDD6
IDD7
-
650
600
550
mA
1, 2
-
600
550
500
mA
1, 2
1
IDD5
IDD6
IDD7
Power Supply Standby Current
(VIN=VIH or VIL, ZZ=VIH)
ISB
-
60
mA
Input Leakage Current
(VIN=VSS or VDD)
ILI
-1
1
µA
Output Leakage Current
(VOUT=VSS or VDDQ, ZZ=VIH, G=VIH)
ILO
-1
1
µA
Output High Voltage(IOH=-4mA) for VDDQ=3.3V
VOH1
Output High Voltage(IOH=-4mA) for VDDQ=2.5V
VOH2
2.4
2.0
VDDQ
V
VOL
VSS
0.4
V
Output Low Voltage(IOL=4mA)
NOTE :1. Minimum cycle. IOUT=0mA.
2. 50% read cycles.
-5-
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
PIN CAPACITANCE
Parameter
Symbol
Typ
Max
Unit
CIN
4
5
pF
COUT
7
8
pF
20pF*
50Ω
Input Capacitance
Output Capacitance
NOTE : Periodically sampled and not 100% tested.(dV=0V, f=1MHz)
AC TEST OUTPUT LOAD
AC TEST CONDITIONS
Parameter
Symbol
Value
Unit
Core Power Supply Voltage
VDD
3.15~3.45
V
VDDQ
2.4~2.6
V
Input High/Low Level
VIH/VIL
1.7/0.7
V
Clock Input High/Low Level(PECL)
VIH/VIL
2.4/1.5
V
Output Power Supply Voltage
Input Rise/Fall Time
TR/TF
1.0/1.0
ns
Clock Input Rise/Fall Time(PECL)
TR/TF
1.0/1.0
ns
1.25
V
Cross Point
V
Input and Out Timing Reference Level
Clock Input Timing Reference Level
Dout
Z0=50Ω
1.25V
*Capacitive load consists of all components
of the tester environment
AC CHARACTERISTICS
Parameter
Symbol
-5
-6
-7
Min
Max
Min
Max
Min
Max
Unit
Clock Cycle Time
tKHKH
5.0
-
6.0
-
7.0
-
ns
Clock High Pulse Width
tKHKL
1.5
-
1.5
-
1.5
-
ns
Clock Low Pulse Width
tKLKH
1.5
-
1.5
-
1.5
-
ns
Clock High to Output Valid
tKHQV
-
2.5
-
3.0
-
3.5
ns
Clock High to Output Hold
tKHQX
0.5
-
0.5
-
0.5
-
ns
Address Setup Time
tAVKH
0.5
-
0.5
-
0.5
-
ns
Address Hold Time
tKHAX
1.0
-
1.0
-
1.0
-
ns
Write Data Setup Time
tDVKH
0.5
-
0.5
-
0.5
-
ns
Write Data Hold Time
tKHDX
1.0
-
1.0
-
1.0
-
ns
SW, SW[a:d] Setup Time
tWVKH
0.5
-
0.5
-
0.5
-
ns
SW, SW[a:d] Hold Time
tKHWX
1.0
-
1.0
-
1.0
-
ns
SS Setup Time
tSVKH
0.5
-
0.5
-
0.5
-
ns
SS Hold Time
tKHSX
1.0
-
1.0
-
1.0
-
ns
Clock High to Output Hi-Z
tKHQZ
-
2.5
-
3.0
-
3.5
ns
Clock High to Output Low-Z
tKHQX1
0.5
-
0.5
-
0.5
-
ns
G High to Output High-Z
tGHQZ
-
2.5
-
3.0
-
3.5
ns
G Low to Output Low-Z
tGLQX
0.5
-
0.5
-
0.5
-
ns
G Low to Output Valid
tGLQV
-
2.5
-
3.0
-
3.5
ns
ZZ High to Power Down(Sleep Time)
tZZE
-
5.0
-
6.0
-
7.0
ns
ZZ Low to Recovery(Wake-up Time)
tZZR
-
5.0
-
6.0
-
7.0
ns
-6-
Note
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (SS Controlled, G=Low)
1
2
3
4
5
6
7
8
K
t KHKL tKLKH
tKHKH
tAVKH
SAn
A1
tKHAX
A2
tSVKH
A3
A4
A5
A4
A6
A7
tKHSX
SS
t WVKH
tKHWX
tWVKH
t KHWX
tKHWX
tWVKH
SW
SWx
tKHQZ
tKHQV
Q2
Q1
DQn
tKHDX
tDVKH t KHDX
tKHQX
tKHQX1
D4
D3
Q5
Q4
NOTE
1. D 3 is the input data written in memory location A3.
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A 4 being a match from the last
write cycle address.
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (G Controlled, SS=Low)
1
2
3
4
5
6
7
8
K
tKHKH
SAn
A1
A3
A2
A4
A5
A4
A6
A7
G
SW
SWx
tGHQZ
tGLQV
tGLQX
Q1
DQn
Q2
D3
D4
Q5
Q4
NOTE
1. D3 is the input data written in memory location A 3.
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the last
write cycle address.
-7-
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
TIMING WAVEFORMS OF STANDBY CYCLES
1
2
3
4
5
6
7
8
K
tKHKH
SAn
A1
A2
A1
A3
A2
SS
SW
SWx
tZZE
tZZR
ZZ
tKHQV
tKHQV
DQn
Q1
Q2
Q1
-8-
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
This part contains an IEEE standard 1149.1 Compatible Teat Access Port(TAP). The package pads are monitored by the Serial Scan
circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not
driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Register, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up,
therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without
interfacing with normal operation of the SRAM, TCK must be tied to VSS to preclude mid level input. TMS and TDI are designed so an
undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be
tied to VDD through a resistor. TDO should be left unconnected.
JTAG Instruction Coding
JTAG Block Diagram
IR2 IR1 IR0 Instruction
SRAM
CORE
M1
TDI
M2
BYPASS Reg.
Notes
0
0
0
SAMPLE-Z Boundary Scan Register
1
0
0
1
IDCODE
2
0
1
0
SAMPLE-Z Boundary Scan Register
1
0
1
1
BYPASS
Bypass Register
3
1
0
0
SAMPLE
Boundary Scan Register
4
1
0
1
BYPASS
Bypass Register
3
1
1
0
BYPASS
Bypass Register
3
1
1
1
BYPASS
Bypass Register
3
Identification Register
NOTE :
1. Places DQs in Hi-Z in order to sample all input data regardless of
other SRAM inputs.
2. TDI is sampled as an input to the first ID register to allow for the serial
shift of the external TDI data.
TDO
Identification Reg.
3. Bypass register is initiated to VSS when BYPASS instruction is
Instruction Reg.
invoked. The Bypass Register also holds serially loaded TDI
when exiting the Shift DR states.
Control Signals
TMS
TCK
TDO Output
4. SAMPLE instruction dose not places DQs in Hi-Z.
TAP Controller
TAP Controller State Diagram
1
Test Logic Reset
0
0
Run Test Idle
1
Select DR
0
1
1
Shift DR
1
0
1
Exit1 DR
0
Exit2 DR
1
Update DR
0
-9-
Select IR
0
1
Capture DR
0
Pause DR
1
1
1
0
0
1
Capture IR
0
Shift IR
1
0
Exit1 IR
0
Pause IR
1
Exit2 IR
1
Update IR
1
0
0
0
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
SCAN REGISTER DEFINITION
Part
Instruction Register
Bypass Register
ID Register
Boundary Scan
128Kx36
3 bits
1 bits
32 bits
70 bits
256Kx18
3 bits
1 bits
32 bits
51 bits
ID REGISTER DEFINITION
Part
Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1)
Start Bit(0)
128Kx36
0000
00101 00100
XXXXXX
00001001110
1
256Kx18
0000
00110 00011
XXXXXX
00001001110
1
BOUNDARY SCAN EXIT ORDER(x36)
BOUNDARY SCAN EXIT ORDER(x18)
36
3B
SA9
SA8
5B
35
26
3B
SA9
SA8
5B
25
37
2B
NC
NC
6B
34
27
2B
NC
NC
6B
24
38
3A
SA10
SA7
5A
33
28
3A
SA10
SA7
5A
23
39
3C
SA11
SA6
5C
32
29
3C
SA11
SA6
5C
22
40
2C
SA12
SA5
6C
31
30
2C
SA12
SA5
6C
21
41
2A
SA13
SA4
6A
30
31
2A
SA13
SA4
6A
20
42
2D
DQc9
DQb 9
6D
29
DQa 9
6D
19
43
1D
DQc8
DQb 8
7D
28
32
1D
DQb 1
44
2E
DQc7
DQb 7
6E
27
33
2E
DQb 2
45
1E
DQc6
DQb 6
7E
26
DQa 8
7E
18
46
2F
DQc5
DQb 5
6F
25
DQa 7
6F
17
47
2G
DQc4
DQb 4
6G
24
48
1G
DQc3
DQb 3
7G
23
DQa 6
7G
16
49
2H
DQc2
DQb 2
6H
22
DQa 5
6H
15
50
1H
DQc1
DQb 1
7H
21
35
1H
DQb 4
51
3G
SWc
SWb
5G
20
36
3G
SWb
52
4D
NC
G
4F
19
37
4D
NC
G
4F
14
53
4E
SS
K
4K
18
38
4E
SS
K
4K
13
54
4G
NC
K
4L
17
39
4G
NC
K
4L
12
55
4H
NC
SWa
5L
16
40
4H
NC
SWa
5L
11
56
4M
SW
DQa 1
7K
15
41
4M
SW
DQa 4
7K
10
57
3L
SWd
DQa 2
6K
14
58
1K
DQd 1
DQa 3
7L
13
59
2K
DQd 2
DQa 4
6L
12
42
2K
DQb 5
DQa 3
6L
9
60
1L
DQd 3
DQa 5
6M
11
43
1L
DQb 6
61
2L
DQd 4
DQa 6
7N
10
62
2M
DQd 5
DQa 7
6N
9
44
2M
DQb 7
DQa 2
6N
8
63
1N
DQd 6
DQa 8
7P
8
45
1N
DQb 8
DQa 1
7P
7
64
2N
DQd 7
DQa 9
6P
7
65
1P
DQd 8
ZZ
7T
6
ZZ
7T
6
66
2P
DQd 9
SA3
5T
5
46
2P
DQb 9
SA3
5T
5
67
3T
SA14
SA2
6R
4
47
3T
SA14
SA2
6R
4
68
2R
SA15
SA1
4T
3
48
2R
SA15
69
4N
SA16
SA0
4P
2
70
3R
M1
M2
5R
34
1
2G
DQb 3
49
4N
SA16
SA1
4P
3
50
2T
SA17
SA0
6T
2
51
3R
M1
M2
5R
1
NOTE : 1. Pins 6B and 2B are no connection pin to internal chip. These pins are place holders for 16M part and the scanned data are fixed to "0" for this
4M parts.
- 10
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
JTAG DC OPERATING CONDITIONS
Parameter
Symbol
Min
Typ
Max
Unit
Power Supply Voltage
VDD
3.15
3.3
3.45
V
Input High Level
VIH
2.0
-
VDD+0.3
V
Input Low Level
VIL
-0.3
-
0.8
V
Output High Voltage(IOH=-2mA)
VOH
2.4
-
VDD
V
Output Low Voltage(IOL=2mA)
VOL
VSS
-
0.4
V
Note
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.
JTAG AC TEST CONDITIONS
Parameter
Symbol
Min
Unit
Input High/Low Level
VIH/VIL
3.0/0.0
V
Input Rise/Fall Time
TR/TF
2.0/2.0
ns
1.5
V
Input and Output Timing Reference Level
Note
1
NOTE : 1. See SRAM AC test output load on page 5.
JTAG AC Characteristics
Parameter
Symbol
Min
Max
Unit
TCK Cycle Time
tCHCH
50
-
ns
TCK High Pulse Width
tCHCL
20
-
ns
TCK Low Pulse Width
tCLCH
20
-
ns
TMS Input Setup Time
tMVCH
5
-
ns
TMS Input Hold Time
tCHMX
5
-
ns
TDI Input Setup Time
tDVCH
5
-
ns
TDI Input Hold Time
tCHDX
5
-
ns
SRAM Input Setup Time
tSVCH
5
-
ns
SRAM Input Hold Time
tCHSX
5
-
ns
Clock Low to Output Valid
tCLQV
0
10
ns
Note
JTAG TIMING DIAGRAM
TCK
tCHCH
tCHCL
tMVCH
tCHMX
t DVCH
tCHDX
tCLCH
TMS
TDI
tCLQV
TDO
- 11
Rev 1.0
Dec. 1998
KM736FV4021
KM718FV4021
128Kx36 & 256Kx18 SRAM
119 BGA PACKAGE DIMENSIONS
14.00±0.10
1.27
1.27
22.00±0.10
Indicator of
Ball(1A) Location
20.50±0.10
C0.70
C1.00
0.750±0.15
1.50REF
0.60±0.10
NOTE :
0.60±0.10
1. All Dimensions are in Millimeters.
12.50±0.10
2. Solder Ball to PCB Offset : 0.10 MAX.
3. PCB to Cavity Offset : 0.10 MAX.
119 BGA PACKAGE THERMAL CHARACTERISTICS
Parameter
Symbol
Min
Typ
Max
Unit
Junction to Ambient(at air flow of 1m/sec)
Theta_JA
-
-
17
°C/W
Junction to Case
Theta_JC
-
-
4
°C/W
Junction to Solder Ball
Theta_JB
-
-
10
°C/W
- 12
Note
Rev 1.0
Dec. 1998