Design Manual CB-9 Family VX/VM Type 0.35 µm CMOS Cell-Based IC Memory Macro (Compiled Type) Document No. A12982EJ4V0DM00 (4th edition) Date Published October 2002 N CP(K) Printed in Japan 1 [MEMO] 2 Design Manual A12982EJ4V0DM NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Design Manual A12982EJ4V0DM 3 V.sim is a trademark of NEC Corporation. Verilog is a trademark of Cadence Design Systems Inc. The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. • The information in this document is current as of September, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. • No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. • NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. • Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. • While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features. • NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note) (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above). M8E 00. 4 4 Design Manual A12982EJ4V0DM Regional Information Some information contained in this document may vary from country to country. Before using any NEC product in your application, pIease contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify: • Device availability • Ordering information • Product release schedule • Availability of related technical literature • Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth) • Network requirements In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country. NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 NEC do Brasil S.A. Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829 • Filiale Italiana Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics Hong Kong Ltd. • Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80 NEC Electronics Hong Kong Ltd. • Branch Sweden Taeby, Sweden Tel: 08-63 80 820 NEC Electronics (Europe) GmbH Fax: 08-63 80 388 Duesseldorf, Germany • United Kingdom Branch Tel: 0211-65 03 01 Milton Keynes, UK Fax: 0211-65 03 327 Tel: 01908-691-133 Fax: 01908-670-290 • Sucursal en España Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60 Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411 NEC Electronics Shanghai, Ltd. Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137 NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951 NEC Electronics Singapore Pte. Ltd. Novena Square, Singapore Tel: 253-8311 Fax: 250-3583 • Succursale Française Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99 J02.4 Design Manual A12982EJ4V0DM 5 MAJOR REVISIONS IN THIS EDITION Page Description pp. 71 of previous edition CHAPTER 4 HIGH-SPEED DUAL-PORT (1R/W + 1R/W) RAM (SYNCHRONOUS TYPE) was deleted. p. 18 Table 1-2 Typical Values of Memory Macros (8 bits × 512 words) was changed. p. 33 1.8 Notes on Using Each Macro was added. p. 134 8.4 Macro Size was chagned. p. 155 Table A-7 High-Speed ROM (Synchronous Type) was changed. The mark 6 shows major revised points. Design Manual A12982EJ4V0DM PREFACE This manual describes the general information, design technique, and points to be noted when you design circuits using the memory macros (compiled type) of the CB-9 Family VX/VM Type. Thoroughly read this manual to smoothly design LSIs. Be sure to observe the points described in this manual (general information, notes, and limitations); otherwise, the quality and performance of the LSI may be degraded or malfunction may occur. For the overall circuit designing, CB-9 Family VX/VM Type Design Manual (A12745E) is also available. Please read it first, and then read this manual. If you require an application where the restrictions described in this manual are not observed, or if you have any questions, consult NEC. Design Manual A12982EJ4V0DM 7 Related documents Some of the related documents listed below are preliminary editions but not so specified here. CB-9 Family VX/VM Type Design Manual (A12745E) CB-9 Family VX/VM Type Memory Macro (Compiled Type) Design Manual (This manual) CB-9 Family VX/VM Type Memory Macro (Fixed Type) Design Manual (A13899E) CB-9 Family VX/VM Type Analog Macro (High-Speed D/A Converter) Design Manual (A13820E) CB-9 Family VX/VM Type Analog Macro (PLL) Design Manual (A13947E) CB-9 Family VX/VM Type Analog Macro (General-purpose A/D, D/A Converter) Design Manual (A14021E) CB-9 Family VX/VM Type CPU, Peripheral Design Manual (A14304E) CB-9 Family VX/VM Type CPU Core, Memory Controller Design Manual (A13195E) CB-9 Family VX/VM Type (CMOS 3.3V) Block Library (A12793E) CB-9 Family VX/VM Type (CMOS 2.0V) Block Library (A12794E) CB-9 Family VX/VM Type (TTL 3.3V) Block Library (A14710E) Design For Test User’s Manual (A14357E) When designing your system, be sure to use the latest documents. Contact your local NEC sales office or representative office. 8 Design Manual A12982EJ4V0DM TABLE OF CONTENTS CHAPTER 1 OVERVIEW ............................................................................................................. 17 1.1 General ............................................................................................................................ 17 1.2 Types of Memory Macros ................................................................................................. 17 1.3 Macro Area ....................................................................................................................... 19 1.4 Designing for Testing ........................................................................................................ 20 1.4.1 1.4.2 1.4.3 1.5 Format of ROM Code ....................................................................................................... 22 1.5.1 1.5.2 1.6 Embedding ROM code in simulation system ................................................. 22 NINCF ............................................................................................................ 22 Block Names of Macro ..................................................................................................... 24 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.7 Testing method ............................................................................................... 20 Notes on designing test circuit ....................................................................... 21 Test pattern .................................................................................................... 21 RAM .............................................................................................................. 24 Register file .................................................................................................... 26 ROM ............................................................................................................... 27 Correspondence table for notation to the base of 32 ..................................... 29 Notes on bus name ........................................................................................ 29 Backup Memory Macros of Cell-Based IC ....................................................................... 30 1.7.1 1.7.2 Backup function of RAM macros .................................................................... 30 Notes on backup of memory macro block ...................................................... 31 1.8 Notes on Using Each Macro ............................................................................................ 33 1.9 Timing Limitations when Synchronous RAM Is Used ...................................................... 34 1.9.1 1.9.2 1.9.3 1.9.4 CHAPTER 2 2.1 Prohibiting address change at same time as rising of clock input signal (BE) 34 Prohibiting changing of CSB signal while clock input signal (BE) is high ...... 35 Prohibiting changing of BUB while clock input signal (BE) is high ................. 36 Prohibiting changing of BUNRI while clock input signal (BE) is high ............. 36 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) ............. 37 General ............................................................................................................................ 37 2.1.1 2.1.2 2.1.3 2.1.4 Compiled range .............................................................................................. 37 Equivalent circuit ............................................................................................ 38 Symbol diagram ............................................................................................. 39 Pin capacitance .............................................................................................. 39 2.2 Pin Function List .............................................................................................................. 40 2.3 Operation Truth Table ....................................................................................................... 41 2.4 Macro Size ....................................................................................................................... 42 Design Manual A12982EJ4V0DM 9 2.5 Electrical Characteristics .................................................................................................. 42 2.6 Operating Current Consumption ...................................................................................... 43 2.7 Timing .............................................................................................................................. 45 2.7.1 2.7.2 Expressions .................................................................................................... 45 Typical value (8 bits × 512 words) .................................................................. 47 2.8 Timing Chart .................................................................................................................... 49 2.9 Notes on Correct Use ....................................................................................................... 50 CHAPTER 3 3.1 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) ................................................................................... 51 General ............................................................................................................................ 51 3.1.1 3.1.2 3.1.3 3.1.4 CompiIed range ............................................................................................. 51 Equivalent circuit ............................................................................................ 52 Symbol diagram ............................................................................................. 53 Pin capacitance .............................................................................................. 54 3.2 Pin Function List .............................................................................................................. 55 3.3 Operation Truth Table ....................................................................................................... 56 3.4 Macro Size ....................................................................................................................... 58 3.5 Electrical Characteristics .................................................................................................. 58 3.6 Operating Current Consumption ...................................................................................... 59 3.7 Timing .............................................................................................................................. 61 3.7.1 3.7.2 3.8 Timing Chart .................................................................................................................... 63 3.8.1 3.8.2 3.8.3 3.9 Expressions .................................................................................................... 61 Typical value (8 bits × 512 words) .................................................................. 62 Read/write port .............................................................................................. 63 Read port ....................................................................................................... 65 Operation timing restrictions between read/write port and read port ............. 66 Notes on Correct Use ....................................................................................................... 67 3.10 Other Notes on Correct Use ............................................................................................. 68 CHAPTER 4 4.1 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) ......... 69 General ............................................................................................................................ 69 4.1.1 4.1.2 4.1.3 4.1.4 10 Compiled range .............................................................................................. 69 Equivalent circuit ............................................................................................ 70 Symbol diagram ............................................................................................. 71 Pin capacitance .............................................................................................. 71 4.2 Pin Function List .............................................................................................................. 72 4.3 Operation Truth Table ....................................................................................................... 73 Design Manual A12982EJ4V0DM 4.4 Macro Size ....................................................................................................................... 74 4.5 Electrical Characteristics .................................................................................................. 75 4.6 Operating Current Consumption ...................................................................................... 76 4.7 Timing .............................................................................................................................. 77 4.7.1 4.7.2 Expressions .................................................................................................... 77 Typical value (8 bits × 512 words) .................................................................. 82 4.8 Timing Chart .................................................................................................................... 84 4.9 Notes on Correct Use ....................................................................................................... 85 CHAPTER 5 5.1 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) ................................................................................... 86 General ............................................................................................................................ 86 5.1.1 5.1.2 5.1.3 5.1.4 Compiled range .............................................................................................. 86 Equivalent circuit ............................................................................................ 87 Symbol diagram ............................................................................................. 88 Pin capacitance .............................................................................................. 88 5.2 Pin Function List .............................................................................................................. 89 5.3 Operation Truth Table ....................................................................................................... 90 5.4 Macro Size ....................................................................................................................... 92 5.5 Electrical Characteristics .................................................................................................. 92 5.6 Operating Current Consumption ...................................................................................... 93 5.7 Timing .............................................................................................................................. 95 5.7.1 5.7.2 5.8 Timing Chart .................................................................................................................... 99 5.8.1 5.8.2 5.9 CHAPTER 6 6.1 Read port and write port ................................................................................ 99 Operation timing restrictions between read port and write port ................... 100 Notes on Correct Use ..................................................................................................... 103 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) ................................................................................. 104 General .......................................................................................................................... 104 6.1.1 6.1.2 6.1.3 6.1.4 6.2 Expressions .................................................................................................... 95 Typical value (8 bits × 512 words) .................................................................. 97 Compiled range ............................................................................................ 104 Equivalent circuit .......................................................................................... 105 Symbol diagram ........................................................................................... 106 Pin capacitance ............................................................................................ 106 Pin Function List ............................................................................................................. 107 Design Manual A12982EJ4V0DM 11 6.3 Operation Truth Table ..................................................................................................... 108 6.4 Macro Size ..................................................................................................................... 109 6.5 Electrical Characteristics ................................................................................................ 109 6.6 Operating Current Consumption .................................................................................... 110 6.7 Timing ............................................................................................................................ 112 6.7.1 6.7.2 6.8 Timing Chart .................................................................................................................. 114 6.9 Notes on Correct Use ..................................................................................................... 115 CHAPTER 7 7.1 REGISTER FILE (DUAL-PORT) .................................................................... 116 General .......................................................................................................................... 116 7.1.1 7.1.2 7.1.3 7.1.4 Compiled range ............................................................................................ 116 Equivalent circuit .......................................................................................... 117 Symbol diagram ........................................................................................... 118 Pin capacitance ............................................................................................ 118 7.2 Pin Function List ............................................................................................................. 119 7.3 Operation Truth Table ..................................................................................................... 120 7.4 Macro Size ..................................................................................................................... 121 7.5 Electrical Characteristics ................................................................................................ 122 7.6 Operating Current Consumption .................................................................................... 123 7.7 Timing ............................................................................................................................ 125 7.7.1 7.7.2 7.8 CHAPTER 8 8.1 Expressions .................................................................................................. 125 Typical value (8 bits × 512 words) ................................................................ 126 Timing Chart .................................................................................................................. 127 HIGH-SPEED ROM (SYNCHRONOUS TYPE) .......................................... 129 General .......................................................................................................................... 129 8.1.1 8.1.2 8.1.3 8.1.4 12 Expressions .................................................................................................. 112 Typical value (8 bits × 512 words) ................................................................ 113 Compiled range ............................................................................................ 129 Equivalent circuit ......................................................................................... 130 Symbol diagram ........................................................................................... 131 Pin capacitance ............................................................................................ 131 8.2 Pin Function List ............................................................................................................. 132 8.3 Operation Truth Table ..................................................................................................... 133 8.4 Macro Size ..................................................................................................................... 134 8.5 Electrical Characteristics ................................................................................................ 134 8.6 Operating Current Consumption .................................................................................... 135 Design Manual A12982EJ4V0DM 8.7 Timing ............................................................................................................................ 136 8.7.1 8.7.2 8.8 CHAPTER 9 Expressions .................................................................................................. 136 Typical value (8 bits × 512 words) ................................................................ 137 Timing Chart .................................................................................................................. 138 BIST ........................................................................................................................ 139 9.1 Overview ........................................................................................................................ 139 9.2 Type of BIST ................................................................................................................... 140 9.2.1 9.3 Block name of BIST ..................................................................................... 140 BIST Circuit Specifications ............................................................................................. 143 9.3.1 9.3.2 9.3.3 Single-port RAM (synchronous type) ............................................................ 143 Dual-port (1R/W + 1R) RAM (synchronous type) ........................................ 145 Dual-port (1R + 1W) RAM (synchronous type) ............................................ 147 APPENDIX A NUMBER OF GRIDS .......................................................................................... 149 APPENDIX B OPERATING CURRENT CONSUMPTION LIST ....................................... 156 APPENDIX C ACCESS TIME (tACC) LIST .............................................................................. 161 APPENDIX D CYCLE TIME (tRC) LIST .................................................................................... 166 Design Manual A12982EJ4V0DM 13 LIST OF FIGURES Fig. No. Title, Page 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 Concept of Grids........................................................................................................................ 19 When Not Using Backup............................................................................................................ 31 Power Supply Separation Circuit Configuration ......................................................................... 32 Read/Write Cycle of Synchronous RAM.................................................................................... 33 Read Cycle Timing..................................................................................................................... 34 Timing to Change Clock and Address ....................................................................................... 34 Timing to Change Clock and CSB ............................................................................................. 35 Timing to Change BE and BUB ................................................................................................. 36 Timing to Change BE and BUNRI ............................................................................................. 36 2-1 2-2 Compiled Range of High-Speed Single-Port RAM (Synchronous Type) ................................... 37 Internal Equivalent Circuit.......................................................................................................... 38 3-1 3-2 Compiled Range of High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type) ................. 51 Internal Equivalent Circuit.......................................................................................................... 52 4-1 4-2 CompiIed Range of High-Density Single-Port RAM (Synchronous Type).................................. 69 Internal Equivalent Circuit.......................................................................................................... 70 5-1 5-2 CompiIed Range of High-Density Dual-Port (1R + 1W) RAM (Synchronous Type)................... 86 Internal Equivalent Circuit.......................................................................................................... 87 6-1 6-2 Compiled Range of Super High-Speed Single-Port RAM (Synchronous Type)....................... 104 Internal Equivalent Circuit........................................................................................................ 105 7-1 7-2 Compiled Range of Register File............................................................................................. 116 Internal Equivalent Circuit........................................................................................................ 117 8-1 8-2 Compiled Range of High-Speed ROM (Synchronous Type).................................................... 129 Internal Equivalent Circuit........................................................................................................ 130 14 Design Manual A12982EJ3V0DM LIST OF TABLES (1/2) Table No. Title, Page 1-1 1-2 1-3 1-4 1-5 Types of Memory Macros .......................................................................................................... 17 Typical Values of Memory Macros (8 bits × 512 words)............................................................. 18 Test Method of Each Macro ....................................................................................................... 20 Block Indicating Function........................................................................................................... 24 Correspondence between Base-32 and Decimal Numbers....................................................... 29 2-1 Compiled Range of High-Speed Single-Port RAM (Synchronous Type) ................................... 37 3-1 Compiled Range of High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type) ................. 51 4-1 CompiIed Range of High-Density Single-Port RAM (Synchronous Type).................................. 69 5-1 Compiled Range of High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) ................... 86 6-1 Compiled Range of Super High-Speed Single-Port RAM (Synchronous Type)....................... 104 7-1 Compiled Range of Register File............................................................................................. 116 8-1 Compiled Range of High-Speed ROM (Synchronous Type).................................................... 129 A-1 A-2 A-3 A-4 A-5 A-6 A-7 High-Speed Single-Port RAM (Synchronous Type) ................................................................. 149 High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type)............................................... 150 High-Density Single-Port RAM (Synchronous Type)................................................................ 151 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type)................................................. 152 Super High-Speed Single-Port RAM (Synchronous Type)....................................................... 153 Register File (Dual-Port) .......................................................................................................... 154 High-Speed ROM (Synchronous Type).................................................................................... 155 B-1 B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-9 B-10 B-11 B-12 High-Speed Single-Port RAM (Synchronous Type) ................................................................. 156 High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type)............................................... 156 High-Density Single-Port RAM (Synchronous Type)................................................................ 157 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type)................................................. 157 Super High-Speed Single-Port RAM (Synchronous Type)....................................................... 157 Register File (Dual-Port) .......................................................................................................... 158 High-Speed ROM (Synchronous Type).................................................................................... 158 High-Speed Single-Port RAM (Synchronous Type) ................................................................. 159 High-Density Single-Port RAM (Synchronous Type)................................................................ 159 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type)................................................. 159 Register File (Dual-Port) .......................................................................................................... 160 High-Speed ROM (Synchronous Type).................................................................................... 160 C-1 C-2 C-3 C-4 C-5 C-6 High-Speed Single-Port RAM (Synchronous Type) ................................................................. 161 High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type)............................................... 161 High-Density Single-Port RAM (Synchronous Type)................................................................ 162 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type)................................................. 162 Super High-Speed Single-Port RAM (Synchronous Type)....................................................... 162 Register File (Dual-Port) .......................................................................................................... 163 Design Manual A12982EJ4V0DM 15 LIST OF TABLES (2/2) Table No. Title, Page C-7 C-8 C-9 C-10 C-11 C-12 High-Speed ROM (Synchronous Type).................................................................................... 163 High-Speed Single-Port RAM (Synchronous Type) ................................................................. 164 High-Density Single-Port RAM (Synchronous Type)................................................................ 164 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type)................................................. 164 Register File (Dual-Port) .......................................................................................................... 165 High-Speed ROM (Synchronous Type).................................................................................... 165 D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9 D-10 D-11 D-12 High-Speed Single-Port RAM (Synchronous Type) ................................................................. 166 High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type)............................................... 166 High-Density Single-Port RAM (Synchronous Type)................................................................ 167 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type)................................................. 167 Super High-Speed Single-Port RAM (Synchronous Type)....................................................... 167 Register File (Dual-Port) .......................................................................................................... 168 High-Speed ROM (Synchronous Type).................................................................................... 168 High-Speed Single-Port RAM (Synchronous Type) ................................................................. 169 High-Density Single-Port RAM (Synchronous Type)................................................................ 169 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type)................................................. 169 Register File (Dual-Port) .......................................................................................................... 170 High-Speed ROM (Synchronous Type).................................................................................... 170 16 Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW 1.1 General The memory macros of the CB-9 family VX/VM type are the compiled type and fixed type of macros. A compiled type memory macro can automatically/generate a memory of the size suitable to your system by using software called a memory compiler. For the details of the fixed-type memory macro, refer to CB-9 Family VX/VM Type Memory Macro (Fixed Type) Design Manual (A13899E). 1.2 Types of Memory Macros For the CB-9 family VX/VM type, seven types of memory macros are provided as shown in Table 1-1. Select the macro best-suited to your system, taking into consideration the features of each type of memory and your application. Table 1-1 Types of Memory Macros Type Compiled Range Remark High-speed single-port RAM (synchronous type) 1 to 32 bits, 32 to 2K words (variable in 1-bit/8-word units) I/O separation type High-speed dual-port (1R/W + 1R) RAM (synchronous type) 1 to 32 bits, 32 to 2K words (variable in 1-bit/16-word units) I/O separation type High-density single-port RAM (synchronous type) 1 to 32 bits, 32 to 8K words (variable in 1-bit/32-word units) I/O separation type High-density dual-port (1R + 1W) RAM (synchronous type) 1 to 32 bits, 32 to 1K words (variable in 1-bit/8-word units) – Super high-speed single-port RAM (synchronous type) 1 to 16 bits, 64 to 1K words (variable in 1-bit/64-word units) I/O separation type Register file (dual-port) 4 to 64 bits, 8 to 512 words (variable in 1-bit/4-word units) – High-speed ROM (synchronous type) 1 to 64 bits, 64 to 8K words (variable in 1-bit/32-word units) – Design Manual A12982EJ4V0DM 17 CHAPTER 1 OVERVIEW Table 1-2 Typical Values of Memory Macros (8 bits × 512 words) Note 1 Type Number of Grids Note 2 Access Time (tACC) Cycle Time (tRC) 3.3 V 2.0 V 3.3 V 2.0 V High-speed single-port RAM (synchronous type) 37440 3.68 ns 8.24 ns 6.32 ns 14.40 ns High-speed dual-port (1R/W + 1R) RAM (synchronous type) 59675 3.80 ns – 7.46 ns – High-density single-port RAM (synchronous type) 26460 8.06 ns 17.77 ns 9.14 ns 19.22 ns High-density dual-port (1R + 1W) RAM (synchronous type) 54239 7.45 ns 19.08 ns 14.10 ns 36.20 ns Super high-speed single-port RAM (synchronous type) 37115 2.98 ns – 3.98 ns – Register file (dual-port) 60680 18.63 ns 41.51 ns 18.56 ns 41.37 ns High-speed ROM (synchronous type) 15834 5.53 ns 12.74 ns 8.86 ns 17.36 ns Notes 1. 2. 3. 4. 18 Including macro circumferential wiring area External capacitance is calculated as 0.2 pF. Read access time (tRA) Read cycle time (tRC) Design Manual A12982EJ4V0DM Note 3 Note 3 Note 4 Note 4 CHAPTER 1 OVERVIEW 1.3 Macro Area The macro area is a function of the number of grids used. The number of grids is the index which indicates the circuit area for a cell-based IC, and is calculated as follows: Number of grids = X grids (size in X direction) × Y grids (size in Y direction) For example, the circuit size shown in Figure 1-1 is expressed as 35 grids. The actual chip area is the total of this macro area and the wiring area. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Y grids = 5 X grids = 7 Figure 1-1 Concept of Grids For the area of each macro, refer to Macro Size in 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4. Design Manual A12982EJ4V0DM 19 CHAPTER 1 OVERVIEW 1.4 Designing for Testing In designing an ASIC circuit, test designing is very important. This section describes how to test a memory macro, which is necessary for designing a cell-based IC including memory macro covered by this manual. 1.4.1 Testing method A memory macro has a relatively large circuit scale, and is regarded as a type of a core. Because its operation is simple in comparison with the CPUs, the user can design its test pattern. Although memory macro performs simple operations even if its capacity is large, it is not easy to design the test pattern for memory if the memory is incorporated in the user circuit. A pattern to check all the functions of a RAM is particularly complicated. Although the following three methods are available to test the memory macro, use (1) or (2) in principle. When using (3), the testability (failure detection rate) of the memory is determined depending on your pattern design. Therefore, consult NEC in advance. Table 1-3 Test Method of Each Macro Test Method 20 Macro To Be Tested Number of Test Patterns (1) BIST (Built in Self Test) RAM 0 (2) Separate test circuit (test bus) Register file, ROM Register file: Number of words × 36 + 2 (3) Tests using other than BIST, separate test circuit All macros. However, this is regarded as special test. In principle, do not use such tests. (1) BIST (Built-in Self Test) BIST is a method of testing by which a test pattern is automatically generated inside a circuit. An external source can test the circuit simply by applying a test mode signal and test clock to the circuit. This method is effective for testing circuits with a regular structure, such as RAM circuits. Test patterns for BIST are not included in the total number of test patterns of the tester; therefore the limit on the number of user patterns can be relaxed. For details of BIST, refer to CHAPTER 9 BIST. (2) Separate test circuit Register file: Test pattern created by NEC can be used. ROM : User must create a pattern which dumps internal addresses. Because the memory macro is provided with separate test circuits and test pins, a pattern can be easily designed using a circuit that can be externally accessed. This test pattern is applied via the memory macro test pins. Therefore, when designing a circuit, make sure that all the test pins can be manipulated from the external pins so that all the bits of the memory can be directly accessed from the external pins. (3) Tests using other than BIST and separate test circuit In this case, you must create a detailed test pattern for the memory macro by yourself. Because there is no special circuit for testing, redundant circuit design is not necessary. Instead, design a pattern that can check all the bits and the details of decoders and so on inside the macro. Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW 1.4.2 Notes on designing test circuit The following points (1) through (3) must be noted when designing test circuit using BIST or separate test. (1) Test pins and external pins must be of the same logic (separate test circuit only) Do not insert a sequential circuit such as a flop-flop between an external pin and a test pin. Do not invert a signal between them. It is not necessary to consider about BIST because it is automatically connected. (2) Consideration of floating prevention of data output pins Outputs pins such as DO(b:0) and TDO(b:0)Note go into a high-impedance state when not selected. Consequently, a floating level may be input to the block to which output is connected, causing malfunctioning or through current due to intermediate level input. Design circuits so that floating output is not directly input to the other blocks. For the prevention of floating, refer to CB-9 Family VX/VM Type Design Manual (A12745E) . Because the test data output pin (TDO (b:0)) in BIST circuit design is automatically prevented from floating, it is not necessary to take it into consideration. Note Refer to 2.2 Pin Function List, 3.2 Pin Function List, 4.2 Pin Function List, 5.2 Pin Function List, 6.2 Pin Function List, 7.2 Pin Function List, and 8.2 Pin Function List. (3) Specification of memory macro operation mode (BUNRI, TEST, BUB) Specify the modes of BUNRI, TEST, and PUB by combination of the high and low levels input from an external pin to the test pin. Do not insert a sequential circuit such as a flip-flop between the external pin and test pin. 1.4.3 Test pattern (1) RAM The RAM test pattern offered by NEC can be used. When a test circuit is not used, the user must create a test pattern. The test pattern of the RAM usually conducts the following tests from the viewpoint of testability (failure detection rate). • Marching test This is a method to sequentially reads patterns in the flow called marching. It tests the overall functions including the decoder, as well as the functions of the memory cells. • Checkerboard test This is a method writes data in checkerboard pattern to check the mutual interference and retention function of the memory cells. In this case, the data must be arranged in checkerboard pattern when viewed from the physical layout of the memory cell. Design Manual A12982EJ4V0DM 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 21 CHAPTER 1 OVERVIEW (2) ROM The ROM test pattern is checked by reading all the internal data once. Normally, output all the data from the test bus to the external pins in the order of address. When ROM is used, prepare a test pattern for this purpose. Create a ROM code in any of the following formats. In principle, submit the ROM code on a floppy disk to NEC to prevent any mistakes. Caution Create the internal code as an 8-bit ASCII code. Input alphanumeric characters (single-byte) by using a text editor or word processor software. • NINCF format (for simulation with V.sim™) In this NEC original NINCF format, ROM data of any size can be written. This format is a fixed column format. Exercise care that the columns are not misaligned. For details of the NINCF format, refer to the following pages. • Extended Intel HEX format The ROM data can be written in the world standard extended Intel HEX format. In this case, be sure to specify data for all the addresses in the ROM. Write the data in ascending order of address. Caution The assembler may output often jumps from address to address, in other words, some data addresses are skipped. 1.5 Format of ROM Code NINCF or HEX can be used as the interface data format of ROM code. All the bits of the ROM code must be defined to be 0 or 1. For example, if the actually used area is 990 bytes when a 1K-byte ROM is used, be sure to specify the remaining 34 bytes in the interface file. NINCF format : NEC original format. Data of any bit length can be handled. HEX format : World standard format for ROM code. Only byte data is handled. In the extended HEX format, 16-bit data can be handled. 1.5.1 Embedding ROM code in simulation system ROM cannot be used simply by registering it in a simulation library. It is also necessary to embed the ROM code in a simulator before simulation. How to embed the ROM code differs depending on the simulator. Here are some examples. V.sim Verilog™ : NINCF format only. Embedded when simulation is started by mr command. : HEX or binary format. $READMEMH or $READMEMB is included in data. 1.5.2 NINCF NINCF is a format-fixed text file in the format shown on the next page. This file can be created by inputting single-byte characters (ASCII codes) with a text editor, but should be created automatically to avoid mistakes. A program that can be automatically converted from the HEX format is also available. 22 Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW An example where 1K-byte ROM is used is shown below. (Example) Character 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 Line 1 2 3 4 5 6 7 1025 1026 1027 1028 N H D D D D D I NCF EAD ATA ATA ATA ATA ATA .... ...... .... ...... DATA DATA END N I NCFEND First line N 1 1 1 0 1 0 0 0 1 0 1 2 3 4 1 0 2 2 1 0 2 3 0 0 1 A K 1 1 0 0 0 1 0 0 0 0 9 1 1 8 2 1 / 0 9 / 9 1 2 1 / 0 9 / 9 1 1 1 0 0 0 0 NINCF statement User name Date of creation Date of correction Version Characters 1 to 5 Characters 17 to 24 Characters 25 to 32 Characters 33 to 40 Characters 41 to 44 Characters 1 to 4 Version: Up to 4 decimal digits, right justified Date of correction: 8 characters (Example) DD.MM.YY ← Year YY Month MM Day DD Date of creation: 8 characters User name: Up to 8 alphanumeric characters, left justified Characters 9 to 16 Block name Number of words Number of bits Characters 17 to 24 Characters 25 to 32 Characters 33 to 40 Date of creation Date of correction Version Characters 41 to 48 Characters 49 to 56 Characters 57 to 60 Version: Up to 4 decimal digits, right justified Date of correction: 8 characters (Example) DD.MM.YY ← Year YY Month MM Day DD Date of creation: 8 characters Number of bits: Up to 8 decimal digits, right justified Number of words: Up to 8 decimal digits, right justified Block name: Up to 8 alphanumeric characters, left justified Code number: Up to 8 numeric digits, left justified (normally, 3 digits) HEAD DATA statement Address Code data Characters 1 to 4 Characters 5 to 12 From Character 17 onward Data: Binary number (left: LSB → MSB) left justified (Example) 123H → 110001001000 Address: Decimal number, right justified DATA END statement Code number Number of ON bits Characters 1 to 3 Characters 9 to 16 Characters 25 to 30 END 1028th line 2 1 / 0 9 / 9 1 2 1 / 0 9 1 0 2 4 7 7 9 0 Second line HEAD statement Code number 1027th line A ROM 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NINCF Third line K B 0 0 1 0 1 Number of ON bits: Total number of bits that are “1” in all code data. Six decimal digits, right justified Code number: Up to 8 numeric digits, left justified (normally, 3 digits) ... Make this the same as the HEAD statement. NINCFEND statement Characters 1 to 8 NINCFEND Design Manual A12982EJ4V0DM 23 CHAPTER 1 OVERVIEW 1.6 Block Names of Macro The memory macro blocks are named according to certain rules and are classified by function, capacity, and physical shape. All the names of the compiled memory macros consist of eight characters. 1.6.1 RAM 1st character 2nd character 3rd character 4th character 5th character 6th character 7th character 8th character (c) Number of words (b) Number of bits (a) Function The meanings of the respective characters of a macro name are described below. (a) Function The first character indicates the type of the macro, the second indicates the type of the RAM, and the third indicates the column configuration and the type of the I/O format. Table 1-4 Block Indicating Function 1st through 3rd Characters WRV WUE High-speed single-port RAM (synchronous type) High-speed dual-port (1R/W + 1R) RAM (synchronous type) W8K, W8U, W8T WBV High-density single-port RAM (synchronous type) High-density dual-port (1R + 1W) RAM (synchronous type) WHV (b) Function Super high-speed single-port RAM (synchronous type) Number of bits The fourth and fifth characters indicate the number of bits expressed as a 2-digit base-32 number notation in the range 0 to 1023. For the correspondence between the base-32 notation and numbers, refer to 1.6.4 Correspondence table for notation to the base of 32. Number of bits = 4th character × 32 + 5th character 24 4 5 Number of Bits 4 5 Number of Bits 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 A B C D E Missing number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 0 0 0 0 : 0 0 1 1 1 : Y Y Z F G H I J : Y Z 0 1 2 : Y Z – 15 16 17 Missing number 18 : 31 Missing number 32 33 34 : 1023 Missing number Missing number Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW (c) Number of words The sixth through eighth characters indicate the number of words expressed as a 3-digit base-32 number notation in the range 0 to 32767. For the correspondence between the base-32 notation and numbers, refer to 1.6.4 Correspondence table for notation to the base of 32 . Number of words = 6th character × 1024 × 7th character × 32 + 8th character 6 7 8 Number of words 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : 0 0 0 0 0 0 : 0 0 0 1 : Y Y Y Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : 0 0 0 1 1 1 : Y Y Z 0 : Y Y Z – 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J : X Y Z 0 1 2 : Y Z – 0 : Y Z – – Missing number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Missing number 18 : 30 31 Missing number 32 33 34 : 1023 Missing number Missing number 1024 : 32767 Missing number Missing number Missing number Design Manual A12982EJ4V0DM 25 CHAPTER 1 OVERVIEW 1.6.2 Register file Block name • Dual-port type: NZR (x1) (x2) (y1) (y2) A (x1) (x2)......... Expresses number of bits as a decimal number (y1) (y2)......... Expresses number of words as a base-32 number x1, x2 .......... Tens and units digits of number of bits y1, y2 .......... Digits of 321 and 320 of number of words expressed by the following characters. Note, however, that I, O, Q, and Z are not used. (x1) (x2) 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 (y1) (y2) 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0G (x1) (x2) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 (y1) (y2) 0H 0J 0K 0L 0M 0N 0P 0R 0S 0T 0U 0V 0W 0X 0Y 10 Example Targeted register file 64 words × 16 bits, dual port → 26 Supported macro name NZR1620A Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW 1.6.3 ROM 1st character 2nd character 3rd character 4th character 5th character 6th character 7th character 8th character (c) Number of words (b) Number of bits (a) Function (d) Individual management number The meaning of each character is explained below. (a) Function The first character indicates the type of the macro, the second character indicates the ROM type, and the third character indicates the bit width. Example High-speed ROM (synchronous type) ZTY800GA Quantity management number Number of words Number of bits Indicates difference in bit width. Y means 1 to 32 bits, and T means 33 to 64 bits. Indicates classification of type of macro. T indicates synchronous, high-speed type. Indicates RAM or ROM. Z means ROM. (b) Number of bits The number of bits indicated by the third character varies depending on the bit width indicated by the third character, as indicated in the following tables. Characters I, O, and Q are not used. • If third character is Y • If third character is T Fourth Character Number of Bits Fourth Character Number of Bits Fourth Character Number of Bits Fourth Character Number of Bits 0 1 2 3 : 9 A B C D E F G H I J Prohibited 1 2 3 : 9 10 11 12 13 14 15 16 17 Prohibited 18 K L M N O P Q R S T U V W X Y Z 19 20 21 22 Prohibited 23 Prohibited 24 25 26 27 28 29 30 31 32 0 1 2 3 : 9 A B C D E F G H I J Prohibited 33 34 35 : 41 42 43 44 45 46 47 48 49 Prohibited 50 K L M N O P Q R S T U V W X Y Z 51 52 53 54 Prohibited 55 Prohibited 56 57 58 59 60 61 62 63 64 Design Manual A12982EJ4V0DM 27 CHAPTER 1 OVERVIEW (c) (d) Number of words The fifth through seventh characters correspond to the low-order 3 digits of a base-32 number indicating the quotient of the number of real words divided by 32. The applicable range, however, is 32 words to 1M words. I, O, Q, and Z are not used in the alphabetic characters used in the base-32 number. For the correspondence between the base-32 numbers and numerals, refer to 1.6.4 Correspondence table for notation to the base of 32. 5 6 7 Number of words 0 : 0 0 : 0 0 0 0 0 0 0 0 : 0 0 : 0 : 0 : 0 : 0 0 0 1 : Y Y Y Z 0 0 : 0 0 : 0 0 0 0 0 0 0 0 : 0 1 : 2 : 8 : G : Y Y Z 0 : Y Y Z – 0 1 : 9 A : H I J N O P Q R : Z 0 : 0 : 0 : 0 : Y Z – 0 : Y Z – – 0 32 : 288 320 : 544 Missing number 576 704 Missing number 736 Missing number 768 : Missing number 1024 : 2048 : 8192 : 16384 : 32736 Missing number Missing number 32768 : 1048544 Missing number Missing number Missing number 1048576 Quantity management number The eighth character indicates management information when two or more of the same type of ROM are used on one chip. Value A B C : Y Z 0 1 : 9 Caution 28 Number of words = Fifth character × 323 + sixth character × 322 + seventh character × 32 Example Where 5th, 6th, 7th character= 01J J = 18 323 × 0 + 322 × 1 + 32 ×18 = 1600 words Description Indicates the first ROM on one chip Indicates the second ROM of the same type on one chip Indicates the third ROM of the same type on one chip : : : : : : : Be sure to assign numbers in ascending order i.e.: A, B, C ... 9. Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW 1.6.4 Correspondence table for notation to the base of 32 The following table shows the correspondence between base-32 and the decimal numbers 0 through 31. The base-32 notation are expressed using numerals and alphabetic characters, like hexadecimal numbers. However, the alphabetic characters I, O, Q, and Z are not used. Table 1-5 Correspondence between Base-32 and Decimal Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 A B C D E F 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 G H J K L M N P R S T U V W X Y 1.6.5 Notes on bus name Simulation display is performed in “descending order” in hexadecimal. For example, A(7:0) is expressed as A7, A6, ... A0. Make sure that the mating bus name is also in descending order. If the bus name is in ascending order, connection sequence is reversed, causing problems. Design Manual A12982EJ4V0DM 29 CHAPTER 1 OVERVIEW 1.7 Backup Memory Macros of Cell-Based IC 1.7.1 Backup function of RAM macros (1) Operating voltage to which CB-9 family VX/VM type RAM macros apply The CB-9 family VX/VM type provides RAM macros applicable to the following conditions. • High-speed single-port RAM (synchronous type), high-density single-/dual-port (1R + 1W) RAM (synchronous type) Hold voltage: 1.6 to 3.6 V at operating voltage of 3.0 to 3.6 V, or 1.6 to 2.2 V at 1.8 to 2.2 V • High-speed dual-port (1R/W + 1R) RAM (synchronous type) Hold voltage: 2.1 to 3.6 V at operating voltage of 3.0 to 3.6 V • Super high-speed single-port RAM (synchronous type) Hold voltage: 2.5 to 3.6 V at operating voltage of 3.0 to 3.6 V (2) BUB (backup) pin When making backups of RAM macros, ensure that underfined data from the non-backup block is not propagated to inside the macros, corrupting the data. Therefore, the RAM macros with the backup function are provided with the BUB (backup) pin to which a low-level signal can be input when making backups to protect data in the macros. (3) Separation of main power supply and backup power supply To back up the RAM macro, the main power supply and backup power supply must be separated when laying out the chip. Therefore, the layout TAT and development cost must be separately considered. To back up the entire chip, however, the power supply does not have to be separated. 30 Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW (4) When not using backup If BUB pins are not used, place the F091 (level generator) adjacent to the BUB pins of each RAM and clamp it high. Do not connect more than one BUB pin to one F091. (a) Incorrect (b) Correct RAM RAM F091 BUB H L BUB RAM RAM F091 H L F091 BUB H L BUB Figure 1-2 When Not Using Backup 1.7.2 Notes on backup of memory macro block (1) Notes on designing power supply separation circuits (For circuit configuration, refer to Figure 1-3 Power Supply Separation Circuit Configuration.) <1> To separate the power supply, the following three dedicated (external) pins are necessary. • One each of BVDD (backup VDD) and BGND (backup GND) pins as dedicated power supply pins • BUB (backup) pin The BVDD and BGND pins are necessary for layout and do not have to be wired when designing the circuit. <2> Directly input the BUB pin of the memory macro from an external pin via input buffer (separate the power to the input buffer also). At this time, use FI01 as the input buffer. <3> Inputting a low level signal to the BUB pin prevents undefined data from propagating to inside memory macros when the power is off, thus preventing data corruption. Design Manual A12982EJ4V0DM 31 CHAPTER 1 OVERVIEW (2) Note on selecting power supply As an example, selecting power supply during a 3.3 V operation is shown below (the same applies during a 2.0 V operation). <1> When the supply voltage level for memory backup is the same as that during the normal operation (During normal operation: main power: 3.3 V, during backup: backup power = 3.3 V) Turn OFF the main power. <2> When the supply voltage level for memory backup is different from that during normal operation (During normal operation: main power: 3.3 V, during backup: backup power = 3 V) If the backup power (power to the memory macro block) is changed to 3 V before the main power is turned OFF, a potential difference from the non-backup block (blocks other than memory macro block) is generated, causing malfunction or destruction due to latchup. Change the supply voltage level in either of the following ways: • First turn OFF the main power, and then change the backup power from 3.3 V to 3 V. • Change the main power and backup power from 3.3 V to 3 V simultaneously, and then turn OFF the main power. (3) Notes on using BSCAN when using backup function The BUB pin must not be subject to BSCAN when the backup function is used. A (a : 0) Non-backup block Power supply separation line Backup block BIST BUB Backup VDD A (a : 0) RAM BUB BIST Connect BUB pins of BIST to those of RAM, and separate the power supply of all BISTs to connect to the backup block power supply. BUB A (a : 0) RAM BUB external pin BUB FI01 Backup GND Directly input the BUB pin from an external input pin via input buffer (FI01). To backup the memory macro block, make the BUB pin high after the main power has been completely turned ON, and make it low before the main power is turned OFF. Figure 1-3 Power Supply Separation Circuit Configuration 32 Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW 1.8 Notes on Using Each Macro If the address or input data changes when each RAM or ROM is read or written, note that the output data always has an undefined period (for details, refer to the timing charts in each chapter). With the synchronous RAM, the output data has an undefined period at the rising edge of the clock even if the address and input data do not change. Observe each operation timing (refer to Figure 1-4). Read cycle (CSB = low level, WEB = high level, OEB = low level) BE A 00 01 tACC tACC tOH DO Caution tACC tOH tOH A = 00 A = 01 A = 01 An undefined period is output to the output data (DO) even when the address (A) does not change. Write cycle (CSB = low level, WEB = low level, OEB = low level) BE A 00 01 DI 00 01 tDTH tDTH tOH DO tDTH tOH tOH 00 01 01 Caution An undefined period is output to the output data (DO) even when the address (A) and input data (DI) do not change. Remark tACC: Access time, tOH: Output hold time, tDTH: Write data through time : Undefined Figure 1-4 Read/Write Cycle of Synchronous RAM Design Manual A12982EJ4V0DM 33 CHAPTER 1 OVERVIEW 1.9 Timing Limitations when Synchronous RAM Is Used Observe the following timing limitations when using the synchronous RAM of the CB-9 family VX/VM type. Synchronous RAM subject to timing limitations • High-speed single-port RAM (synchronous type) • High-speed dual-port (1R/W + 1R) RAM (synchronous type) • High-density single-port RAM (synchronous type) • High-density dual-port (1R + 1W) RAM (synchronous type) • Super high-speed single-port RAM (synchronous type) 1.9.1 Prohibiting address change at same time as rising of clock input signal (BE) If the address is changed at the same time as the rising of the clock (BE) when the synchronous RAM is read or written, the internal data of the RAM may be destroyed (refer to Figure 1-5). It is recommended to change the address in synchronization with the falling of the clock (refer to Figure 1-6). BE WEB A(a:0) DI DO 1 0 55 FF 1 X 0 55 X Timing error occurs if an address signal is changed at the same time as the rising of BE. Data are destroyed after this timing. Figure 1-5 Read Cycle Timing (a) Incorrect BE A(a:0) (b) Correct BE A(a:0) Figure 1-6 Timing to Change Clock and Address Caution 34 Note that this limitation applies to the read/write port and write port of a dual-port RAM. However, this limitation does not apply to the read port. Design Manual A12982EJ4V0DM CHAPTER 1 OVERVIEW 1.9.2 Prohibiting changing of CSB signal while clock input signal (BE) is high Do not change the CSB signal while the BE signal of the synchronous RAM is high. If the CSB signal is changed, the internal data of the RAM may be destroyed. Change the CSB signal after the clock has fallen (refer to Figure 1-7). (a) Incorrect BE CSB Do not change the CSB signal after BE has risen. (b) Correct BE CSB Change the CSB signal after BE has fallen. (Satisfy the CSB setup time and CSB hold time) Figure 1-7 Timing to Change Clock and CSB Caution Note that this limitation applies to both the ports (A port and B port) of a dual-port RAM. However, this limitation does not apply to the read port. Design Manual A12982EJ4V0DM 35 CHAPTER 1 OVERVIEW 1.9.3 Prohibiting changing of BUB while clock input signal (BE) is high Do not change the BUB while the BE signal of the synchronous RAM is high. If the BUB is changed, the data may be destroyed. Backup mode Normal mode Backup mode BUB tBUH tBUS BUNRI tBUH tBUS tBUH tBUS tCH tCS tCH tCS BE CSB : Fixed value of “0” or “1”, tBUS, tBUH > 100 ns Figure 1-8 Timing to Change BE and BUB 1.9.4 Prohibiting changing of BUNRI while clock input signal (BE) is high Do not change the BUNRI while the BE signal of the synchronous RAM is high. If the BUNRI is changed, the data may be destroyed. Normal mode Test mode Normal mode BUNRI tNTS tNTH tNTS tNTH TEST tCS BE CSB TBE TCSB : Fixed value of “0” or “1”, tNTS, tNTH > 100 ns Figure 1-9 Timing to Change BE and BUNRI 36 Design Manual A12982EJ4V0DM CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.1 General • Single-port SRAM (I/O separation type) • Flexible memory size → High-efficiency macro location by memory compiler. Block name: WRVxxxxx Bit width: 1 to 32 bits (variable in 1-bit units) Number of words: 32 to 2K words (variable in 8-word units) • Operating voltage: 3.3 ± 0.3 V, 2.0 ± 0.2 V • Operating ambient temperature: –40 to +85°C • Storage temperature: –65 to +150°C • 0.35 µm CMOS technology 2.1.1 Compiled range Words 2K WRVxxxxx 32 1 32 Bits Figure 2-1 Compiled Range of High-Speed Single-Port RAM (Synchronous Type) Table 2-1 Compiled Range of High-Speed Single-Port RAM (Synchronous Type) Block Name Minimum Size Maximum Size Step WRVxxxxx 32 words × 1 bit 2K words × 32 bits 8 words/1 bit Design Manual A12982EJ4V0DM 37 CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) WEB TWEB DI (B – 1:0) TDI (B – 1:0) A (N – 1:0) TA (N – 1:0) 2.1.2 Equivalent circuit BE (CL) TEST (TI) (NIB) (GND) (CTIB) (CNIB) TBE (TI) BUB BUNRI (NIB) (CL) CSB TCSB (CTIB) (CNIB) A DATA IN READ/WRITE control OEB DC DO (B – 1:0) DATA OUT RAM 2N words B bits TDO (B – 1:0) Remark N: number of address lines, B: number of bits Figure 2-2 Internal Equivalent Circuit 38 Design Manual A12982EJ4V0DM ENABLE signal CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.1.3 Symbol diagram in in in in DI(b:0) TDI(b:0) A(a:0) TA(a:0) in in in in in in in OEB TWEB WEB TBE BE TCSB CSB in in in TEST BUB BUNRI DO(b:0) TDO(b:0) out out DC out Remarks 1. A pin prefixed with “T” is a test pin. 2. “a” = (number of address lines) – 1, where 4 ≤ a ≤ 10. “b” = (number of bits) – 1, where 0 ≤ b ≤ 31. 2.1.4 Pin capacitance Pin Information GateDRC uses CIN and CMAX for fanin/fanout calculation. Wiring capacitance = temporary wiring length × 0.18 (pF/mm) Input Pin Name/Symbol DI(b:0) Output CIN (pF) 0.01 CIN (pF) CMAX (pF) DO(b:0) Pin Name/Symbol 0.05 6.0 (3.0) 0.05 6.0 (3.0) – 1.5 (1.0) TDI(b:0) 0.01 TDO(b:0) A(a:0) 0.02 DC TA(a:0) 0.02 BE 0.07 TBE 0.07 CSB 0.01 TCSB 0.01 WEB 0.02 TWEB 0.02 OEB 0.02 TEST 0.02 BUB 0.03 BUNRI 0.02 Remarks 1. ( ) : Value at VDD = 2.0 ± 0.2 V. 2. “a” = (number of address lines) – 1, where 4 ≤ a ≤ 10 “b” = (number of bits) – 1, where 0 ≤ b ≤ 31 Design Manual A12982EJ4V0DM 39 CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.2 Pin Function List Pin Name/Signal Name Attribute Mode Function DI(b:0) I Normal Data input b = number of bits – 1 DO(b:0) OZ Normal Data output b = number of bits – 1 A(a:0) I Normal Address input a = number of address lines – 1 (determined by number of words) Note BE I Normal Clock input CSB I Normal Chip select input WEB I Normal Write enable input OEB I Normal Data output enable input TDI(b:0) I Test Data input b = number of bits – 1 TDO(b:0) OZ Test Data output b = number of bits – 1 TA(a:0) I Test Address input a = number of address lines – 1 (determined by number of words) Note TBE I Test Clock input TCSB I Test Chip select input TWEB I Test Write enable input BUNRI I Mode selection Separation test input BUNRI = 0: Normal mode BUNRI = 1: Test mode TEST I Mode selection Test mode input BUNRI = 1, TEST = 0 Separated from test bus (tests other macros) BUNRI = 1, TEST = 1 Selected as subject to test BUB I Mode selection Backup mode input BUB = 0: Backup mode BUB = 1: Normal mode, test mode DC O Normal Data control output DC = 0: DO(b:0) = 0, 1, undefined DC = 1: DO(b:0) = high impedance Note Number of address lines = log2 (number of words) (rounded up at decimal place) Remark 40 The meanings of the symbols in the Attribute column are as follows: I : input pin, OZ : 3-state output pin, O : output pin Design Manual A12982EJ4V0DM CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.3 Operation Truth Table The meanings of the symbols in the following operation truth tables are as follows: Hi-Z X XZ Ax DIx [Ax] : High impedance : Undefined state not including high impedance : Undefined state including high impedance : Any data : Input data : Data in memory Normal Pin Status BUB BUNRI TEST Test Pin Status Mode Input Output DC Input Output 0 XZ XZ Backup XZ Hi-Z 1 XZ Hi-Z 1 0 X Normal Valid Valid Valid XZ Hi-Z 1 1 0 Test (non-select) XZ Hi-Z 1 XZ Hi-Z 1 1 1 Test (select) XZ Hi-Z 1 Valid Valid Normal mode access CSB BE WEB OEB A(a:0) DI(b:0) DO(b:0) DC Operation 0 0 1 Ax DIx Hi-Z 1 Write (output off) 0 0 0 Ax DIx [Ax] = DIxNote 0 Write (output on) 0 1 0 Ax X [Ax] 0 Read 0 0 X 0 X X Hold 0 Precharge 0 X X 1 X X Hi-Z 1 Output off 1 X X X X X Hi-Z 1 Macro off Note The data input from the DI(b:0) pin is output through. Test mode access TCSB TBE TWEB TA(a:0) TDI(b:0) TDO(b:0) Operation 0 0 Ax DIx [Ax] = DIxNote Write 0 1 Ax X [Ax] Read 0 0 X X X Hold Precharge 1 X X X X Hold Macro off Note The data input from the TDI(b:0) pin is output through. Design Manual A12982EJ4V0DM 41 CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.4 Macro Size Use the following expression to calculate the macro size. Macro size = X × Y (grids) W B N α β : number of words : number of bits : number of address lines (N = log 2W (rounded up at decimal place)) : Macro circumferential wiring area in X direction (73.53) : Macro circumferential wiring area in Y direction (7.353) B ≤ 16 B > 16 W = 32 X = 31.74 × B + 169.00 + α Y = 7.464 × 10–2 × W + 22.87 + β (grids) (grids) X = 31.74 × B + 196.58 + α Y = 7.464 × 10–2 × W + 22.87 + β (grids) (grids) W > 32 X = 31.74 × B + 6.24 × N + 136.36 + α Y = 7.464 × 10–2 × W + 25.52 + β (grids) (grids) X = 31.74 × B + 6.24 × N + 163.93 + α Y = 7.464 × 10–2 × W + 25.52 + β (grids) (grids) Remarks 1. Round up the fraction below the decimal place. 2. Not necessary to add α and β when not taking the macro circumferential wiring area into consideration. 2.5 Electrical Characteristics Absolute maximum ratings Parameter Symbol Ratings Unit VDD –0.5 to +4.6 V TA –40 to +85 °C Tstg –65 to +150 °C Supply voltage Operating ambient temperature Storage temperature Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended operating range (VDD = 3.3 ± 0.3 V) Parameter Supply voltage Operating ambient temperature Symbol MIN. TYP. MAX. Unit VDD 3.0 3.3 3.6 V TA –40 +85 °C Recommended operating range (VDD = 2.0 ± 0.2 V) Parameter Supply voltage Operating ambient temperature 42 Symbol MIN. TYP. MAX. Unit VDD 1.8 2.0 2.2 V TA –40 +85 °C Design Manual A12982EJ4V0DM CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.6 Operating Current Consumption The operating current consumption (IDD) changes depending on the number of bits, number of words, number of address lines, and operating frequency of the memory. The value of the operating current consumption can be calculated by the following expression. IDD (TYP.) = IDDR (TYP.) + IDDW (TYP.) IDD (MAX.) = IDDR (MAX.) + IDDW (MAX.) IDDR and IDDW in the above expression can be worked out by the expressions in the table below. The meanings of the symbols in the tables below are as follows: B: number of bits, W: number of words, N: number of address lines (N = log 2W (rounded up at decimal place)), fR: read operating frequency (MHz), fW: write operating frequency (MHz), CL: external load capacitance (pF), A: operation rate Note 1 (100% = 1), DF: MAX data rate (MHz) of A (a:0), WEB, or DI (b:0) pin (1) VDD = 3.3 ± 0.3 V TYP. During read/write operation (α = 1.65 × B × CL) Operation Expression Unit Read (IDDR) {(1.19 × N + 1.61 × B – 3.23) × 10–3 × W + 1.20 × N + 12.1 × B + 11.2 + α} × fR × A µA Write (IDDW) {(1.19 × N + 1.71 × B – 3.23) × × W + 1.20 × N + 9.11 × B + 11.0 + α} × fW × A µA 10–3 MAX. During read/write operation (α = 1.8 × B × CL) Operation Expression Unit Read (IDDR) {(1.29 × N + 4.27 × B – 2.74) × 10–3 × W + 1.50 × N + 13.1 × B + 13 + α} × fR × A µA Write (IDDW) {(1.29 × N + 3.26 × B – 2.74) × 10–3 × W + 1.50 × N + 10.3 × B + 12.7 + α} × fW × A µA In power-down mode Note 2 Condition Expression Unit TYP. {1.19 × 10–3 × W × (N – 5) + 1.20 × N + 0.370 × B – 2.69} × DF µA MAX. {1.29 × 10–3 × W × (N – 5) + 1.50 × N + 0.441 × B – 3.33} × DF µA Design Manual A12982EJ4V0DM 43 CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 0.2 V TYP. During read/write operation (α = 1.0 × B × CL) Operation Expression Unit Read (IDDR) {(0.695 × N + 0.94 × B – 1.885) × 10–3 × W + 0.7 × N + 7.06 × B + 6.50 + α} × fR × A µA Write (IDDW) {(0.695 × N + 1.00 × B – 1.885) × 10–3 × W + 0.7 × N + 5.32 × B + 6.44 + α} × fW × A µA MAX. During read/write operation (α = 1.1 × B × CL) Operation Expression Unit Read (IDDR) {(0.746 × N + 2.47 × B – 1.59) × 10–3 × W + 0.87 × N + 7.57 × B + 7.55 + α} × fR × A µA Write (IDDW) {(0.746 × N + 1.89 × B – 1.59) × 10–3 × W + 0.87 × N + 5.95 × B + 7.35 + α} × fW × A µA In power-down mode Note 2 Condition Expression Unit TYP. {1.94 + 0.216 × B + (0.695 × 10–3 × W + 0.70) × (N – 5)} × DF µA MAX. {2.41 + 0.255 × B + (0.746 × µA 10–3 × W + 0.87) × (N – 5)} × DF Notes 1. This operation rate is the ratio of the read and write operations to the total operation period (read, write, precharge, and macro off) of the RAM. Example The operation rate is 60% (0.6) if read operations account for 30% of the total operation period of RAM and write operations account for 30%. 0 30 Read 60 Write 100 Precharge & macro off 2. Power-down mode indicates the precharge status or macro off status in Normal mode access in 2.3 Operation Truth Table. Remarks 1. If all the input signals of this RAM are fixed, the current consumption in the standby mode (I DD1) = 0. 2. Calculate the read/write operating frequency (MHz) based on the following concept (read 50%, write 50% during read/write operation). Example To read and write alternately every 1 clock at 50 MHz Calculate I DDR and I DDW assuming the folllowing. Read frequency : fR = 25 MHz Write frequency : fW = 25 MHz 3. If OEB is fixed to H during write operation, α of I DDW is 0 (in the write (output off) status for the normal mode access in the operation truth table). 44 Design Manual A12982EJ4V0DM CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.7 Timing 2.7.1 Expressions The timing values can be calculated by the following expressions (rounded at the third place below the decimal place. However, the output hold time is truncated). The meanings of the symbols in the table below are as follows: W: number of words, B: number of bits: N: number of address lines (N = log 2W (rounded up at decimal place)), CL: external load capacitance (pF) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tBEH > tPC: tBEH × 2 (clock duty: 50%) Where tBEH < tPC: tPC × 2 (clock duty: 50%) ns Access time tACC 3.10 + 3.21 × 10–2 × B + 4.94 × 10–4 × W + 3.40 × 10–1 × CL ns tOH 0.61 + 7.5 × ns tBEH Output hold time 10–3 × B + 1.31 × 10–4 ×W 2.67 + 3.21 × 10–2 tPC 2.49 + 4.97 × 10–2 tAS 1.10 + 4.69 × 10–4 ×W ns Address hold time tAH 0.70 + 1.80 × 10–2 ×N ns Write data setup time tDIS 0 tDIH Write data through time WEB setup time BE high-level time Precharge time Address setup time × B + 3.84 × 10–4 ×W ns × B + 5.14 × 10–4 ×W ns ns 0.88 + 1.87 × 10–2 ×B tDTH 2.52 + 1.61 × 10–2 × B + 3.40 × tWS 0.47 WEB hold time tWH 0.70 + 1.80 × CSB setup time tCS 0.79 ns CSB hold time tCH 0 ns tHZ 1.73 + 1.96 × 10–2 × B tLZ tDC Write data hold time ns 10–1 × CL ns ns 10–2 ×N ns CSB, OEB control Output floating time Output active time DC output delay time 1.71 + 2.25 × 10–2 ×B 1.59 + 1.61 × 10–2 × B + 9.40 × Design Manual A12982EJ4V0DM ns ns 10–1 × CL ns 45 CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 0.2 V Read/write operation (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tBEH > tPC: tBEH × 2 (clock duty: 50%) Where tBEH < tPC: tPC × 2 (clock duty: 50%) ns Access time tACC 5.23 × 10–2 × B + 1.66 × 10–3 × W + 6.84 + 6.26 × 10–1 × CL ns tOH ns 1.83 × 10–2 × B + 3.315 × tBEH 5.23 × 10–2 tPC 6.69 × 10–2 tAS 8.44 × 10–4 × W + 1.95 ns Address hold time tAH 2.64 × 10–2 × N + 1.17 ns Write data setup time tDIS 0 tDIH Write data through time WEB setup time Output hold time BE high-level time Precharge time Address setup time 10–4 × W + 0.925 × B + 1.57 × 10–3 × W + 5.97 ns × B + 8.95 × 10–4 × W + 5.68 ns ns 2.98 × 10–2 × B + 1.47 tDTH 2.81 × 10–2 × B + 5.62 + 6.26 × tWS 0.89 WEB hold time tWH 2.64 × CSB setup time tCS 1.51 ns CSB hold time tCH 0 ns tHZ 3.70 × 10–2 × B + 3.02 ns tLZ tDC Write data hold time ns 10–1 × CL ns ns 10–2 × N + 1.17 ns CSB, OEB control Output floating time Output active time DC output delay time 46 4.04 × 10–2 × B + 3.34 ns 3.57 × 10–2 × B + 3.12 + 1.77 × CL ns Design Manual A12982EJ4V0DM CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.7.2 Typical value (8 bits × 512 words) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Symbol MIN. TYP. MAX. Unit Cycle time tRC 6.32 Access time tACC Output hold time tOH 0.73 ns BE high-level time tBEH 3.13 ns Precharge time tPC 3.16 ns Address setup time tAS 1.35 ns Address hold time tAH 0.87 ns Write data setup time tDIS 0 ns Write data hold time tDIH 1.03 ns Write data through time tDTH WEB setup time tWS 0.47 ns WEB hold time tWH 0.87 ns CSB setup time tCS 0.79 ns CSB hold time tCH 0 ns Output floating time tHZ 1.89 ns Output active time tLZ 1.89 ns DC output delay time tDC ns 3.68 2.72 ns ns CSB, OEB control 1.91 ns Remarks 1. The above values are calculated with an external load capacitance of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN. : minimum value necessary for operating macro under worst condition MAX. : delay time of macro output under worst condition Design Manual A12982EJ4V0DM 47 CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 0.2 V Read/write operation (TA = –40 to +85°C) Parameter Symbol MIN. TYP. MAX. Unit Cycle time tRC 14.40 Access time tACC Output hold time tOH 1.24 ns BE high-level time tBEH 7.20 ns Precharge time tPC 6.68 ns Address setup time tAS 2.39 ns Address hold time tAH 1.41 ns Write data setup time tDIS 0 ns Write data hold time tDIH 1.71 ns Write data through time tDTH WEB setup time tWS 0.89 ns WEB hold time tWH 1.41 ns CSB setup time tCS 1.51 ns CSB hold time tCH 0 ns Output floating time tHZ 3.32 ns Output active time tLZ 3.67 ns DC output delay time tDC ns 8.24 5.97 ns ns CSB, OEB control 3.64 Remarks 1. The above values are calculated with an external load capacitance of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN. : minimum value necessary for operating macro under worst condition MAX. : delay time of macro output under worst condition 48 Design Manual A12982EJ4V0DM ns CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 2.8 Timing Chart Read operation Read cycle (CSB = low level, OEB = low level) tRC tPC tBEH BE tAS tAH A(a:0) tACC tOH DO(b:0) tWS WEB Invalid Write operation Write cycle (CSB = low level, OEB = low level) tRC tPC tBEH BE tAS tAH tDIS tDIH tWS tWH A(a:0) DI(b:0) WEB tDTH DO(b:0) tOH Invalid Design Manual A12982EJ4V0DM 49 CHAPTER 2 HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) Read/write operation (1) CSB control (OEB = low level) tRC tRC tRC tRC BE tCS tCH tCS tCH CSB tHZ tLZ tHZ Hi-Z DO(b:0) tDC tLZ Hi-Z tDC tDC tDC DC Invalid (2) OEB control (CSB = low level) OEB tHZ tLZ Hi-Z DO(b:0) tDC tDC DC 2.9 Notes on Correct Use (1) If a spike is input to the clock input pin while CSB = L, the data in the RAM may be destroyed. In this case, the addresses other than that when the spike was input may be also destroyed. (2) When using a RAM macro of less than 2N words, do not access a non-existent address. Note Otherwise, the output data of the preceding cycle is not retained. Note Specifically, this means an access to W+1 to 2N where W < 2N. For example, when a RAM macro of 1 bit × 160 words is used and the number of address lines (N) is 8, 161 through 256 words are non-existent addresses. (3) If a non-existent address is accessed, an overcurrent flows during read operation (WEB = H, BE = H) (the overcurrent does not flow during write operation or in macro off status). In addition, even when there are no non-existent addresses, an overcurrent flows immediately after power application until the address is confirmed. The overcurrent can be calculated by the following expression. • Overcurrent when non-existent address or uncertain address is accessed [VDD = 3.3 ± 0.3 V] ∆IDD (TYP.) = 1.671 × (B + 1) [mA] ∆IDD (MAX.) = 3.4226 × (B + 1) [mA] Remark (4) 50 B: number of bits of RAM accessed Currently may continue to flow if the clock is stopped at a high level when power is applied, so be sure to either stop the clock while the clock pin is low, or input the clock first low then high (or high → low → high). If the clock is input at a low level even once, current will not flow no matter how the clock is subsequently stopped. Design Manual A12982EJ4V0DM CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.1 General • Read/write port + read port Multi-function dual-port RAM (I/O separation type) • Flexible memory size → High efficiency macro location by memory complier. Block name: WUExxxxx Bit width: 1 to 32 bits (variable in 1-bit units) Number of words: 32 to 2K words (variable in 16-word units) • Operating voltage: 3.3 ± 0.3 V • Operating ambient temperature: –40 to +85°C • Storage temperature: –65 to +150°C • 0.35 µm CMOS technology 3.1.1 CompiIed range Words 2K WUExxxxx 32 1 32 Bits Figure 3-1 Compiled Range of High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type) Table 3-1 Compiled Range of High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type) Block Name Minimum Size Maximum Size Step WUExxxxx 32 words × 1 bit 2K words × 32 bits 16 words/1 bit Design Manual A12982EJ4V0DM 51 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) BEA (CL) WEB (TIA) TBEA (CNIBA) (CTIBA) TEST BUB BUNRI TWEB DIA (B – 1:0) TDIA (B – 1:0) AA (N – 1:0) TAA (N – 1:0) 3.1.2 Equivalent circuit (NIBA) (test) (GND) (bub) (TIA) (bunri) (NIBA) CSA (CL) TCSA (CTIBA) (CNIBA) A (A) DATA IN OEA READ/WRITE control DCA DOA (B – 1:0) DATA OUT (A) TDOA (B – 1:0) TDOB (B – 1:0) Dual-port RAM 2N words B bits DATA OUT (B) DOB (B – 1:0) ENABLE signal (B) A (B) DCB OEB (CNIBB) (CTIBB) TCSB CSB (NIBB) (bunri) (bub) (test) (TIB) (GND) (CTIBB) (CNIBB) TBEB N: number of address lines, B: number of bits Figure 3-2 Internal Equivalent Circuit 52 Design Manual A12982EJ4V0DM AB (N – 1:0) TAB (N – 1:0) BEB Remark ENABLE signal (A) CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.1.3 Symbol diagram in in out out in in in in in in in in in in in in out DIA (b:0) TDIA (b:0) DOA (b:0) TDOA (b:0) AA (a:0) TAA (a:0) CSA TCSA OEA WEA TWEA BEA TBEA TEST BUB BUNRI DCA DOB (b:0) TDOB (b:0) AB (a:0) TAB (a:0) out out in in CSB TCSB OEB in in in BEB TBEB in in DCB out Remarks 1. A pin prefixed with “T” is a test pin. 2. “a” = (number of address lines) – 1, where 4 ≤ a ≤ 10. “b” = (number of bits) – 1, where 0 ≤ b ≤ 31. Design Manual A12982EJ4V0DM 53 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.1.4 Pin capacitance Pin Information GateDRC uses CIN and CMAX for fanin/fanout calculation. Wiring capacitance = temporary wiring length × 0.18 (pF/mm) Input Pin Name/Symbol Output CIN (pF) Pin Name/Symbol CMAX (pF) DIA(b:0) 0.01 DOA(b:0) 0.133 6.0 TDIA(b:0) 0.01 TDOA(b:0) 0.133 6.0 AA(a:0) 0.02 DCA – 1.5 TAA(a:0) 0.02 DOB(b:0) 0.133 6.0 BEA 0.06 TDOB(b:0) 0.133 6.0 TBEA 0.06 DCB – 1.5 CSA 0.01 TCSA 0.01 WEA 0.02 TWEA 0.02 OEA 0.013 AB(a:0) 0.02 TAB(a:0) 0.02 BEB 0.06 TBEB 0.06 CSB 0.01 TCSB 0.01 OEB 0.013 TEST 0.028 BUB 0.042 BUNRI 0.028 Remark “a” = (number of address lines) – 1, where 4 ≤ a ≤ 10 “b” = (number of bits) – 1, where 0 ≤ b ≤ 31 54 CIN (pF) Design Manual A12982EJ4V0DM CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.2 Pin Function List Pin Name/ Attribute Signal Name DIA(b:0) I DOA(b:0) Mode Port Normal R/W Function Data input b = number of bits – 1 b = number of bits – 1 OZ Normal R/W Data output AA(a:0) I Normal R/W Address input a = number of address lines – 1 (determined by number of words) Note BEA I Normal R/W Clock input CSA I Normal R/W Chip select input WEA I Normal R/W Write enable input OEA I Normal R/W Data output enable input TDIA(b:0) I Test R/W Data input b = number of bits – 1 TDOA(b:0) b = number of bits – 1 OZ Test R/W Data output TAA(a:0) I Test R/W Address input a = number of address lines – 1 (determined by number of words) Note TBEA I Test R/W Clock input TCSA I Test R/W Chip select input TWEA I Test R/W Write enable input DCA O Normal R/W Data control output DCA = 0: DOA(b:0) = 0, 1, undefined DCA = 1: DOA(b:0) = high impedance OZ Normal R Data output AB(a:0) I Normal R Address input a = number of address lines – 1 (determined by number of words) Note BEB I Normal R Clock input CSB I Normal R Chip select input OEB I Normal R Data output enable OZ Test R Data output TAB(a:0) I Test R Address input a = number of address lines – 1 (determined by number of words) Note TBEB I Test R Clock input TCSB I Test R Chip select input DCB O Normal R Data control output DCB = 0: DOB(b:0) = 0, 1, undefined DCB = 1: DOB(b:0) = high impedance BUNRI I Mode selection – Separation test input BUNRI = 0: Normal mode BUNRI = 1: Test mode TEST I Mode selection – Test mode input BUNRI = 1, TEST = 0 Separated from test bus (tests other macros) BUNRI = 1, TEST = 1 Selected as subject to test BUB I Mode selection – Backup mode input BUB = 0: Backup mode BUB = 1: Normal mode, test mode DOB(b:0) TDOB(b:0) b = number of bits – 1 b = number of bits – 1 Design Manual A12982EJ4V0DM 55 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) Note number of address lines = log2 (number of words) (rounded up at decimal place) Remark The meanings of the symbols in the Attribute column are as follows: I: input pin, OZ: 3-state output pin, O: output pin The meanings of the symbols in the Port column are as follows: R/W: read/write port, R: read port 3.3 Operation Truth Table The operating timing between a read/write port and a read port is partially restricted. For details, refer to 3.8.3 Operation timing restrictions between read/write port and read port . The meanings of the symbols in the following operation truth tables are as follows: Hi-Z X XZ AAx, ABx DIAx [AAx], [ABx] : High impedance : Undefined state not including high impedance : Undefined state including high impedance : Any data : Input data : Data in memory Normal Pin Status BUB BUNRI TEST Test Pin Status Mode Input Output DCA/DCB Input Output 0 XZ XZ Backup XZ Hi-Z 1 XZ Hi-Z 1 0 X Normal Valid Valid Valid XZ Hi-Z 1 1 0 Test (non-select) XZ Hi-Z 1 XZ Hi-Z 1 1 1 Test (select) XZ Hi-Z 1 Valid Valid Normal mode access Read/write port CSA BEA WEA OEA AA(a:0) DIA(b:0) DOA(b:0) DCA Operation 0 0 1 AAx DIAx Hi-Z 1 Write (output off) 0 0 0 AAx DIAx [AAx] = DIAxNote 0 Write (output on) 0 1 0 AAx X [AAx] 0 Read 0 0 X 0 X X Hold 0 Precharge 0 X X 1 X X Hi-Z 1 Output off 1 X X X X X Hi-Z 1 Macro off Note The data input from the DIA(b:0) pin is output through. 56 Design Manual A12982EJ4V0DM CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) Read port CSB BEB 0 OEB AB(a:0) DOB(b:0) DCB Operation 0 ABx [ABx] 0 Read 0 0 0 X Hold 0 Precharge 0 X 1 X Hi-Z 1 Output off 1 X X X Hi-Z 1 Macro off Test mode access Read/write port TCSA TBEA TWEA TAA(a:0) TDIA(b:0) TDOA(b:0) Operation 0 0 AAx DIAx [AAx] = DIAxNote Write 0 1 AAx X [AAx] Read 0 0 X X X Hold Precharge 1 X X X X Hold Macro off Note The data input from the TDIA(b:0) pin is output through. Read port TCSB TBEB 0 TAB(a:0) TDOB(b:0) Operation ABx [ABx] Read 0 0 X Hold Precharge 1 X X Hold Macro off Design Manual A12982EJ4V0DM 57 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.4 Macro Size Use the following expression to calculate the macro size. Macro size = X × Y (grids) W B N INT α β : number of words : number of bits : number of address lines (N = log 2W (rounded up at decimal place)) : Maximum integer which does not exceed the value in parentheses (Example INT (8.9) = 8) : Macro circumferential wiring area in X direction (73.53) : Macro circumferential wiring area in Y direction (7.353) B ≤ 16 X = INT (0.18 × B + 1.48) × 9.48 + 5.59 × B + 0.88 × W + 186.65 + α Y = 5.59 × B + 0.7 × N + 17.88 + β (grids) (grids) B > 16 X = INT (0.18 × B + 1.48) × 9.48 + 5.59 × B + 0.88 × W + 186.65 + α Y = 5.59 × B + 0.7 × N + 20.61 + β (grids) (grids) Remarks 1. Round up the fraction below the decimal place. 2. Not necessary to add α and β when not taking the macro circumferential wiring area into consideration. 3.5 Electrical Characteristics Absolute maximum ratings Parameter Symbol Ratings Unit VDD –0.5 to +4.6 V TA –40 to +85 °C Tstg –65 to +150 °C Supply voltage Operating ambient temperature Storage temperature Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended operating range (VDD = 3.3 ± 0.3 V) Parameter Supply voltage Operating ambient temperature 58 Symbol MIN. TYP. MAX. Unit VDD 3.0 3.3 3.6 V TA –40 +85 °C Design Manual A12982EJ4V0DM CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.6 Operating Current Consumption The operating current consumption (IDD) changes depending on the number of bits, number of words, number of address lines, and operating frequency of the memory. The value of the operating current consumption can be calculated by the following expression. IDD (TYP.) = IDDR (TYP.) + IDDW (TYP.) + IDDR2 (TYP.) IDD (MAX.) = IDDR (MAX.) + IDDW (MAX.) + IDDR2 (MAX.) IDDR, IDDW, and IDDR2 in the above expression can be worked out by the expressions in the table below. The meanings of the symbols in the tables below are as follows: B: number of bits, W: number of words, N: number of address lines (N = log 2W(rounded up at decimal place)), fR: read operating frequency (MHz), fW: write operating frequency (MHz), CL: external load capacitance (pF), A: operation rate Note 1 (100% = 1) DFa: MAX. data rate (MHz) of AA (a:0), WEA, or DIA (b:0) pin DFb: MAX. data rate (MHz) of AB (a:0) pin (1) VDD = 3.3 ± 0.3 V TYP. During read/write operation (α = 1.65 × B × CL) Port Operation Read/write Read (IDDR) {(0.375 × N + 0.882 × B – 1.531) × 10–3 × W + 1.3 × N + 9.24 × B + 7.6 + α} × fR × A µA Write (IDDW) {(0.375 × N + 1.76 × B – 1.531) × 10–3 × W + 1.3 × N + 6.99 × B + 8.1 + α} × fW × A µA Read (IDDR2) {(0.375 × N + 0.882 × B – 1.531) × 10–3 × W + 1.3 × N + 9.24 × B + 7.6 + α} × fR × A µA Read Expression Unit MAX. During read/write operation (α = 1.8 × B × CL) Port Operation Expression Unit Read/write Read (IDDR) {(0.536 × N + 1.26 × B – 2.189) × 10–3 × W + 1.85 × N + 13.2 × B + 10.95 + α} × fR × A µA Write (IDDW) {(0.536 × N + 2.51 × B – 2.189) × 10–3 × W + 1.85 × N + 9.99 × B + 11.55 + α} × fW × A µA Read (IDDR2) {(0.536 × N + 1.26 × B – 2.189) × 10–3 × W + 1.85 × N + 13.2 × B + 10.95 + α} × fR × A µA Expression Unit Read In power-down mode Note 2 Condition TYP. MAX. Port Read/write {0.903 × 10–3 × W × (N – 5) + 1.05 × N + 0.309 × B – 2.33} × DFa Read {0.903 × Read/write {1.29 × Read 10–3 10–3 × W × (N – 5) + 1.05 × N – 2.33} × DFb × W × (N – 5) + 1.50 × N + 0.441 × B – 3.33} × DFa {1.29 × 10–3 × W × (N – 5) + 1.50 × N – 3.33} × DFb Design Manual A12982EJ4V0DM µA µA µA µA 59 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) Notes 1. This operation rate is the ratio of the read and write operations to the total operation period (read, write, precharge, and macro off) of the RAM. Example The operation rate is 60% (0.6) if read operations account for 30% of the total operation period of RAM and write operations account for 30%. 0 30 Read 60 Write 100 Precharge & macro off 2. Power-down mode indicates the precharge status or macro off status in Normal mode access in 3.3 Operation Truth Table. Remarks 1. If all the input signals of this RAM are fixed, the current consumption in the standby mode (I DD1) = 0. 2. Calculate the read/write operating frequency (MHz) based on the following concept (read 50%, write 50% during read/write operation). Example To read and write alternately every 1 clock at 50 MHz Calculate IDDR and IDDW assuming the following. Read frequency: fR = 25 MHz Write frequency: fW = 25 MHz 3. If OEB is fixed to H during write operation, α of I DDW is 0 (in the write (output off) status in the normal mode access in the operation truth table). 60 Design Manual A12982EJ4V0DM CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.7 Timing 3.7.1 Expressions The timing values can be calculated by the following expressions (rounded at the third place below the decimal place. However, the output hold time is truncated). The meanings of the symbols in the table below are as follows: W: number of words, B: number of bits: N: number of address lines (N = log 2W (rounded up at decimal place)), CL: external load capacitance (pF) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tBEH > tPC: tBEH × 2 (clock duty: 50%) Where tBEH < tPC: tPC × 2 (clock duty: 50%) ns Access time tACC (W < 512) 3.15 + 15.0 × 10–3 × B + 8.04 × 10–4 × W + 1.63 × 10–5 × B × W + 3.15 × 10–1 × CL (W ≥ 512) 3.24 + 12.5 × 10–3 × B + 6.3 × 10–4 × W + 1.63 × 10–5 × B × W + 3.15 × 10–1 × CL ns Output hold time tOH 0.40 + 2.08 × 10–3 × B BEA, BEB high-level time ns tBEH_A (W < 512) tBEH_B 3.15 + 15.0 × 10–3 × B + 8.04 × 10–4 × W + 1.63 × 10–5 × B × W (W ≥ 512) 3.24 + 12.5 × 10–3 × B + 6.3 × 10–4 × W + 1.63 × 10–5 × B × W ns Precharge time tPC (W < 512) 1.14 + 12.8 × 10–3 × B + 3.8 × 10–4 × W + 0.1 × 10–4 × B × W (W ≥ 512) 0.58 + 17.0 × 10–3 × B + 1.26 × 10–3 × W + 0.22 × 10–4 × B × W Address setup time tAS 1.16 + 6.25 × 10–5 × W ns Address hold time tAH 0.75 × 10–1 + 0.15 × 10–1 × N ns Write data setup time tDIS 0.13 ns tDIH Write data hold time 0.34 + 7.25 × 10–3 ×B 10–3 × B + 3.15 × ns ns Write data through time tDTH 2.30 + 7.25 × WEA setup time tWS 0.21 ns WEA hold time tWH 0 ns CSA, CSB setup time tCS 0.62 ns CSA, CSB hold time tCH 0 ns tHZ 1.75 + 7.92 × 10–3 × B tLZ 10–1 × CL ns CSA, CSB control time Output floating time 1.87 + 9.70 × 10–3 ×B tDC 1.67 + 8.75 × 10–3 × B + 7.15 × Output floating time tHZ 1.10 + 8.75 × 10–3 × B Output active time tLZ 1.19 + 0.01 × B tDC 1.08 + 8.75 × Output active time DC output delay time ns ns 10–1 × CL ns OEA, OEB control time DC output delay time 10–3 ns ns × B + 7.15 × Design Manual A12982EJ4V0DM 10–1 × CL ns 61 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.7.2 Typical value (8 bits × 512 words) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to + 85°C) Parameter Symbol MIN. Cycle time tRC 7.46 Access time tACC Output hold time tOH 0.41 ns tBEH_A tBEH_B 3.73 ns Precharge time tPC 1.46 ns Address setup time tAS 1.20 ns Address hold time tAH 0.21 ns Write data setup time tDIS 0.13 ns Write data hold time tDIH 0.40 ns Write data through time tDTH WEA setup time tWS 0.21 ns WEA hold time tWH 0 ns CSA, CSB setup time tCS 0.62 ns CSA, CSB hold time tCH 0 ns Output floating time tHZ 1.82 ns Output active time tLZ 1.95 ns DC output delay time tDC BEA, BEB high-level time TYP. MAX. Unit ns 3.80 2.43 ns ns CSA, CSB control 1.89 ns OEA, OEB control Output floating time tHZ 1.17 ns Output active time tLZ 1.27 ns DC output delay time tDC 1.30 Remarks 1. The above values are calculated with an external load capacitance of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN.: minimum value necessary for operating macro under worst condition MAX.: delay time of macro output under worst condition 62 Design Manual A12982EJ4V0DM ns CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.8 Timing Chart 3.8.1 Read/write port Read operation Read cycle (CSA = low level, OEA = low level) tRC tPC tBEH_A BEA tAS tAH AA(a:0) tACC tOH DOA(b:0) tWS tWH WEA Invalid Write operation Write cycle (CSA = low level, OEA = low level) tRC tPC tBEH_A BEA tAS tAH tDIS tDIH tWS tWH AA(a:0) DIA(b:0) WEA tDTH DOA(b:0) tOH Invalid Design Manual A12982EJ4V0DM 63 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) Read/write operation (1) CSA control (OEA = low level) tRC tRC tRC tRC BEA tCS tCH tCS tCH CSA tHZ tLZ tHZ Hi-Z DOA(b:0) tDC tLZ Hi-Z tDC tDC tDC DCA Invalid (2) OEA control (CSA = low level) OEA tHZ tLZ Hi-Z DOA(b:0) tDC tDC DCA 64 Design Manual A12982EJ4V0DM CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.8.2 Read port (1) Read cycle (CSB = low level, OEB = low level) tRC tPC tBEH_B BEB tAS tAH AB(a:0) tACC tOH DOB(b:0) Invalid (2) CSB control (OEB = low level) tRC tRC tRC tRC BEB tCS tCH tCS tCH CSB tHZ tLZ tHZ Hi-Z DOB(b:0) tDC tLZ Hi-Z tDC tDC tDC DCB Invalid (3) OEB control (CSB = low level) OEB tHZ tLZ Hi-Z DOB(b:0) tDC tDC DCB Design Manual A12982EJ4V0DM 65 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) 3.8.3 Operation timing restrictions between read/write port and read port (1) When the read/write port and the read port access different addresses There is no restriction imposed on the operation timing between the read/write port and the read port. For the operation of each port, refer to the operating timing of 3.8.1 Read/write port and 3.8.2 Read port. (2) When the read/write port and the read port access the same address (a) When the read/write port performs a read operation There is no restriction imposed on the operation timing between the read/write port and the read port. For the operation of each port, refer to the operating timing of 3.8.1 Read/write port and 3.8.2 Read port. (b) When the read/write port performs a write operation [If BEA (read/write port clock) rises after or at the same timing as BEB (read port clock) (Refer to the figure below.)] AA Same addresses AB WEA BEA BEB T Read Port Spec. 66 Operation Timing If T ≤ tBEH_B Write operation from the read/write port is performed correctly. Output of the read port is undefined. If T > tBEH_B Write operation from the read/write port is performed correctly. The read port outputs the previous write data. Design Manual A12982EJ4V0DM CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) [If BEA (read/write port clock) rises before BEB (read port clock) (Refer to the figure below.) ] AA Same addresses AB WEA BEA BEB T The operation timing is as follows: Read/Write Port Spec. Operation Timing If T ≤ tBEH_A Write operation from the read/write port is performed correctly. Output of the read port is undefined. If T > tBEH_A Write operation from the read/write port is performed correctly. Output of the read port is also performed correctly. For the operation of each port, refer to the operating timing of 3.8.1 Read/write port and 3.8.2 Read port. 3.9 Notes on Correct Use (1) If a spike is input to the clock input pin while CSA or CSB = L, the data in the RAM may be destroyed. In this case, the addresses other than that when the spike was input may be also destroyed. (2) When using a RAM macro of less than 2N words, do not access a non-existent address Note. Otherwise, the output data of the preceding cycle is not retained. Note Specifically, this means an access to W+1 to 2N where W < 2N. For example, when a RAM macro of 1 bit × 160 words is used and the number of address lines (N) is 8, 161 through 256 words are non-existent addresses. (3) If a non-existent address is accessed, an overcurrent flows during read operation (WEA = H, BEA = H, BEB = H) (the overcurrent does not flow during write operation or in macro off status). In addition, even when there are no nonexistent addresses, an overcurrent flows immediately after power application until the address is confirmed. The overcurrent can be calculated by the following expression. • Overcurrent when non-existent address or uncertain address is accessed [VDD = 3.3 ± 0.3 V] ∆I DD (TYP.) = 1.671 × (B + 1) [mA] ∆I DD (MAX.) = 3.4226 × (B + 1) [mA] Design Manual A12982EJ4V0DM 67 CHAPTER 3 HIGH-SPEED DUAL-PORT (1R/W + 1R) RAM (SYNCHRONOUS TYPE) Remarks 1. B: Number of bits of RAM accessed 2. Calculate the overcurrent of the high-speed dual-port (1R/W+1R) RAM (synchronous type) for each port (read/write port, read port). (4) Current may continue to flow if the clock is stopped at a high level when power is applied, so be sure to either stop the clock while the clock pin is low, or input the clock first low then high (or high → low → high). If the clock is input at a low level even once, current will not flow no matter how the clock is subsequently stopped. 3.10 Other Notes on Correct Use Although this RAM has a read/write port and a read port, these ports can be also used as a write port and a read port. The connections when the ports are used as a write port and a read port are shown below. For the operating timing, refer to the operating timing of 3.8.1 Read/write port and 3.8.2 Read port. Pin Name 68 I/O Connection WEA Input Fixed to low level DOA(b:0) Output Open Design Manual A12982EJ4V0DM CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.1 General • Dedicated to VX/VM • Single-port SRAM (I/O separation type) • High-density integration • Flexible memory size → High efficiency macro location by memory compiler. Block name: W8Kxxxxx, W8Uxxxxx Bit width: 1 to 32 bits (variable in 1-bit units) Number of words: 32 to 4096 words (variable in 32-word units) Block name: W8Txxxxx Bit width: 1 to 32 bits (variable in 1-bit units) Number of words: 4160 to 8192 words (variable in 64-word units) • Operating voltage: 3.3 ± 0.3 V, 2.0 ± 0.2 V • Operating ambient temperature: –40 to +85°C • Storage temperature: –65 to +150°C • 0.35 µm CMOS technology 4.1.1 Compiled range Words 8192 W8Txxxxx 4096 W8Uxxxxx 2048 W8Kxxxxx 32 1 32 Bits Figure 4-1 CompiIed Range of High-Density Single-Port RAM (Synchronous Type) Table 4-1 CompiIed Range of High-Density Single-Port RAM (Synchronous Type) Block Name Minimum Size Maximum Size Step W8Kxxxxx 32 words × 1 bit 2048 words × 32 bits 32 words/1 bit W8Uxxxxx 2080 words × 1 bit 4096 words × 32 bits 32 words/1 bit W8Txxxxx 4160 words × 1 bit 8192 words × 32 bits 64 words/1 bit Design Manual A12982EJ4V0DM 69 CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) TDI (B – 1:0) (O) DI (B – 1:0) DC DO (B – 1:0) TDO (B – 1:0) 4.1.2 Equivalent circuit OEB (CB) (NI) (TB) TEST BUB (TB) (TI) (O) (NI) BUNRI CSB (ICL) (ICL) D Q F/F (NI) C Q (CB) Q D Latch Q C (NI) TCSB (TI) DATA OUT DATA IN BE (NI) (ICL) TBE (TI) (ICLB) WEB (NI) WB (ICL) D Q Latch C Q A (ICL) D Q Latch C Q TWEB (TI) A (N – 1:0) (NI) TA (N – 1:0) (TI) Remark N: number of address lines, B: numbr of bits Figure 4-2 Internal Equivalent Circuit 70 (TI) Design Manual A12982EJ4V0DM RAM 2N words B bits CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.1.3 Symbol diagram in in in in DI(b:0) TDI(b:0) A(a:0) TA(a:0) in in in in in in in OEB TWEB WEB TBE BE TCSB CSB in in in TEST BUB BUNRI DO(b:0) TDO(b:0) out out DC out Remarks 1. A pin prefixed with “T” is a test pin. 2. “a” = (number of address lines) – 1, where 4 ≤ a ≤ 12 “b” = (number of bits) – 1, where 0 ≤ b ≤ 31. 4.1.4 Pin capacitance Pin Information GateDRC uses CIN and CMAX for fanin/fanout calculation. Wiring capacitance = temporary wiring length × 0.18 (pF/mm) Input Pin Name/Symbol Output CIN (pF) DI(b:0) 0.068 TDI(b:0) 0.068 A(a:0) 0.064 TA(a:0) 0.064 BE 0.172 TBE 0.172 CSB 0.064 TCSB 0.064 WEB 0.067 TWEB 0.067 OEB 0.064 TEST 0.066 BUB 0.067 BUNRI 0.065 Pin Name/Symbol DO(b:0) CIN (pF) CMAX (pF) 0.077 6.3167 (2.0966) TDO(b:0) 0.077 6.3167 (2.0966) DC – 1.7976 (0.6280) Remarks 1. ( ): Value at VDD = 2.0 ± 0.2 V 2. “a” = (number of address lines) – 1, where 4 ≤ a ≤ 12 “b” = (number of bits) – 1, where 0 ≤ b ≤ 31 Design Manual A12982EJ4V0DM 71 CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.2 Pin Function List Pin Name/ Signal Name Attribute Mode Function DI(b:0) I Normal Data input b = number of bits – 1 DO(b:0) OZ Normal Data output b = number of bits – 1 A(a:0) I Normal Address input a = number of address lines – 1 (determined by number of words) Note BE I Normal Clock input CSB I Normal Chip select input WEB I Normal Write enable input OEB I Normal Data output enable input TDI(b:0) I Test Data input b = number of bits – 1 TDO(b:0) OZ Test Data output b = number of bits – 1 TA(a:0) I Test Address input a = number of address lines – 1 (determined by number of words) Note TBE I Test Clock input TCSB I Test Chip select input TWEB I Test Write enable input BUNRI I Mode selection Separation test input BUNRI = 0: Normal mode BUNRI = 1: Test mode TEST I Mode selection Test mode input BUNRI = 1, TEST = 0 Separated from test bus (tests other macros) BUNRI = 1, TEST = 1 Selected as subject to test BUB I Mode selection Backup mode input BUB = 0: Backup mode BUB = 1: Normal mode, test mode DC O Normal Data control output DC = 0: DO(b:0) = 0, 1, undefined DC = 1: DO(b:0) = high impedance Note number of address lines = log2 (number of words) (rounded up at decimal place) Remark 72 The meanings of the symbols in the Attribute column are as follows: I: input pin, OZ: 3-state output pin, O: output pin Design Manual A12982EJ4V0DM CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.3 Operation Truth Table The meanings of the symbols in the following operation truth tables are as follows: Hi-Z X XZ Ax DIx [Ax] : High impedance : Undefined state not including high impedance : Undefined state including high impedance : Any data : Input data : Data in memory Normal Pin Status BUB BUNRI TEST Test Pin Status Mode Input Output DC Input Output 0 XZ XZ Backup XZ Hi-Z 1 XZ Hi-Z 1 0 X Normal Valid Valid Valid XZ Hi-Z 1 1 0 Test (non-select) XZ Hi-Z 1 XZ Hi-Z 1 1 1 Test (select) XZ Hi-Z 1 Valid Valid Normal mode access CSB BE WEB OEB A(a:0) DI(b:0) DO(b:0) DC Operation 0 0 1 Ax DIx Hi-Z 1 Write (output off) 0 0 0 Ax DIx [Ax] = DIx Note 0 Write (output on) 0 1 0 Ax X [Ax] 0 Read 0 0 X 0 X X Hold Hold Precharge 0 X X 1 X X Hi-Z 1 Output off X X X X Hi-Z 1 Macro off 1 Note The data input from the DI(b:0) pin is output through. Test mode access TCSB TWEB TA (a:0) TDI(b:0) TDO(b:0) Operation 0 0 Ax DIx [Ax] = DIx Note Write 0 1 Ax X [Ax] Read X X X Hold Precharge X X X Hold Macro off 0 1 TBE 0 Note The data input from the TDI(b:0) pin is output through. Design Manual A12982EJ4V0DM 73 CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.4 Macro Size Use the following expressions to calculate the macro size. Macro size = X × Y (grids) W B α β : number of words : number of bits : Macro circumferential wiring area in X direction (73.53) : Macro circumferential wiring area in Y direction (7.353) In case of 32 to 2048 words X = 26.81 × B + X1 + α Y = 5.87 × 10-2 × W + Y1 + β [grids] [grids] 1≤B<8 Number of Words 32 64 96 to 128 160 to 256 288 to 480 512 X1 124.39 131.93 136.74 144.28 149.09 152.03 159.58 164.39 Y1 21.61 21.61 21.61 21.61 21.61 21.90 22.00 22.00 544 to 1024 1056 to 2048 8 ≤ B < 16 Number of Words 32 64 96 to 128 160 to 256 288 to 512 544 to 1024 1056 to 2048 X1 127.33 134.87 139.68 147.23 152.03 159.58 164.39 Y1 21.90 21.90 21.90 21.90 21.90 22.00 22.00 Number of Words 32 64 96 to 128 160 to 256 288 to 512 544 to 1024 1056 to 2048 X1 130.27 137.81 142.62 150.17 154.98 162.52 167.33 Y1 22.19 22.19 22.19 22.19 22.19 22.30 22.30 16 ≤ B ≤ 32 In case of 2080 to 4096 words X = 53.62 × B + 223.39 + α Y = 0.203 × B + 2.94 × 10–2 × W + 22.74 + β [grids] [grids] In case of 4160 to 8192 words X = 107.24 × B + 248.43 + α Y = 0.203 × B + 1.47 × 10–2 × W + 21.96 + β [grids] [grids] Remarks 74 1. 2. Round up the fraction below the decimal place. Not necessary to add α and β when not taking the macro circumferential wiring area into consideration. Design Manual A12982EJ4V0DM CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.5 Electrical Characteristics Absolute maximum ratings Parameter Symbol Ratings Unit VDD –0.5 to +4.6 V TA –40 to +85 °C Tstg –65 to +150 °C Supply voltage Operating ambient temperature Storage temperature Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended operating range (VDD = 3.3 ± 0.3 V) Parameter Supply voltage Operating ambient temperature Symbol MIN. TYP. MAX. Unit VDD 3.0 3.3 3.6 V TA –40 +85 °C Recommended operating range (VDD = 2.0 ± 0.2 V) Parameter Supply voltage Operating ambient temperature Symbol MIN. TYP. MAX. Unit VDD 1.8 2.0 2.2 V TA –40 +85 °C Design Manual A12982EJ4V0DM 75 CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.6 Operating Current Consumption The operating current consumption (IDD) changes depending on the number of bits, number of words, and operating frequency of the memory. The value of the operating current consumption can be calculated by the following expression. IDD (TYP.) = IDDR (TYP.) + IDDW (TYP.) IDD (MAX.) = IDDR (MAX.) + IDDW (MAX.) IDDR and IDDW in the above expression can be worked out by the expressions in the table below. The meanings of the symbols in the tables below are as follows: B: number of bits, W: number of words, fR: read operating frequency (MHz), fW: write operating frequency (MHz), CL: external load capacitance (pF), A: operation rate Note (100% = 1) (1) VDD = 3.3 ± 0.3 V TYP. (α : 1.65 × CL × B) Number of Words At 32 to 2048 At 2080 to 4096 At 4160 to 8192 Operation Expression Unit Read (IDDR) {(1.60 × B + 23.22) × 10–3 × W + 5.23 × B + 36.45 + α} × fR × A µA Write (IDDW) {(2.43 × B + 23.03) × 10–3 × W + 6.08 × B + 41.31 + α} × fW × A µA Read (IDDR) {(0.38 × B + 20.80) × 10–3 × W + 12.42 × B + 54.55 + α} × fR × A µA Write (IDDW) {(0.96 × B + 19.46) × 10–3 × W + 14.49 × B + 44.58 + α} × fW × A µA Read (IDDR) {(0.27 × B + 8.72) × 10–3 × W + 17.78 × B + 42.57 + α} × fR × A µA Write (IDDW) {(0.72 × B + 7.58) × × W + 21.77 × B + 37.24 + α} × fW × A µA 10–3 MAX. (α : 1.8 × CL × B) Number of Words At 32 to 2048 At 2080 to 4096 At 4160 to 8192 76 Operation Expression Unit Read (IDDR) {(2.40 × B + 24.73) × 10–3 × W + 6.09 × B + 50.81 + α} × fR × A µA Write (IDDW) {(3.42 × B + 23.92) × 10–3 × W + 6.99 × B + 55.67 + α} × fW × A µA Read (IDDR) {(0.76 × B + 22.04) × 10–3 × W + 14.46 × B + 65.67 + α} × fR × A µA Write (IDDW) {(1.29 × B + 21.08) × 10–3 × W + 16.87 × B + 58.19 + α} × fW × A µA Read (IDDR) {(0.86 × B + 7.21) × 10–3 × W + 19.82 × B + 54.20 + α} × fR × A µA Write (IDDW) {(1.12 × B + 7.87) × × W + 25.59 × B + 50.52 + α} × fW × A µA 10–3 Design Manual A12982EJ4V0DM CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 0.2 V TYP. (α : 1.0 × CL × B) Number of Words At 32 to 2048 At 2080 to 4096 At 4160 to 8192 Operation Expression Unit Read (IDDR) {(1.08 × B + 13.15) × 10–3 × W + 2.86 × B + 18.00 + α} × fR × A µA Write (IDDW) {(1.59 × B + 13.12) × 10–3 × W + 3.33 × B + 23.47 + α} × fW × A µA Read (IDDR) {(0.33 × B + 11.60) × 10–3 × W + 7.06 × B + 28.71 + α} × fR × A µA Write (IDDW) {(0.62 × B + 11.24) × 10–3 × W + 8.46 × B + 22.13 + α} × fW × A µA Read (IDDR) {(0.26 × B + 4.71) × 10–3 × W + 10.41 × B + 19.67 + α} × fR × A µA Write (IDDW) {(0.51 × B + 4.01) × 10–3 × W + 12.52 × B + 21.77 + α} × fW × A µA MAX. (α : 1.1 × CL × B) Number of Words Operation At 32 to 2048 At 2080 to 4096 At 4160 to 8192 Expression Unit Read (IDDR) {(1.48 × B + 16.25) × 10–3 × W + 3.35 × B + 28.67 + α} × fR × A µA Write (IDDW) {(2.17 × B + 14.39) × 10–3 × W + 3.87 × B + 31.13 + α} × fW × A µA Read (IDDR) {(0.45 × B + 13.06) × 10–3 × W + 8.55 × B + 32.60 + α} × fR × A µA Write (IDDW) {(0.80 × B + 12.76) × 10–3 × W + 9.95 × B + 26.12 + α} × fW × A µA Read (IDDR) {(0.57 × B + 4.21) × 10–3 × W + 11.87 × B + 27.43 + α} × fR × A µA Write (IDDW) {(0.73 × B + 4.18) × 10–3 × W + 14.99 × B + 29.12 + α} × fW × A µA Note This operation rate is the ratio of the read and write operations to the total operation period (read, write, precharge, and macro off) of the RAM. Example The operation rate is 60% (0.6) if read operations account for 30% of the total operation period of RAM and write operations account for 30%. 0 30 Read 60 Write 100 Precharge & macro off Remarks 1. If all the input signals of this RAM are fixed, the current consumption in the standby mode (I DD1) = 0. 2. Calculate the read/write operating frequency (MHz) based on the following concept (read 50%, write 50% during read/write operation). Example To read and write alternately every 1 clock at 50 MHz Calculate IDDR and IDDW assuming the following. Read frequency: fR = 25 MHz Write frequency: fW = 25 MHz 3. If OEB is fixed to H during write operation, α of IDDW is 0 (in the write (output off) status for the normal mode access in the operation truth table). Design Manual A12982EJ4V0DM 77 CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.7 Timing 4.7.1 Expressions The timing values can be calculated by the following expressions (rounded at the third place below the decimal place. However, the output hold time is truncated). The meanings of the symbols in the table below are as follows: W: number of words, B: number of bits, CL: external load capacitance (pF) (1) VDD = 3.3 ± 0.3 V In case of 32 to 2048 words (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tACC > tBEH + tPC: tACC Where tACC < tBEH + tPC: tBEH + tPC Access time tACC 6.83 + 4.86 × 10–2 × B + 1.33 × 10–3 × W + 1.72 × 10–6 × B × W + 0.74 × CL ns tOH 1.20 + 1.97 × 10–3 × W + 1.39 × 10–6 tBEH 5.01 + 5.16 × 10–2 ×B×W ns × W + 4.07 × 10–7 tPC 1.68 + 1.14 × 10–2 ×B×W ns × W – 2.94 × 10–6 Address setup time tAS 2.45 + 1.88 × 10–2 ×B×W ns × W – 8.59 × 10–6 ×B×W ns Address hold time tAH 0 × B – 9.30 × 10–6 × W – 3.50 × 10–7 Write data setup time tDIS 2.49 – 2.04 × Write data hold time tDIH 0 4.36 + 9.61 × 10–3 × B + 2.79 × 10–5 × W + 5.83 × 10–7 tDTH × B × W + 0.74 × CL ns tWS 1.52 + 1.84 × 10–3 × B – 1.43 × 10–5 × W – 1.10 × 10–7 WEB setup time ×B×W ns WEB hold time tWH 0 CSB setup time tCS 1.78 – 4.65 × 10–5 × B – 8.00 × 10–8 ×W CSB hold time tCH 0 tHZ 2.93 + 1.38 × 10–2 × B + 4.62 × 10–7 × W – 2.20 × 10–8 tLZ 1.24 + 1.36 × 10–2 ×B tDC 2.85 + 1.40 × 10–2 × B – 1.62 × 10–6 × W + 6.60 × 10–8 Output hold time BE high-level time Precharge time Write data through time Output floating time Output active time DC output delay time 78 × B – 1.74 × 10–5 × B + 1.31 × 10–3 × B + 2.49 × 10–3 × B + 3.09 × 10–5 10–3 ns ns ×B×W ns ns ns ns ns ×B×W ns ns Design Manual A12982EJ4V0DM × B × W + 2.64 × CL ns CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) In case of 2080 to 4096 words (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tACC > tBEH + tPC: tACC Where tACC < tBEH + tPC: tBEH + tPC Access time tACC 9.82 + 5.17 × 10–2 × B + 5.03 × 10–4 × W + 1.96 × 10–6 × B × W + 0.74 × CL ns tOH BE high-level time Precharge time 1.09 + 3.52 × 10–3 tBEH 7.83 + 4.08 × 10–2 tPC Address setup time tAS 2.72 + 4.18 × ns Address hold time tAH 0 Write data setup time tDIS 2.92 – 7.18 × Write data hold time tDIH 0 Write data through time tDTH 5.77 + 3.44 × 10–2 × B + 4.54 × 10–5 × W – 1.67 × 10–6 × B × W + 0.74 × CL ns WEB setup time tWS 1.60 + 2.04 × ns Output hold time × W + 1.71 × 10–7 ×B×W ns × W + 2.19 × 10–6 ×B×W ns 1.41 + 3.45 × 10–4 × B + 1.26 × 10–3 × W + 3.14 × 10–6 × B × W ns 10–3 10–3 × B – 9.72 × 10–7 × B + 4.93 × 10–4 ns × B + 7.14 × 10–5 × W – 9.90 × 10–7 × B + 1.18 × 10–5 × W – 4.50 × 10–7 ×B×W ns ×B×W ns ns 10–5 × B + 3.41 × 10–6 × W + 6.00 × 10–8 ×B×W WEB hold time tWH 0 ns CSB setup time tCS 1.97 + 9.41 × 10–4 × B – 2.72 × 10–6 × W – 3.30 × 10–7 × B × W ns CSB hold time tCH 0 ns tHZ Output active time DC output delay time Output floating time 3.62 + 9.87 × 10–3 × B + 3.21 × 10–6 × B + 1.64 × 10–5 × W + 4.07 × 10–7 tLZ 1.25 + 1.21 × 10–2 ×B×W × W – 8.19 × 10–7 tDC 3.54 + 9.90 × 10–3 × B + 1.65 × 10–6 × W + 4.84 × 10–7 × B × W + 2.64 × CL ×B×W ns ns ns In case of 4160 to 8192 words (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tACC > tBEH + tPC: tACC Where tACC < tBEH + tPC: tBEH + tPC ns Access time tACC 9.95 + 9.40 × 10–2 × B + 2.63 × 10–4 × W + 1.38 × 10–6 × B × W + 0.74 × CL ns Output hold time tOH 0.84 + 1.19 × 10–2 × B – 4.23 × 10–7 × W + 4.50 × 10–8 × B × W ns tBEH 8.45 + 6.22 × 10–2 tPC 1.39 + 8.66 × 10–3 Address setup time tAS 2.54 + 2.65 × 10–2 Address hold time tAH 0 ns Write data setup time tDIS 2.77 – 2.53 × 10–2 × B + 1.18 × 10–6 × W + 1.00 × 10–8 × B × W ns Write data hold time tDIH 0 ns BE high-level time Precharge time × B + 2.59 × 10–4 × B + 6.50 × 10–4 × B + 4.95 × 10–5 ×B×W ns × W – 1.98 × 10–7 ×B×W ns × W – 3.04 × 10–6 ×B×W Write data through time tDTH 6.14 + 4.48 × tWS 1.39 – 1.24 × 10–4 × B + 1.44 × 10–6 × W – 4.00 × 10–8 × B × W ns WEB hold time tWH 0 ns CSB setup time tCS 1.81 – 1.28 × CSB hold time tCH 0 Output floating time tHZ 3.54 + 1.90 × 10–2 × B + 1.21 × 10–7 × W tLZ tDC Output active time DC output delay time 10–3 10–6 × W + 1.54 × 10–7 × B × W + 0.74 × CL ns WEB setup time 10–2 × B – 1.12 × × W + 1.50 × 10–6 ×B ns ns ns 1.36 + 1.14 × 10–2 ×B 3.47 + 1.75 × 10–2 × B + 3.08 × ns ns 10–7 Design Manual A12982EJ4V0DM × W – 1.10 × 10–8 × B × W + 2.64 × CL ns 79 CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 0.2 V In case of 32 to 2048 words (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tACC > tBEH + tPC: tACC Where tACC < tBEH + tPC: tBEH + tPC Access time tACC 15.12 + 1.17 × 10–1 × B + 2.71 × 10–3 × W + 1.13 × 10–5 × B × W + 1.39 × CL ns tOH 2.13 + 6.65 × ns tBEH 11.52 + 1.17 × tPC Address setup time Address hold time Output hold time BE high-level time 10–3 × B + 7.79 × 10–1 3.01 + 7.87 × 10–3 tAS 5.55 + 1.80 × 10–2 tAH 0 Write data setup time tDIS 5.64 – 1.33 × Write data hold time tDIH 0 tDTH WEB setup time WEB hold time 10–6 × B + 2.58 × ns × W – 1.62 × 10–3 ×B×W ns × W – 9.48 × ×B×W ns × B – 7.34 × 10–5 × W + 2.81 × 10–6 9.66 + 2.79 × 10–2 × B + 4.27 × 10–5 × W – 8.25 × 10–7 × B × W + 1.39 × CL ns tWS 3.42 – 6.15 × 10–3 × B – 7.24 × 10–5 × W + 2.77 × 10–6 ×B×W ns tWH 0 CSB setup time tCS 3.66 – 1.13 × 10–3 × B + 2.54 × 10–6 × W – 4.20 × 10–7 CSB hold time tCH 0 tHZ 6.11 + 3.06 × 10–2 × B – 1.22 × 10–6 × W + 4.40 × 10–8 tLZ 2.70 + 2.21 × 10–2 ×B tDC 5.96 + 3.20 × 10–2 × B – 1.43 × 10–5 × W + 4.73 × 10–7 Output active time DC output delay time 80 10–2 ns 10–6 Output floating time × B – 2.48 × 10–5 ×B×W × W + 6.23 × Write data through time × B + 4.44 × × W + 1.51 × ×B×W 10–5 10–6 Precharge time 10–3 10–7 ns ×B×W ns ns ns ×B×W ns ns ×B×W ns ns Design Manual A12982EJ4V0DM × B × W + 4.58 × CL ns CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) In case of 2080 to 4096 words (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tACC > tBEH + tPC: tACC Where tACC < tBEH + tPC: tBEH + tPC ns Access time tACC 21.30 + 1.22 × 10–1 × B + 1.30 × 10–3 × W + 1.57 × 10–6 × B × W + 1.39 × CL ns Output hold time tOH 2.05 – 8.46 × 10–3 × B – 6.93 × 10–7 × W + 4.50 × 10–8 × B × W ns tBEH 17.18 + 9.61 × ns Precharge time tPC 1.84 + 2.09 × ×B×W ns Address setup time tAS 5.73 + 6.94 × 10–4 × B + 1.38 × 10–4 × W – 6.70 × 10–7 × B × W ns ns BE high-level time 10–2 10–2 × B + 1.30 × × B + 2.45 × 10–3 10–3 × W + 1.70 × × W + 2.31 × 10–6 10–7 ×B×W Address hold time tAH 0 Write data setup time tDIS 6.12 – 1.42 × Write data hold time tDIH 0 ns Write data through time tDTH 13.12 + 6.13 × 10–2 × B + 6.09 × 10–5 × W – 2.06 × 10–6 × B × W + 1.39 × CL ns WEB setup time tWS 3.43 – 3.46 × 10–4 × B + 1.98 × 10–5 × W + 4.90 × 10–7 × B × W ns WEB hold time tWH 0 ns CSB setup time tCS 3.89 + 5.65 × CSB hold time tCH 0 Output floating time tHZ 7.64 + 2.46 × 10–2 × B + 3.07 × 10–6 × W – 5.83 × 10–7 × B × W Output active time tLZ 2.79 + 2.12 × ×W ns DC output delay time tDC 10.25 + 3.19 × 10–2 × B + 4.00 × 10–5 × W – 7.26 × 10–7 × B × W + 4.58 × CL ns 10–2 10–3 × B + 6.18 × × B + 1.79 × 10–6 10–5 × W – 1.80 × × W – 3.20 × 10–7 10–7 ×B×W ×B×W ns ns ns 10–2 × B + 3.60 × 10–8 ns In case of 4160 to 8192 words (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tACC > tBEH + tPC: tACC Where tACC < tBEH + tPC: tBEH + tPC Access time tACC 22.56 + 2.19 × 10–1 × B + 5.53 × 10–4 × W – 2.07 × 10–6 × B × W + 1.39 × CL Output hold time tOH 1.61 + 7.26 × BE high-level time tBEH 19.33 + 1.48 × 10–1 × B + 5.59 × 10–4 × W – 2.48 × 10–6 × B × W ns Precharge time tPC 2.33 + 1.54 × 10–2 × B + 1.20 × 10–3 × W – 2.31 × 10–7 × B × W ns Address setup time tAS 5.31 + 3.30 × Address hold time tAH 0 Write data setup time tDIS 5.67 – 4.48 × 10–2 × B + 4.00 × 10–7 × W + 6.00 × 10–8 × B × W ns Write data hold time tDIH 0 ns Write data through time tDTH 13.93 + 8.34 × 10–2 × B – 1.01 × 10–5 × W + 9.90 × 10–7 × B × W + 1.39 × CL WEB setup time tWS 2.76 + 8.59 × WEB hold time tWH 0 ns CSB setup time tCS 3.74 + 4.10 × 10–3 × B + 2.03 × 10–6 × W – 8.00 × 10–8 × B × W ns CSB hold time tCH 0 ns Output floating time tHZ 7.50 + 3.81 × 10–2 × B Output active time tLZ 2.81 + 2.52 × DC output delay time tDC 7.35 + 3.95 × 10–2 × B + 4.58 × CL 10–4 10–2 × B – 2.17 × × B + 8.47 × 10–6 10–5 ns × W + 5.31 × × W – 3.83 × 10–7 10–6 ×B×W ×B×W ns ns ns ns 10–5 10–2 × B + 1.54 × 10–6 ×B Design Manual A12982EJ4V0DM × W – 6.00 × 10–8 ×B×W ns ns ns ns ns 81 CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.7.2 Typical value (8 bits × 512 words) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Symbol MIN. TYP. MAX. Unit Cycle time tRC 9.14 Access time tACC Output hold time tOH 1.21 ns BE high-level time tBEH 6.10 ns Precharge time tPC 3.04 ns Address setup time tAS 2.58 ns Address hold time tAH 0 ns Write data setup time tDIS 2.47 ns Write data hold time tDIH 0 ns Write data through time tDTH WEB setup time tWS 1.53 ns WEB hold time tWH 0 ns CSB setup time tCS 1.78 ns CSB hold time tCH 0 ns Output floating time tHZ 3.05 ns Output active time tLZ 1.36 ns DC output delay time tDC ns 8.06 4.61 ns ns CSB, OEB control 3.50 Remarks 1. The above data are calculated with an external load capacitance C L of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN. : minimum value necessary for operating macro under worst condition MAX. : delay time of macro output under worst condition 82 Design Manual A12982EJ4V0DM ns CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 0.2 V Read/write operation (TA = –40 to +85°C) Parameter Symbol MIN. TYP. MAX. Unit Cycle time tRC 19.22 Access time tACC Output hold time tOH 2.18 ns BE high-level time tBEH 13.84 ns Precharge time tPC 5.38 ns Address setup time tAS 5.65 ns Address hold time tAH 0 ns Write data setup time tDIS 5.51 ns Write data hold time tDIH 0 ns Write data through time tDTH WEB setup time tWS 3.35 ns WEB hold time tWH 0 ns CSB setup time tCS 3.65 ns CSB hold time tCH 0 ns Output floating time tHZ 6.36 ns Output active time tLZ 2.88 ns DC output delay time tDC ns 17.77 10.18 ns ns CSB, OEB control 7.14 ns Remarks 1. The above data are calculated with an external load capacitance C L of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN.: minimum value necessary for operating macro under worst condition MAX.: delay time of macro output under worst condition Design Manual A12982EJ4V0DM 83 CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) 4.8 Timing Chart Read operation Read cycle (CSB = low level, OEB = low level) tRC tPC tBEH BE tAS tAH A(a:0) tACC tOH DO(b:0) tWS tWH WEB Invalid Write operation Write cycle (CSB = low level, OEB = low level) tRC tPC tBEH BE tAS tAH tDIS tDIH tWS tWH A(a:0) DI(b:0) WEB tDTH DO(b:0) tOH Invalid 84 Design Manual A12982EJ4V0DM CHAPTER 4 HIGH-DENSITY SINGLE-PORT RAM (SYNCHRONOUS TYPE) Read/write operation (1) CSB control (OEB = low level) tRC tRC tRC tRC BE tCS tCH tCS tCH CSB tHZ tLZ tHZ Hi-Z DO(b:0) tLZ Hi-Z tDC tDC tDC tDC DC Invalid (2) OEB control (CSB = low level) OEB tHZ tLZ Hi-Z DO(b:0) tDC tDC DC 4.9 Notes on Correct Use (1) If spike is input to the clock input pin while CSB = L, the data of the RAM may be destroyed. In this case, the addresses other than that when the spike is input may be also destroyed. (2) DO (b:0) is undefined during the period from power application to the rising edge of BE. Consequently bus fight may occur when these data outputs converge on a bus line. (3) With the high-density single-port RAM (synchronous type), DO(b:0) and DC vary depending on the rising edge of BE if CSB is changed. Refer to 4.8 (1) CSB control (OEB = low level) for details. (4) Current may continue to flow if the clock is stopped at a high level when power is applied, so be sure to either stop the clock while the clock pin is low, or input the clock first low then high (or high → low → high). If the clock is input at a low level even once, current will not flow no matter how the clock is subsequently stopped. Design Manual A12982EJ4V0DM 85 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.1 General • Dual-port RAM with read port + write port • High-density integration • Flexible memory size → High efficiency macro location by memory compiler. Block name: WBVxxxxx Bit width: 1 to 32 bits (variable in 1-bit units) Number of words: 32 to 1K words (variable in 8-word units) • Operating voltage: 3.3 ± 0.3 V, 2.0 ± 0.2 V • Operating ambient temperature: –40 to +85°C • Storage temperature: –65 to +150°C • 0.35 µm CMOS technology 5.1.1 Compiled range Words 2K 1K WBVxxxxx 32 1 32 Bits Figure 5-1 CompiIed Range of High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) Table 5-1 Compiled Range of High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) 86 Block Name Minimum Size Maximum Size Step WBVxxxxx 32 words × 1 bit 1K words × 32 bits 8 words/1 bit Design Manual A12982EJ4V0DM CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) AA (N – 1:0) TAA (N – 1:0) NI_A TI_A NI_A BEA TBEA TI_A TI_A NI_A IBUB TB NB CSA TCSA 5.1.2 Equivalent circuit CONTROL_A ADDRESS_A DATA OUT_A DI (B – 1:0) NI_A DATA IN_A TDI (B – 1:0) TI_A DO (B – 1:0) DATA OUT_B TDO (B – 1:0) RAM 2N words B bits DATA IN_B DC ADDRESS_B TI_B TAB (N – 1:0) AB (N – 1:0) NI_B TI_B TBEB BEB TB TCSB NB CSB OEB BUNRI BUB TEST Remark NI_B IBUB TI_B NI_B NB IBUB TB CONTROL_B N: number of address lines, B: number of bits Figure 5-2 Internal Equivalent Circuit Design Manual A12982EJ4V0DM 87 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.1.3 Symbol diagram in in in in DI (b:0) TDI (b:0) AA (a:0) TAA (a:0) in in in in BEA TBEA CSA TCSA in in in TEST BUB BUNRI DO (b:0) TDO (b:0) AB (a:0) TAB (a:0) out out in in BEB TBEB CSB TCSB OEB DC in in in in in out Remarks 1. A pin prefixed with “T” is a test pin. 2. “a” = (number of address lines) – 1, where 4 ≤ a ≤ 9. “b” = (number of bits) – 1, where 0 ≤ b ≤ 31. 5.1.4 Pin capacitance Pin Information GateDRC uses CIN and CMAX for fanin/fanout calculation. Wiring capacitance = temporary wiring length × 0.18 (pF/mm) Input Pin Name/Symbol DI(b:0) TDI(b:0) AA(a:0) TAA(a:0) BEA TBEA CSA TCSA AB(a:0) TAB(a:0) BEB TBEB CSB TCSB OEB TEST BUB BUNRI Remark 88 CIN (pF) 0.026 0.026 0.026 0.026 0.026 0.026 0.020 0.020 0.026 0.026 0.026 0.026 0.026 0.026 0.020 0.026 0.039 0.026 Pin Name/Symbol DO(b:0) TDO(b:0) DC “a” = (number of address lines) – 1, where 4 ≤ a ≤ 9 “b” = (number of bits) – 1, where 0 ≤ b ≤ 31 Design Manual A12982EJ4V0DM Output CIN (pF) 0.087 0.087 – CMAX (pF) 6.00 6.00 1.50 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.2 Pin Function List Pin Name/ Signal Name Attribute Mode Port Function DI(b:0) I Normal W Data input b = number of bits – 1 DO(b:0) OZ Normal R Data output b = number of bits – 1 AA(a:0) I Normal W Address input a = number of address lines – 1 (determined by number of words) Note BEA I Normal W Clock input CSA I Normal W Chip select input TDI(b:0) I Normal W Data input b = number of bits – 1 TDO(b:0) OZ Normal R Data output b = number of bits – 1 TAA(a:0) I Test W Address input a = number of address lines – 1 (determined by number of words) Note TBEA I Test W Clock input TCSA I Test W Chip select input DC O Normal R Data control output DC = 0: DO(b:0) = 0, 1, undefined DC = 1: DO(b:0) = high impedance AB(a:0) I Normal R Address input a = number of address lines – 1 (determined by number of words) Note BEB I Normal R Clock input CSB I Normal R Chip select input OEB I Normal R Data output enable TAB(a:0) I Test R Address input a = number of address lines – 1 (determined by number of words) Note TBEB I Test R Clock input TCSB I Test R Chip select input BUNRI I Mode selection – Separation test input BUNRI = 0: Normal mode BUNRI = 1: Test mode TEST I Mode selection – Test mode input BUNRI = 1, TEST = 0 Separated from test bus (tests other macros) BUNRI = 1, TEST = 1 Selected as subject to test BUB I Mode selection – Backup mode input BUB = 0: Backup mode BUB = 1: Normal mode, test mode Note Number of address lines = log2 (number of words) (rounded up at decimal place) Remark The meanings of the symbols in the Attribute column are as follows: I: input pin, OZ: 3-state output pin, O: output pin The meanings of the symbols in the Port column are as follows: W : write port, R: read port Design Manual A12982EJ4V0DM 89 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.3 Operation Truth Table The operation timing between a read/write port and a read port is partially restricted. For details, refer to 5.8.2 Operation timing restrictions between read port and write port. The meanings of the symbols in the following operation truth tables are as follows: Hi-Z X XZ AAx, ABx DIx [ABx] : High impedance : Undefined state not including high impedance : Undefined state including high impedance : Any data : Input data : Data in memory Normal Pin Status BUB BUNRI TEST Test Pin Status Mode Input Output DC Input Output 0 XZ XZ Backup XZ Hi-Z 1 XZ Hi-Z 1 0 X Normal Valid Valid Valid XZ Hi-Z 1 1 0 Test (non-select) XZ Hi-Z 1 XZ Hi-Z 1 1 1 Test (select) XZ Hi-Z 1 Valid Valid Normal mode access Write port CSA BEA 0 AA(a:0) DI(b:0) Operation AAx DIx Write 0 0 X X Precharge 1 X X X Macro off BEB OEB AB(a:0) DO(b:0) DC Operation 0 ABx [ABx] 0 Read Read port CSB 0 90 0 0 0 X Hold 0 Precharge 0 X 1 X Hi-Z 1 Output off 1 X X X Hi-Z 1 Macro off Design Manual A12982EJ4V0DM CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) Test mode access Write port TCSA TBEA 0 TAA(a:0) TDI (b:0) Operation AAx DIx Write 0 0 X X Precharge 1 X X X Macro off TBEB TAB(a:0) TDO(b:0) Operation ABx DIx Read Read port TCSB 0 0 0 X Hold Precharge 1 X X Hold Macro off Design Manual A12982EJ4V0DM 91 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.4 Macro Size Use the following expressions to calculate the macro size. Macro size = X × Y (grids) W : number of words B : number of bits N : number of address lines (N = log 2W (rounded up at decimal place)) α : Macro circumferential wiring area in X direction (73.53) β : Macro circumferential wiring area in Y direction (7.353) X = 50.36 × B + 11.71 × N + 160.61 + α Y = 8.089 × 10–2 × W + 23.56 + β (grids) (grids) Remarks 1. Round up the fraction below the decimal place. 2. Not necessary to add α and β when not taking the macro circumferential wiring area into consideration. 5.5 Electrical Characteristics Absolute maximum ratings Parameter Symbol Ratings Unit VDD –0.5 to +4.6 V TA –40 to +85 °C Tstg –65 to +150 °C Supply voltage Operating ambient temperature Storage temperature Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended operating range (VDD = 3.3 ± 0.3 V) Parameter Supply voltage Operating ambient temperature Symbol MIN. TYP. MAX. Unit VDD 3.0 3.3 3.6 V TA –40 +85 °C Recommended operating range (VDD = 2.0 ± 0.2 V) Parameter Supply voltage Operating ambient temperature 92 Symbol MIN. TYP. MAX. Unit VDD 1.8 2.0 2.2 V TA –40 +85 °C Design Manual A12982EJ4V0DM CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.6 Operating Current Consumption The operating current consumption (IDD) changes depending on the number of bits, number of words, number of address lines, and operating frequency of the memory. The value of the operating current consumption can be calculated by the following expression. IDD (TYP.) = IDDR (TYP.) + IDDW (TYP.) IDD (MAX.) = IDDR (MAX.) + IDDW (MAX.) IDDR and IDDW in the above expression can be worked out by the expressions in the table below. The meanings of the symbols in the tables below are as follows: B: number of bits, W: number of words, N: number of address lines (N = log 2W (rounded up at decimal place)), fR: read operating frequency (MHz), fW: write operating frequency (MHz), CL: external load capacitance (pF), A: operation rate Note 1 (100% = 1) DFa: MAX. data rate (MHz) of AA (a:0) or DI (b:0) pin DFb: MAX. data rate (MHz) of AB (a:0) pin (1) VDD = 3.3V ± 0.3 V TYP. During read/write operation (α = 1.65 × B × CL) Port Read (IDDR) Write (IDDW) Condition Expression Unit W = 32 {(0.36 × N + 6.6 × B – 0.12) × × B + 4.97 + α} × fR + 0.737 × N + 4.95 µA W > 32 {(0.36 × N + 6.6 × B – 0.12) × 10–3 × W + 0.0254 × B2 + 0.737 × N + 4.95 × B + 5.42 + α} × fR µA W = 32 {(0.36 × N + 2.16 × B + 0.12) × 10–3 × W + 0.0229 × B2 + 0.725 × N + 1.96 × B + 4.88} × fW µA W > 32 {(0.36 × N + 2.16 × B + 0.12) × 10–3 × W + 0.0229 × B2 + 0.725 × N + 1.96 × B + 5.34} × fW µA 10–3 × W + 0.0254 × B2 MAX. During read/write operation (α = 1.8 × B × CL) Port Read (IDDR) Write (IDDW) Condition Expression Unit W = 32 {(0.6 × N + 7.32 × B – 0.48) × × B + 5.97 + α} × fR × A + 0.797 × N + 6.18 µA W > 32 {(0.6 × N + 7.32 × B – 0.48) × 10–3 × W + 0.0362 × B2 + 0.797 × N + 6.18 × B + 6.48 + α} × fR × A µA W = 32 {(0.36 × N + 2.40 × B + 0.36) × 10–3 × W + 0.0365 × B2 + 0.928 × N + 2.27 × B + 5.78} × fW × A µA W > 32 {(0.36 × N + 2.40 × B + 0.36) × 10–3 × W + 0.0365 × B2 + 0.928 × N + 2.27 × B + 6.33} × fW × A µA Expression Unit 10–3 × W + 0.0362 × B2 In power-down mode Note 2 Condition TYP. MAX. Port Read {(0.72 × N – 3.6) × × W + 1.47 × N + 0.120 × B – 3.55} × DFb µA Write {(0.72 × N – 3.6) × 10–3 × W + 1.47 × N + 0.556 × B – 3.55} × DFa µA Read {(0.72 × N – 6.00) × × W + 1.59 × N + 0.131 × B – 3.48} × DFb µA Write {(0.72 × N – 6.00) × 10–3 × W + 1.59 × N + 0.662 × B – 3.48} × DFa µA 10–3 10–3 Design Manual A12982EJ4V0DM 93 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 0.2 V TYP. During read/write operation (α = 1.0 × B × CL) Port Condition Read (IDDR) Write (IDDW) Expression Unit W = 32 {(0.2592 × N + 3.92 × B – 0.3744) × × N + 2.512 × B + 2.352 + α} × fR + 0.312 µA W > 32 {(0.2592 × N + 3.92 × B – 0.3456) × 10–3 × W – 3.136 × 10–3 × B2 + 0.312 × N + 2.512 × B + 2.536 + α} × fR µA W = 32 {(0.216 × N + 1.3 × B + 0.036) × 10–3 × W + 1.44 × 10–3 × B2 + 0.594 × N + 1.10 × B + 1.34} × fW µA W > 32 {(0.216 × N + 1.3 × B + 0.144) × 10–3 × W + 1.44 × 10–3 × B2 + 0.594 × N + 1.10 × B + 1.50} × fW µA 10–3 × W – 3.136 × 10–3 × B2 MAX. During read/write operation (α = 1.1 × B × CL) Port Condition Read (IDDR) Write (IDDW) Expression Unit W = 32 {(0.324 × N + 4.90 × B – 0.468) × + 3.14 × B + 2.94 + α} × fR × A + 0.39 × N µA W > 32 {(0.324 × N + 4.90 × B – 0.432) × 10–3 × W – 0.00392 × B2 + 0.39 × N + 3.14 × B + 3.17 + α} × fR × A µA W = 32 {(0.216 × N + 1.44 × B + 0.0720) × 10–3 × W + 0.0032 × B2 + 0.439 × N + 1.24 × B + 2.69} × fW × A µA W > 32 {(0.216 × N + 1.44 × B + 0.216) × 10–3 × W + 0.0032 × B2 + 0.439 × N + 1.24 × B + 2.86} × fW × A µA 10–3 × W – 0.00392 × B2 In power-down mode Note 2 Condition TYP. MAX. Port Expression Unit × W + 0.613 × N + 0.0683 × B – 1.1} × DFb Read {(0.72 × N – 3.6) × Write {(0.72 × N – 3.6) × 10–3 × W + 0.613 × N + 0.308 × B – 1.1} × DFa Read {(0.324 × N – 3.24) × Write {(0.324 × N – 3.24) × 10–3 × W + 0.781 × N + 0.354 × B – 1.56} × DFa 10–3 10–3 × W + 0.781 × N + 0.0752 × B – 1.56} × DFb µA µA µA µA Notes 1. This operation rate is the ratio of the read and write operations to the total operation period (read, write, precharge, and macro off) of the RAM. Example The operation rate is 60% (0.6) if read operations account for 60% of the total operation period of the read port. 0 30 60 Read 100 Precharge & macro off 2. Power-down mode indicates the precharge status or macro off status in Normal mode access in 5.3 Operation Truth Table. Remark 94 If all the input signals of this RAM are fixed, the current consumption in the standby mode (I DD1) = 0. Design Manual A12982EJ4V0DM CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.7 Timing 5.7.1 Expressions The timing values can be calculated by the following expressions (rounded at the third place below the decimal place. However, the output hold time is truncated). The meanings of the symbols in the table below are as follows: W: number of words, B: number of bits, N: number of address lines (N = log 2W (rounded up at decimal place)), C L: external load capacitance (pF) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tBEH > tPC: tBEH × 2 (clock duty: 50%) Where tBEH < tPC: tPC × 2 (clock duty: 50%) ns Access time tACC 4.74 + 3.71 × 10–2 × B + 4.62 × 10–3 × W + 2.00 × 10–1 × CL ns tOH ns 0.59 + 1.93 × 10–2 ×B tBEH_A 1.76 + 3.71 × 10–2 tBEH_B 4.38 + 3.71 × 10–2 Precharge time tPC 4.38 + 3.71 × 10–2 Address setup time tAS (W = 32) 0.74 (W > 32 ) 1.48 + 4.30 × 10–4 × W ns Address hold time tAH 0.81 + 8.00 × 10–3 × N ns Output hold time BEA high-level time BEB high-level time × B + 8.30 × 10–4 ×W ns × B + 4.62 × 10–3 ×W ns × B + 4.62 × 10–3 ×W ns 0.05 – 3.00 × 0 10–2 ×B Write data setup time tDIS (B = 1) (B > 1) ns Write data hold time tDIH 1.18 + 2.96 × 10–2 × B ns CSA, CSB setup time tCS 0.65 ns CSA, CSB hold time tCH 0 ns tHZ 1.53 + 1.89 × 10–2 × B tLZ CSB control Output floating time Output active time DC output delay time 1.71 + 1.96 × 10–2 ×B tDC 1.45 + 1.83 × 10–2 × B + 6.70 × tHZ 1.14 + 1.86 × 10–2 × B tLZ tDC ns ns 10–1 × CL ns OEB control Output floating time Output active time DC output delay time 1.30 + 2.00 × 10–2 ×B 1.05 + 1.88 × 10–2 × B + 6.70 × Design Manual A12982EJ4V0DM ns ns 10–1 × CL ns 95 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 2.0 V Read/write operation (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tBEH > tPC: tBEH × 2 (clock duty: 50%) Where tBEH < tPC: tPC × 2 (clock duty: 50%) ns Access time tACC 12.04 + 5.25 × 10–2 × B + 1.27 × 10–2 × W + 5.40 × 10–1 × CL ns tOH ns 1.00 + 2.43 × 10–2 ×B tBEH_A 4.36 + 6.14 × 10–2 × B + 1.25 × tBEH_B Precharge time Output hold time BEA high-level time 10–3 ×W ns 11.17 + 5.25 × 10–2 tPC 11.17 + 5.25 × 10–2 Address setup time tAS (W = 32) 1.96 (W > 32) 3.57 + 9.18 × 10–4 × W ns Address hold time tAH 1.85 + 1.00 × 10–2 × N ns Write data setup time tDIS (B ≤ 4) (B > 4) Write data hold time tDIH 2.62 + 5.00 × 10–2 × B ns CSA, CSB setup time tCS 1.34 ns CSA, CSB hold time tCH 0 ns tHZ 3.11 + 3.21 × 10–2 × B ns tLZ BEB high-level time × B + 1.27 × 10–2 ×W ns × B + 1.27 × 10–2 ×W ns 0.24 – 4.96 × 0 10–2 ×B ns CSB control Output floating time Output active time DC output delay time 3.86 + 4.29 × 10–2 ×B ns tDC 3.29 + 3.89 × 10–2 × B + 1.38 × CL ns tHZ 2.31 + 3.14 × 10–2 × B ns tLZ tDC OEB control Output floating time Output active time DC output delay time 96 2.94 + 4.18 × 10–2 ×B ns 2.35 + 3.86 × 10–2 × B + 1.38 × CL ns Design Manual A12982EJ4V0DM CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.7.2 Typical value (8 bits × 512 words) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Symbol MIN. TYP. MAX. Unit Cycle time tRC 14.10 Access time tACC Output hold time tOH 0.75 ns BEA high-level time tBEH_A 2.49 ns BEB high-level time tBEH_B 7.05 ns Precharge time tPC 7.05 ns Address setup time tAS 1.71 ns Address hold time tAH 0.89 ns Write data setup time tDIS 0 ns Write data hold time tDIH 1.42 ns CSA, CSB setup time tCS 0.65 ns CSA, CSB hold time tCH 0 ns Output floating time tHZ 1.69 ns Output active time tLZ 1.87 ns DC output delay time tDC ns 7.45 ns CSB control 1.74 ns OEB control Output floating time tHZ 1.29 ns Output active time tLZ 1.46 ns DC output delay time tDC 1.34 ns Remarks 1. The above values are calculated with an external load capacitance of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN. : minimum value necessary for operating macro under worst condition MAX. : delay time of macro output under worst condition Design Manual A12982EJ4V0DM 97 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) (2) VDD = 2.0 ± 0.2 V Read/write operation (TA = –40 to +85°C) Parameter Symbol MIN. TYP. MAX. Unit Cycle time tRC 36.20 Access time tACC Output hold time tOH 1.20 ns BEA high-level time tBEH_A 5.50 ns BEB high-level time tBEH_B 18.10 ns Precharge time tPC 18.10 ns Address setup time tAS 4.05 ns Address hold time tAH 1.94 ns Write data setup time tDIS 0 ns Write data hold time tDIH 3.02 ns CSA, CSB setup time tCS 1.34 ns CSA, CSB hold time tCH 0 ns Output floating time tHZ 3.37 ns Output active time tLZ 4.21 ns DC output delay time tDC ns 19.08 ns CSB control 3.88 ns OEB control Output floating time tHZ 2.57 ns Output active time tLZ 3.28 ns DC output delay time tDC 2.94 Remarks 1. The above values are calculated with an external load capacitance of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN. : minimum value necessary for operating macro under worst condition MAX. : delay time of macro output under worst condition 98 Design Manual A12982EJ4V0DM ns CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) 5.8 Timing Chart 5.8.1 Read port and write port (1) Write operation Write cycle (write port) tRC tPC tBEH_A BEA tAS tAH tDIS tDIH AA(a:0) DI(b:0) tCS tCH CSA (2) Read operation Read cycle (read port) (CSB = low level, OEB = low level) tRC tPC tBEH_B BEB tAS tAH AB(a:0) tACC tOH DO(b:0) Invalid (3) CSB control (OEB = low level) tRC tRC tRC tRC BEB tCS tCH tCH tCS CSB tHZ tLZ tHZ Hi-Z DO(b:0) tDC tLZ Hi-Z tDC tDC tDC DC Invalid Design Manual A12982EJ4V0DM 99 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) (4) OEB control (CSB = low level) OEB tHZ tLZ Hi-Z DO(b:0) tDC tDC DC 5.8.2 Operation timing restrictions between read port and write port (1) When read port and write port access different addresses There is no operation timing restriction between the read port and write port. For the operation of each port, refer to the operation timing of 5.8.1 Read port and write port. (2) When the read port and the write port access the same address Write operation is performed normally. Read operation varies depending on the timings shown below. (a) If BEA (write port clock) rises before BEB (read port clock) • If tdiff < tBEH_A Output of the read port is undefined. tOH is not guaranteed. AA (a : 0) AB (a : 0) AA ≠ AB AA = AB tdiff (tdiff < tBEH_A) BEA BEB tOH DO (b : 0) 100 Design Manual A12982EJ4V0DM CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) • If tdiff ≥ tBEH_A Output of the read port is performed normally. AA (a : 0) AB (a : 0) AA ≠ AB AA = AB tdiff (tdiff ≥ tBEH_A) BEA BEB tACC tOH DO (b : 0) Valid (b) If BEA (write port clock) rises after BEB (read port clock) • If tdiff < tOH Output of the read port is undefined. tOH is not guaranteed. AA (a : 0) AB (a : 0) AA ≠ AB AA = AB tdiff (tdiff < tOH) BEA BEB DO (b : 0) tOH Design Manual A12982EJ4V0DM 101 CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) • If tdiff < tACC and tdiff ≥ tOH Output of the read port is undefined. tOH is guaranteed. AA (a : 0) AB (a : 0) AA ≠ AB AA = AB tdiff (tdiff < tACC) BEA BEB tACC tOH DO (b : 0) • If tdiff < t1 and tdiff ≥ tACC The read port outputs the previous write data during period t2. The output becomes undefined when BEA rises. AA (a : 0) AB (a : 0) AA ≠ AB AA = AB tdiff (tdiff < t1) BEA t1 BEB tACC t2 tOH Valid DO (b : 0) 102 Design Manual A12982EJ4V0DM CHAPTER 5 HIGH-DENSITY DUAL-PORT (1R + 1W) RAM (SYNCHRONOUS TYPE) • If tdiff ≥ t1 and t1 ≥ tBEH_B, and tACC < tdiff The read port correctly outputs the previous write data. AA (a : 0) AB (a : 0) AA ≠ AB AA = AB tdiff (tdiff ≥ t1) BEA t1 BEB tACC tOH Valid DO (b : 0) 5.9 Notes on Correct Use (1) If spike is input to the clock input pin while CSA, CSB = L, the data of the RAM may be destroyed. In this case, the addresses other than that when the spike is input may be also destroyed. (2) Current may continue to flow if the clock is stopped at a high level when power is applied, so be sure to either stop the clock while the clock pin is low, or input the clock first low then high (or high → low → high). If the clock is input at a low level even once, current will not flow no matter how the clock is subsequently stopped. Design Manual A12982EJ4V0DM 103 CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.1 General • Single-port SRAM (I/O separation type) • Super high-speed operation • Flexible memory size → High efficiency macro location by memory compiler. Block name: WHVxxxxx Bit width: 1 to 16 bits (variable in 1-bit units) Number of words: 64 to 1K words (variable in 64-word units) • Operating voltage: 3.3 ± 0.3 V • Operating temperature: –40 to +85°C • Storage ambient temperature: –65 to +150°C • 0.35 µm CMOS technology 6.1.1 Compiled range Words 2K 1K WHVxxxxx 64 1 16 32 Bits Figure 6-1 Compiled Range of Super High-Speed Single-Port RAM (Synchronous Type) Table 6-1 Compiled Range of Super High-Speed Single-Port RAM (Synchronous Type) 104 Block Name Minimum Size Maximum Size Step WHVxxxxx 64 words × 1 bit 1K words × 16 bits 64 words/1 bit Design Manual A12982EJ4V0DM CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) WEB TWEB DI (B – 1:0) TDI (B – 1:0) A (N – 1:0) TA (N – 1:0) 6.1.2 Equivalent circuit BE (CL) TEST (TI) (NIB) (GND) (CTIB) (CNIB) TBE (TI) BUB BUNRI (NIB) (CL) CSB TCSB (CTIB) (CNIB) A DATA IN READ/WRITE control OEB DC DO (B – 1:0) DATA OUT RAM 2N words B bits ENABLE signal TDO (B – 1:0) Remark N: number of address lines, B: number of bits Figure 6-2 Internal Equivalent Circuit Design Manual A12982EJ4V0DM 105 CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.1.3 Symbol diagram in in in in DI(b:0) TDI(b:0) A(a:0) TA(a:0) in in in in in in in OEB TWEB WEB TBE BE TCSB CSB in in in TEST BUB BUNRI DO(b:0) TDO(b:0) out out DC out Remarks 1. A pin prefixed with “T” is a test pin. 2. “a” = (number of address lines) – 1, where 5 ≤ a ≤ 9. “b” = (number of bits) – 1, where 0 ≤ b ≤ 15. 6.1.4 Pin capacitance Pin Information GateDRC uses CIN and CMAX for fanin/fanout calculation. Wiring capacitance = Temporary wiring length × 0.18 (pF/mm) Input Pin Name/Symbol DI(b:0) Output CIN (pF) 0.015 CIN (pF) CMAX (pF) DO(b:0) Pin Name/Symbol 0.05 6.0 0.05 6.0 – 1.5 TDI(b:0) 0.015 TDO(b:0) A(a:0) 0.025 DC TA(a:0) 0.025 BE 0.15 TBE 0.15 CSB 0.01 TCSB 0.01 WEB 0.015 TWEB 0.015 OEB 0.001 TEST 0.001 BUB 0.015 BUNRI 0.01 Remark “a” = (number of address lines) – 1, where 5 ≤ a ≤ 9 “b” = (number of bits) – 1, where 0 ≤ b ≤ 15 106 Design Manual A12982EJ4V0DM CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.2 Pin Function List Pin Name/Signal Name Attribute Mode Function DI(b:0) I Normal Data input b = number of bits – 1 DO(b:0) OZ Normal Data output b = number of bits – 1 A(a:0) I Normal Address input a = number of address lines – 1 (determined by number of words) Note BE I Normal Clock input CSB I Normal Chip select input WEB I Normal Write enable input OEB I Normal Data output enable input TDI(b:0) I Test Data input b = number of bits – 1 TDO(b:0) OZ Test Data output b = number of bits – 1 TA(a:0) I Test Address input a = number of address lines – 1 (determined by number of words) Note TBE I Test Clock input TCSB I Test Chip select input TWEB I Test Write enable input BUNRI I Mode selection Separation test input (normal mode: low level, test mode: high level) BUNRI = 0: Normal mode BUNRI = 1: Test mode TEST I Mode selection Test mode input BUNRI = 1, TEST = 0 Separated from test bus (tests other macros) BUNRI = 1, TEST = 1 Selected as subject to test BUB I Mode selection Backup mode input BUB = 0: Backup mode BUB = 1: Normal mode, test mode DC O Normal Data control output DC = 0: DO(b:0) = 0, 1, undefined DC = 1: DO(b:0) = high impedance Note Number of address lines = log2 (number of words) (rounded up at decimal place) Remark The meanings of the symbols in the Attribute column are as follows: I: input pin, OZ: 3-state output pin, O: output pin Design Manual A12982EJ4V0DM 107 CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.3 Operation Truth Table The meanings of the symbols in the following operation truth tables are as follows: Hi-Z X XZ Ax DIx [Ax] : High impedance : Undefined state not including high impedance : Undefined state including high impedance : Any data : Input data : Data in memory Normal Pin Status BUB BUNRI TEST Test Pin Status Mode Input Output DC Input Output 0 XZ XZ Backup XZ Hi-Z 1 XZ Hi-Z 1 0 X Normal Valid Valid Valid XZ Hi-Z 1 1 0 Test (non-select) XZ Hi-Z 1 XZ Hi-Z 1 1 1 Test (select) XZ Hi-Z 1 Valid Valid Normal mode access CSB BE WEB OEB A(a:0) DI(b:0) DO(b:0) DC Operation 0 0 1 Ax DIx Hi-Z 1 Write (output off) 0 0 0 Ax DIx [Ax] = DIxNote 0 Write (output on) 0 1 0 Ax X [Ax] 0 Read 0 0 X 0 X X Hold 0 Precharge 0 X X 1 X X Hi-Z 1 Output off 1 X X X X X Hi-Z 1 Macro off Note The data input from the DI(b:0) pin is output through. Test mode access TCSB TBE TWEB TA(a:0) TDI(b:0) TDO(b:0) Operation 0 0 Ax DIx [Ax] = DIxNote Write 0 1 Ax X [Ax] Read 0 0 X X X Hold Precharge 1 X X X X Hold Macro off Note The data input from the TDI(b:0) pin is output through. 108 Design Manual A12982EJ4V0DM CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.4 Macro Size Use the following expressions to calculate the macro size. Macro size = X × Y (grids) W B N α β : number of words : number of bits : number of address lines (N = log 2 W (rounded up at decimal place)) : Macro circumferential wiring area in X direction (73.53) : Macro circumferential wiring area in Y direction (7.353) X = 37.89 × B + 4.59 x N + 153.00 + α (grids) Y = 7.464 × 10–2 × W + 18.51 + β (grids) Remarks 1. Round up the fraction below the decimal place. 2. Not necessary to add α and β when not taking the macro circumferential wiring area into consideration. 6.5 Electrical Characteristics Absolute maximum ratings Parameter Symbol Ratings Unit VDD –0.5 to +4.6 V TA –40 to +85 °C Tstg –65 to +150 °C Supply voltage Operating ambient temperature Storage temperature Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended operating range Parameter Supply voltage Operating ambient temperature Symbol MIN. TYP. MAX. Unit VDD 3.0 3.3 3.6 V TA –40 +85 °C Design Manual A12982EJ4V0DM 109 CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.6 Operating Current Consumption The operating current consumption (IDD) changes depending on the number of bits, number of words, number of address lines, and operating frequency of the memory. The value of the operating current consumption can be calculated by the following expression. IDD (TYP.) = IDDR (TYP.) + IDDW (TYP.) IDD (MAX.) = IDDR (MAX.) + IDDW (MAX.) IDDR and IDDW in the above expression can be worked out by the expressions in the table below. The meanings of the symbols in the tables below are as follows: B: number of bits, W: number of words, N: number of address lines (N = log 2 W (rounded up at decimal place)), fR: read operating frequency (MHz), fW: write operating frequency (MHz), CL: external load capacitance (pF), A: Operation rate Note 1 (100% = 1) DF: MAX. data rate (MHz) of A (a:0), WEB, or DI (b:0) pin (1) VDD = 3.3 V ± 0.3 V TYP. During read/write operation (α = 1.65 × B × CL) Operation Expression Unit Read (IDDR) {(1.19 × N + 4.06 × B – 4.28) × 10–3 × W + 0.669 × N + 2.95 × B + 10.7 + 2 × α} × fR × A + 722 × B + 0.288 × W µA Write (IDDW) {(1.19 × N + 4.31 × B – 4.28) × 10–3 × W + 0.669 × N + 4.33 × B + 10.7 + 2 × α} × fW × A µA MAX. During read/write operation (α = 1.8 × B × CL) Operation Expression Unit Read (IDDR) {(1.70 × N + 5.80 × B – 6.11) × + 1032 × B + 0.411 × W × W + 0.955 × N + 4.22 × B + 15.3 + 2 × α} × fR × A µA Write (IDDW) {(1.70 × N + 6.15 × B – 6.11) × 10–3 × W + 0.955 × N + 6.18 × B + 15.3 + 2 × α} × fW × A µA 10–3 In power-down modeNote2 Condition 110 Expression × (N – 5) × W + 0.493 × N + 0.331 × B + 0.495} × DF TYP. {5.78 × MAX. {8.25 × 10–3 × (N – 5) × W + 0.704 × N + 0.473 × B + 0.71} × DF 10–3 Design Manual A12982EJ4V0DM Unit µA µA CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) Notes 1. This operation rate is the ratio of the read and write operations to the total operation period (read, write, precharge, and macro off) of the RAM. Example The operation rate is 60% (0.6) if read operations account for 30% of the total operation period of RAM and write operations account for 30%. 0 30 Read 60 Write 100 Precharge & macro off 2. Power-down mode indicates the precharge status or macro off status in Normal mode access in 6.3 Operation Truth Table. Remarks 1. Calculate the read/write operating frequency (MHz) based on the following concept (read 50%, write 50% during read/write operation). Example To read and write alternately every 1 clock at 50 MHz Calculate IDDR and IDDW assuming the following. Read frequency: fR = 25 MHz Write frequency: fW = 25 MHz 2. If OEB is fixed to H during write operation, α of IDDW is 0 (in the write (output off) status for the normal mode access in the operation truth table). Design Manual A12982EJ4V0DM 111 CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.7 Timing 6.7.1 Expressions The timing values of the RAM can be calculated by the following expressions (rounded at the third place below the decimal place. However, the output hold time is truncated). The meanings of the symbols in the table below are as follows: W: number of words, B: number of bits, N: number of address lines (N = log 2 W (rounded up at decimal place)), CL: external load capacitance (pF) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Symbol Expression Unit Cycle time tRC Where tBEH > tPC: tBEH × 2 (clock duty: 50%) Where tBEH < tPC: tPC × 2 (clock duty: 50%) ns Access time tACC 2.30 + 1.60 × 10–2 × B + 9.40 × 10–4 × W + 3.21 × 10–1 × CL ns tOH ns 0.24 + 1.55 × 10–2 ×B tBEH 1.40 + 1.60 × 10–2 tPC 1.09 + 1.30 × 10–2 tAS 0.87 + 2.54 × 10–4 ×W ns Address hold time tAH 0.72 + 1.25 × 10–2 ×N ns Write data setup time tDIS 0 tDIH Write data through time WEB setup time Output hold time BE high-level time Precharge time Address setup time × B + 8.94 × 10–4 ×W ns × B + 5.83 × 10–4 ×W ns ns 1.05 + 1.88 × 10–2 ×B tDTH 2.21 + 1.77 × 10–2 × B + 3.21 × tWS 0.60 WEB hold time tWH 0.72 + 1.25 × CSB setup time tCS 1.00 ns CSB hold time tCH 0 ns tHZ 1.60 + 2.66 × 10–2 × B ns tLZ tDC Write data hold time ns 10–1 × CL ns ns 10–2 ×N ns CSB, OEB control Output floating time Output active time DC output delay time 112 1.75 + 2.20 × 10–2 ×B ns 1.80 + 2.00 × 10–2 × B + 1.46 × CL ns Design Manual A12982EJ4V0DM CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.7.2 Typical value (8 bits × 512 words) (1) VDD = 3.3 ± 0.3 V Read/write operation ( TA = –40 to +85°C) Parameter Symbol MIN. TYP. MAX. Unit Cycle time tRC 3.98 Access time tACC Output hold time tOH 0.36 ns BE high-level time tBEH 1.99 ns Precharge time tPC 1.50 ns Address setup time tAS 1.01 ns Address hold time tAH 0.84 ns Write data setup time tDIS 0 ns Write data hold time tDIH 1.21 ns Write data through time tDTH WEB setup time tWS 0.60 ns WEB hold time tWH 0.84 ns CSB setup time tCS 1.00 ns CSB hold time tCH 0 ns Output floating time tHZ 1.82 ns Output active time tLZ 1.93 ns DC output delay time tDC ns 2.98 2.42 ns ns CSB, OEB control 2.26 ns Remarks 1. The above data are calculated with an external load capacitance of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN. : minimum value necessary for operating macro under worst condition MAX. : delay time of macro output under worst condition Design Manual A12982EJ4V0DM 113 CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) 6.8 Timing Chart Read operation Read cycle (CSB = low level, OEB = low level) tRC tPC tBEH BE tAS tAH A(a:0) tACC tOH DO(b:0) tWS tWH WEB Invalid Write operation Write cycle (CSB = low level, OEB = low level) tRC tPC tBEH_A BE tAS tAH tDIS tDIH tWS tWH A(a:0) DI(b:0) WEB tDTH DO(b:0) tOH Invalid 114 Design Manual A12982EJ4V0DM CHAPTER 6 SUPER HIGH-SPEED SINGLE-PORT RAM (SYNCHRONOUS TYPE) Read/write operation (1) CSB control (OEB = low level) tRC tRC tRC tRC BE tCS tCH tCS tCH CSB tHZ tLZ tHZ Hi-Z DO(b:0) tDC tLZ Hi-Z tDC tDC tDC DC Invalid (2) OEB control (CSB = low level) OEB tHZ tLZ Hi-Z DO(b:0) tDC tDC DC 6.9 Notes on Correct Use (1) If a spike is input to the clock input pin while CSB = L, the data in the RAM may be destroyed. In this case, the addresses other than that when the spike was input may be also destroyed. (2) Static current is consumed by the super high-speed synchronous single-port RAM in the following case. To prevent static current consumption from occurring, configure the circuit so that "H" can be input to CSB (chip select). Normal mode CSB = L, WEB = H, BE = H period: Read operation Test mode TCSB = L, TWEB = H, TBE = H period: Read operation Static current consumption calculation expression IDDS (MAX) = 1.032 × B + 4.11 × 10–4 × W [mA] Design Manual A12982EJ4V0DM 115 CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.1 General • Dedicated to VX/VM type • Compiled type Bit width: 4 to 64 bits (variable in 1-bit units) Number of words: 8 to 512 words (variable in 4-word units) • Read access time (64 bits × 512 words, CL = 0.2 pF) At VDD = 3.3 ± 0.3 V: tRA = 19.76 (ns) At VDD = 2.0 ± 0.2 V: tRA = 44.77 (ns) • Operating voltage: 3.3 ± 0.3 V, 2.0 ± 0.2 V • Operating temperature: –40 to +85°C • 0.35 µm CMOS technology 7.1.1 Compiled range Words 512 NZRxxxxA 8 4 64 Bits Figure 7-1 Compiled Range of Register File Table 7-1 Compiled Range of Register File 116 Block Name Minimum Size Maximum Size Step NZRxxxxA 8 words × 4 bits 512K words × 64 bits 4 words/1 bit Design Manual A12982EJ4V0DM CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.1.2 Equivalent circuit D1OUT (B–1:0) DC1 TD1OUT (B –1:0) BUNRI TEST OEB WADD(N–1:0) WRITE ADDRESS TWADD(N–1:0) DATA OUT R1ADD(N–1:0) READ ADDRESS TR1ADD(N–1:0) Dual-Port Register File DIN(B–1:0) DATA IN TDIN(B–1:0) WEN WRITE TWEN Remark N: number of address lines, B: number of bits Figure 7-2 Internal Equivalent Circuit Design Manual A12982EJ4V0DM 117 CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.1.3 Symbol diagram in in in in in in in in in DIN(b:0) TDIN(b:0) WADD(a:0) TWADD(a:0) R1ADD(a:0) TR1ADD(a:0) WEN TWEN OEB in in TEST BUNRI D1OUT(b:0) TD1OUT(b:0) DC1 out out out Remarks 1. A pin prefixed with “T” is a test pin. 2. “a” = (number of address lines) – 1, where 2 ≤ a ≤ 8. “b” = (number of bits) – 1, where 3 ≤ b ≤ 63. 7.1.4 Pin capacitance Pin Information GateDRC uses CIN and CMAX for fanin/fanout calculation. Wiring capacitance = Temporary wiring length × 0.18 (pF/mm) Input Pin Name/Symbol Output CIN (pF) DIN(b:0) 0.005 TDIN(b:0) 0.005 WADD(a:0) 0.007 TWADD(a:0) 0.007 RA1ADD(a:0) 0.007 TR1ADD(a:0) 0.007 WEN 0.005 TWEN 0.005 OEB 0.007 TEST 0.007 BUNRI 0.007 Pin Name/Symbol D1OUT(b:0) 0.011 CMAX (pF) 3.42 (2.82) TD1OUT(b:0) 0.007 3.42 (2.82) DC1 Remarks 1. “a” = (number of address lines) – 1, where 2 ≤ a ≤ 8 “b” = (number of bits) – 1, where 3 ≤ b ≤ 63 2. ( ): VDD = 2.0 ± 0.2 V 118 CIN (pF) Design Manual A12982EJ4V0DM – 3.42 (2.82) CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.2 Pin Function List Pin Name/Signal Name Attribute Mode I Normal Data input b = number of bits – 1 D1OUT(b:0) OZ Normal Data output b = number of bits – 1 WADD(a:0) I Normal Write address input a = number of address lines – 1 (determined by number of words) R1ADD(a:0) I Normal Read address input a = number of address lines – 1 (determined by number of words) WEN I Normal Write enable input OEB I Normal Data output enable input TDIN(b:0) I Test Data input b = number of bits – 1 TD1OUT(b:0) OZ Test Data output b = number of bits – 1 TWADD(a:0) I Test Write address input a = number of address lines – 1 (determined by number of words) TR1ADD(a:0) I Test Read address input a = number of address lines – 1 (determined by number of words) TWEN I Test Write enable input BUNRI I Mode selection Separation test input BUNRI = 0: Normal mode BUNRI = 1: Test mode TEST I Mode selection Test mode input BUNRI = 1, TEST = 0 Separated from test bus (tests other macros) BUNRI = 1, TEST = 1 Selected as subject to test DC1 O Normal DIN(b:0) Remark Function Data control output DC1 = 0: D1OUT(b:0) = 0, 1, undefined DC1 = 1: D1OUT(b:0) = high impedance The meanings of the symbols in the Attribute column are as follows: I: input pin, OZ: 3-state output pin, O: output pin Design Manual A12982EJ4V0DM 119 CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.3 Operation Truth Table The meanings of the symbols in the following operation truth tables are as follows: Hi-Z : High impedance X : Undefined state not including high impedance XZ : Undefined state including high impedance Ad, AdA, AdB : Any data D : Input data [Ad], [AdA], [AdB] : Data in memory Normal Pin Status BUNRI TEST Test Pin Status Mode Input Output DC1 Input Output 0 X Normal Valid Valid Valid XZ Hi-Z 1 0 Test (non-select) XZ Hi-Z 1 XZ Hi-Z 1 1 Test (select) XZ Hi-Z 1 Valid Valid Normal mode access R1ADD (a:0) WADD (a:0) WEN DIN (b:0) OEB D1OUT (b:0) DC1 Latch Operation Ad X 0 X 0 [Ad] 0 Hold Read X Ad 1 D 1 Hi-Z 1 [Ad] = D Write AdA AdB 1 D 0 [AdA] 0 [AdB] = D Read/write X X 0 X 1 Hi-Z 1 Hold Output off Test mode access 120 TR1ADD (a:0) TWADD (a:0) TWEN TDIN (b:0) TD1OUT (b:0) Latch Operation Ad X 0 X [Ad] Hold Read X Ad 1 D X [Ad] = D Write Design Manual A12982EJ4V0DM CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.4 Macro Size Use the following expressions to calculate the macro size. Macro size = X × Y (grids) W B N Rx Ry α β : number of words : number of bits : number of address lines (N = log 2 W (rounded up at decimal place)) : X-direction power supply ring width : Y-direction power supply ring width : Macro circumferential wiring area in X direction (73.53) : Macro circumferential wiring area in Y direction (7.353) X = 47.43 + Rx × 4 + 9.12 × (N – 2) + 20.48 × B + α (grids) Y = 6.02 + Ry × 4 + 0.29 × W + β (grids) Rx, Ry Number of Bits Rx Ry 4 to 8 5.15 0.52 9 to16 8.09 0.81 17 to 32 11.77 1.18 33 to 64 15.45 1.55 Remarks 1. Round up the fraction below the decimal place. 2. Not necessary to add α and β when not to take the macro circumferential wiring area into consideration. Design Manual A12982EJ4V0DM 121 CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.5 Electrical Characteristics Absolute maximum ratings Parameter Symbol Ratings Unit VDD –0.5 to +4.6 V TA –40 to +85 °C Tstg –65 to +150 °C Supply voltage Operating ambient temperature Storage temperature Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended operating range VDD = 3.3 ± 0.3 V Parameter Supply voltage Operating ambient temperature Symbol MIN. TYP. MAX. Unit VDD 3.0 3.3 3.6 V TA –40 +85 °C Symbol MIN. TYP. MAX. Unit VDD 1.8 2.0 2.2 V TA –40 +85 °C VDD = 2.0 ± 0.2 V Parameter Supply voltage Operating ambient temperature 122 Design Manual A12982EJ4V0DM CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.6 Operating Current Consumption The operating current consumption (IDD) changes depending on the number of bits, number of words, and operating frequency of the memory. The value of the operating current consumption can be calculated by the following expression. IDD (TYP.) = IDDR (TYP.) + IDDW (TYP.) IDD (MAX.) = IDDR (MAX.) + IDDW (MAX.) IDDR and IDDW in the above expression can be worked out by the expressions in the table below. The meanings of the symbols in the tables below are as follows: B: number of bits, W: number of words, fR: read operating frequency (MHz) fW: write operating frequency (MHz), CL: external load capacitance (pF) A: Operation rateNote (100% = 1) (1) VDD = 3.3 ± 0.3 V TYP. During read/write operation (α = 1.65 × CL × B) Operation Expression Unit Read (IDDR) (0.367 × W + 3.286 × B – 0.849 + α) × fR µA Write (IDDW) (0.249 × W + 2.685 × B – 0.610) × fW µA MAX. During read/write operation (α = 1.8 × CL × B) Operation (2) Expression Unit Read (IDDR) (0.409 × W + 3.603 × B – 0.944 + α) × fR µA Write (IDDW) (0.259 × W + 2.970 × B – 0.575) × fW µA VDD = 2.0 ± 0.2 V TYP. During read/write operation (α = 1.0 × CL × B) Operation Expression Unit Read (IDDR) (0.233 × W + 3.759 × B – 0.981 + α) × fR µA Write (IDDW) (–0.027 × W + 1.113 × B – 2.234) × fW µA MAX. During read/write operation (α = 1.1 × CL × B) Operation Expression Unit Read (IDDR) (0.252 × W + 4.229 × B – 1.029 + α) × fR µA Write (IDDW) (0.165 × W + 0.415 × B – 0.598) × fW µA Design Manual A12982EJ4V0DM 123 CHAPTER 7 REGISTER FILE (DUAL-PORT) Note This operation rate is the ratio of the read and write operations to the total operation period (read, write, and output off). Example The operation rate is 60% (0.6) if read operations account for 60% of the total operation period. 0 60 Read Remark 124 100 Output off If all the input signals are fixed, the current consumption in the standby mode (I DD1) = 0. Design Manual A12982EJ4V0DM CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.7 Timing 7.7.1 Expressions The timing values of the RAM can be calculated by the following expressions (rounded at the third place below the decimal place. ) The meanings of the symbols in the table below are as follows: W: number of words, B: number of bits, CL: external load capacitance (pF) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Expression Unit Read access time tRA 3.899 + 2.021 × 10–2 Read cycle time tRC 3.899 + 2.021 × 10–2 ×W ns Write cycle time tWC 4.446 + 2.010 × 10–2 × B + 1.270 × 10–3 × W ns × B + 2.831 × 10–2 × W + 3.54 × × B + 2.831 × 10–2 10–1 × CL ns Output hold time tOH 0.580 ns Write enable access time tWO 5.176 + 1.960 × 10–2 × B + 2.486 × 10–2 × W + 3.54 × 10–1 × CL ns Data input to data output tIO 8.232 + 3.210 × 10–4 × B + 2.373 × 10–2 × W + 3.54 × 10–1 × CL ns Output active time tOEA 1.804 + 1.656 × × CL ns Output floating time tOEZ 3.540 + 1.995 × 10–2 × B + 1.530 × 10–4 × W + 3.54 × 10–1 × CL ns Write address setup time tWAS 2.996 + 1.508 × ns Write address hold time tWAH 10–2 10–2 × B – 9.200 × × B – 1.120 × 10–5 10–3 × W + 3.54 × 10–1 ×W 0 ns tDS 4.514 – 8.290 × 10–3 × B – 1.350 × 10–3 × W + 3.54 × 10–1 × CL ns Data hold time tDH 0 ns Write pulse width tWP 1.450 + 5.011 × 10–3 × B + 2.391 × 10–3 × W ns tDC 2.700 + 3.54 × ns Data setup time DC1 output delay time (2) Symbol 10–1 × CL VDD = 2.0 ± 0.2 V Read/write operation (TA = –40 to +85°C) Parameter Symbol Expression Read access time tRA 8.528 + 5.821 × tRC 8.528 + 5.821 × 10–2 × B + 6.322 × 10–2 × W ns tWC 8.163 + 6.527 × ns Write cycle time 10–2 × B + 6.322 × Unit Read cycle time 10–2 × B + 7.828 × 10–2 10–3 × W + 7.31 × 10–1 × CL ×W ns Output hold time tOH 0.9 ns Write enable access time tWO 9.665 + 5.300 × 10–2 × B + 6.667 × 10–2 × W + 7.31 × 10–1 × CL ns Data input to data output tIO 18.013 + 7.756 × 10–2 × B + 5.858 × 10–2 × W + 7.31 × 10–1 × CL ns Output active time tOEA 3.496 + 3.494 × × CL ns Output floating time tOEZ 6.423 + 3.988 × 10–2 × B – 1.100 × 10–4 × W + 7.31 × 10–1 × CL ns Write address setup time tWAS 5.463 + 5.352 × Write address hold time tWAH 0 ns tDS 9.429 – 1.327 × 10–2 × B – 2.330 × 10–3 × W + 7.31 × 10–1 × CL ns Data hold time tDH 0 ns Write pulse width tWP 2.700 + 1.175 × 10–2 × B + 6.028 × 10–3 × W ns tDC 5.2 + 7.31 × ns Data setup time DC1 output delay time 10–2 10–2 10–1 × B – 7.600 × × B – 1.800 × × CL Design Manual A12982EJ4V0DM 10–5 10–3 × W + 7.31 × 10–1 ×W ns 125 CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.7.2 Typical value (8 bits × 512 words) (1) VDD = 3.3 ± 0.3 V Read/write operation (TA = –40 to +85°C) Parameter Symbol Read access time (2) MIN TYP tRA MAX Unit 18.63 ns Read cycle time tRC 18.56 ns Write cycle time tWC 5.26 ns Output hold time tOH 0.58 ns Write enable access time tWO 18.14 ns Data input to data output tIO 20.46 ns Output active time tOEA 1.97 ns Output floating time tOEZ Write address setup time tWAS Write address hold time 3.85 ns 2.55 ns tWAH 0 ns Data setup time tDS 3.83 ns Data hold time tDH 0 ns Write pulse width tWP 2.72 DC1 output delay time tDC ns 2.78 ns MAX Unit 41.51 ns VDD = 2.0 ± 0.2 V Read/write operation (TA = –40 to +85°C) Parameter Read access time Symbol MIN tRA TYP Read cycle time tRC 41.37 ns Write cycle time tWC 12.7 ns 0.9 ns Output hold time tOH Write enable access time tWO 44.38 ns Data input to data output tIO 48.78 ns Output active time tOEA 3.89 ns Output floating time tOEZ 6.84 ns Write address setup time tWAS Write address hold time Data setup time 4.97 ns tWAH 0 ns tDS 9.6 ns ns Data hold time tDH 0 Write pulse width tWP 5.89 DC1 output delay time tDC Remarks 1. The above data are calculated with an external load capacitance of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN. : minimum value necessary for operating macro under worst condition MAX. : delay time of macro output under worst condition 126 Design Manual A12982EJ4V0DM ns 5.35 ns CHAPTER 7 REGISTER FILE (DUAL-PORT) 7.8 Timing Chart Read operation Read cycle (OEB = 0) tRC R1ADD(a:0) tRA tOH D1OUT(b:0) Invalid Write operation Write cycle (OEB = 0) tWC tWP WEN tWAS tWAH WADD(a:0) tDS Valid 1 DIN(b:0) Valid 2 tWO When WADD = R1ADD tOH tIO tOH Valid 1 D1OUT(b:0) tDH Valid 2 Invalid Design Manual A12982EJ4V0DM 127 CHAPTER 7 REGISTER FILE (DUAL-PORT) Read/write operation OEB control OEB tOEZ tDEA Hi-Z D1OUT(b:0) tDC tDC DC1 128 Design Manual A12982EJ4V0DM CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.1 General • Synchronous ROM • Flexible memory size → High efficiency macro location by memory compiler Block name : ZTYxxxxx Bit width : 1 to 32 bits (variable in 1-bit units) Number of words : 64 to 8K words (variable in 32-word units) Block name : ZTTxxxxx Bit width : 33 to 64 bits (variable in 1-bit units) Number of words : 64 to 8K words (variable in 32-word units) • Operating voltage: 3.3 ± 0.3 V, 2.0 ± 0.2 V • Operating ambient temperature: –40 to +85°C • Storage temperature: –65 to +150°C • 0.35 µm CMOS technology 8.1.1 Compiled range Words 8K ZTYxxxxx ZTTxxxxx 64 1 32 64 Bits Figure 8-1 Compiled Range of High-Speed ROM (Synchronous Type) Table 8-1 Compiled Range of High-Speed ROM (Synchronous Type) Block Name Minimum Size Maximum Size Step ZTYxxxxx 64 words × 1 bit 8K words × 32 bits 32 words/1 bit ZTTxxxxx 64 words × 33 bits 8K words × 64 bits 32 words/1 bit Design Manual A12982EJ4V0DM 129 CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.1.2 Equivalent circuit DC DO (B – 1:0) TDO (B – 1:0) TEST BUNRI CSB TCSB OEB BE OUT TBE A A (N – 1:0) TA (N – 1:0) Remark N: number of address lines, B: number of bits Figure 8-2 Internal Equivalent Circuit 130 Design Manual A12982EJ4V0DM ROM 2N words B bits CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.1.3 Symbol diagram in in A (a:0) TA (a:0) in in BE TBE in in in in in OEB TCSB CSB TEST BUNRI DO (b:0) out TDO (b:0) out DC out Remarks 1. A pin prefixed with “T” is a test pin. 2. “a” = (number of address lines) – 1, where 5 ≤ a ≤ 12 (64 words MIN., 8K words MAX.) “b” = (number of bits) – 1, where 0 ≤ b ≤ 63 (1 bit MIN., 64 bits MAX.) 8.1.4 Pin capacitance Pin Information GateDRC uses CIN and CMAX for fan-in/fan-out calculation. Wiring capacitance = Temporary wiring length × 0.18 (pF/mm) Input Pin Name/Symbol A(a:0) Output CIN (pF) 0.055 TA(a:0) 0.055 BE 0.047 TBE 0.047 OEB 0.020 CSB 0.020 TCSB 0.020 TEST 0.015 BUNRI 0.023 Remarks 1. 2. Pin Name/Symbol CIN (pF) CMAX (pF) DO(b:0) 0.058 8.849 TDO(b:0) 0.047 (2.278) 8.849 (2.278) DC – 3.191 (1.343) ( ): Value at VDD = 2.0 ± 0.2 V “a” = (number of address lines) – 1, where 5 ≤ a ≤ 12 (64 words MIN., 8K words MAX.) “b” = (number of bits) – 1, where 0 ≤ b ≤ 63 (1 bit MIN., 64 bits MAX.) Design Manual A12982EJ4V0DM 131 CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.2 Pin Function List Pin Name/Signal Name Attribute Mode OZ Normal Data output b = number of bits – 1 A(a:0) I Normal Address input a = number of address lines – 1 (determined by number of words) BE I Normal Clock input CSB I Normal Chip select input OEB I Normal Data output enable input OZ Test Data output b = number of bits – 1 TA(a:0) I Test Address input a = number of address lines – 1 (determined by number of words) TBE I Test Clock input TCSB I Test Chip select input BUNRI I Mode selection Separation test input (normal mode: low level, test mode: high level) BUNRI = 0: Normal mode BUNRI = 1: Test mode TEST I Mode selection Test mode input BUNRI = 1, TEST = 0 BUNRI = 1, TEST = 1 DO(b:0) TDO(b:0) DC Remark 132 O Normal Function Separated from test bus (tests other macros) Selected to be tested Data control output DC = 0: DO(b:0) = 0, 1, undefined DC = 1: DO(b:0) = high impedance The meanings of the symbols in the Attribute column are as follows: I: Input pin, OZ: 3-state output pin, O: Output pin Design Manual A12982EJ4V0DM CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.3 Operation Truth Table The meanings of the symbols in the following operation truth tables are as follows: Hi-Z X XZ Ax [Ax] : High impedance : Undefined state not including high impedance : Undefined state including high impedance : Any data : Data in memory Normal Pin Status BUNRI TEST Test Pin Status Mode Input Output DC Input Output 0 XZ Normal Valid Valid Valid XZ Hi-Z 1 0 Test (non-select) XZ Hi-Z 1 XZ Hi-Z 1 1 Test (select) XZ Hi-Z 1 Valid Valid Operation Normal mode access CSB BE 0 OEB A(a:0) DO(b:0) DC 0 Ax [Ax] 0 Read 0 0 0 X Hold 0 Precharge 0 X 1 X Hi-Z 1 Output off 1 X X X Hi-Z 1 Macro off TA(a:0) TDO(b:0) Operation Ax [Ax] Read Test mode access TCSB TBE 0 0 0 X Hold Precharge 1 X X X Macro off Design Manual A12982EJ4V0DM 133 CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.4 Macro Size Use the following expressions to calculate the macro size. Macro size = X × Y (grids) W : Number of words B : Number of bits N : Number of address lines N = log2 W (rounded at decimal place) α : Macro circumferential wiring area in X direction (73.53) β : Macro circumferential wiring area in Y direction (7.353) B ≤ 32 X = 10.691 × B + 7.530 × (N–5) + 185.68 + α Y = 2.647 × 10–2 × W + 20.913 + β (grids) (grids) B > 32 X = 10.691 × B + 7.530 × (N–5) + 197.44 + α Y = 2.647 × 10–2 × W + 20.913 + β (grids) (grids) Remarks 1. Round up the fraction below the decimal place. 2. Not necessary to add α and β when not to take the macro circumferential wiring area into consideration. 8.5 Electrical Characteristics Absolute maximum ratings Parameter Symbol Ratings Unit VDD –0.5 to +4.6 V TA –40 to +85 °C Tstg –65 to +150 °C Supply voltage Operating ambient temperature Storage temperature Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended operating range (VDD = 3.3 ± 0.3 V) Parameter Supply voltage Operating ambient temperature Symbol MIN. TYP. MAX. Unit VDD 3.0 3.3 3.6 V TA –40 +85 °C Recommended operating range (VDD = 2.0 ± 0.2 V) Parameter Supply voltage Operating ambient temperature 134 Symbol MIN. TYP. MAX. Unit VDD 1.8 2.0 2.2 V TA –40 +85 °C Design Manual A12982EJ4V0DM CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.6 Operating Current Consumption The operating current consumption (I DD) changes depending on the number of bits, number of words, and operating frequency of the memory. The value of the operating current consumption can be calculated by the following expression. The meanings of the symbols in the tables below are as follows: B: Number of bits, W: Number of words, f: Operating frequency (MHz), A: Operation rate Note (100% = 1) (1) VDD = 3.3 ± 0.3 V Condition (2) Expression (MAX.) Unit TYP. (0.0191 × W + 6.70 × B + 18 + 1.65 × B × CL) × f × A µA MAX. (0.0235 × W + 8.29 × B + 21 + 1.8 × B × CL) × f × A µA VDD = 2.0 ± 0.2 V Condition Expression (MAX.) Unit TYP. (0.0101 × W + 3.65 × B + 8 + 1.0 × B × CL) × f × A µA MAX. (0.0123 × W + 4.38 × B + 9 + 1.1 × B × CL) × f × A µA Note This operation rate is the ratio of the read operation to the total operation period (read, precharge, and macro off) of the ROM. Example The operation rate is 60% (0.6) if read operations account for 60% of the total operation period of ROM. 0 30 60 Read Remark 100 Precharge & macro off If all the input signals of this ROM are fixed, the current consumption in the standby mode (I DD1) = 0. Design Manual A12982EJ4V0DM 135 CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.7 Timing 8.7.1 Expressions The timing values can be calculated by the following expressions (rounded at the third place below the decimal place). The meanings of the symbols in the table below are as follows: B: number of bits, W: number of words, CL: external load capacitance (pF) (1) VDD = 3.3 ± 0.3 V Read operation (TA = –40 to +85°C) Parameter Expression tRC tBEH + tPC Access time tACC 5.09 + 5.66 × Output hold time tOH 0.65 tBEH Precharge time Cycle time Unit ns 10–4 × W + 9.85 × 10–3 5.09 + 5.66 × 10–4 × W + 9.85 × 10–3 ×B ns tPC 3.17 + 3.41 × 10–4 × W + 6.13 × 10–3 ×B ns Address setup time tAS 1.40 ns Address hold time tAH 0.60 ns CSB setup time tCS 2.49 ns CSB hold time tCH 1.50 ns Output floating time tHZ 3.68 ns Output active time tLZ 3.90 tDC 3.67 + 9.40 × BE high-level time DC output delay time (2) Symbol × B + 3.39 × 10–1 × CL ns ns ns 10–1 × CL ns VDD = 2.0 ± 0.2 V Read operation (TA = –40 to +85°C) Parameter Expression Unit tRC tBEH + tPC Access time tACC 12.06 + 7.99 × Output hold time tOH 1.15 tBEH 12.06 + 7.99 × Precharge time tPC 4.29 + 7.15 × Address setup time tAS 2.80 ns Address hold time tAH 0.90 ns CSB setup time tCS 4.21 ns CSB hold time tCH 3.10 ns Output floating time tHZ 7.36 ns Output active time tLZ 8.11 ns DC output delay time tDC 7.68 + 1.34 × CL ns Cycle time BE high-level time 136 Symbol ns 10–4 × W + 1.33 × 10–2 10–4 × W + 1.33 × 10–2 × B + 7.90 × 10–1 × CL ns ns 10–4 × W + 1.45 × Design Manual A12982EJ4V0DM 10–2 ×B ×B ns ns CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.7.2 Typical value (8 bits × 512 words) (1) VDD = 3.3 ± 0.3 V Read operation (TA = –40 to +85°C) Parameter (2) Symbol MIN. TYP. MAX. Unit Cycle time tRC 8..86 Access time tACC Output hold time tOH 0.65 ns BE high-level time tBEH 5.46 ns Precharge time tPC 3.40 ns Address setup time tAS 1.40 ns Address hold time tAH 0.60 ns CSB setup time tCS 2.49 ns CSB hold time tCH 1.50 ns Output floating time tHZ 3.68 ns Output active time tLZ 3.90 ns DC output delay time tDC ns 5.53 ns 3.86 ns MAX. Unit VDD = 2.0 ± 0.2 V Read operation (TA = –40 to +85°C) Parameter Symbol MIN. TYP. Cycle time tRC 17.36 Access time tACC Output hold time tOH 1.15 ns BE high-level time tBEH 12.58 ns Precharge time tPC 4.78 ns Address setup time tAS 2.80 ns Address hold time tAH 0.90 ns CSB setup time tCS 4.21 ns CSB hold time tCH 3.10 ns Output floating time tHZ 7.36 ns Output active time tLZ 8.11 ns DC output delay time tDC ns 12.74 7.95 ns ns Remarks 1. The above values are calculated with an external load capacitance of 0.2 pF. 2. The meanings of the symbols in the above table are as follows: MIN. : minimum value necessary for operating macro under worst condition MAX. : delay time of macro output under worst condition Design Manual A12982EJ4V0DM 137 CHAPTER 8 HIGH-SPEED ROM (SYNCHRONOUS TYPE) 8.8 Timing Chart (1) BE access (CSB = low level, OEB = low level) tRC tPC tBEH BE tAS tAH A(a:0) tACC DO(b:0) tOH Invalid Remark (2) When tRC is MIN., operation at duty of 50 % is impossible. CSB control (OEB = low level) tRC tRC tRC tRC BE tCH tCS tCH tCS CSB tHZ tLZ tHZ Hi-Z DO(b:0) tDC tLZ Hi-Z tDC tDC DC (3) OEB control (CSB = low level) OEB tHZ tLZ Hi-Z DO(b:0) tDC tDC DC 138 Design Manual A12982EJ4V0DM tDC CHAPTER 9 BIST 9.1 Overview With the CB-9 family VX/VM type RAM, a macro test by connecting to a gate-array method BIST (Built-in Self Test) circuit can be performed. BIST is a method of testing by which a test pattern is automatically generated inside a circuit. An external source can test the circuit simply by applying a test mode signal and test clock to the circuit. This method is effective for testing circuits with a regular structure, such as RAM circuits. The BIST method has the following advantages over the conventional test bus method. • Fewer test pins connected to external pins (only three pins: TIN, TEB, and TOUT). Therefore, the increase in delay caused by inserting a circuit, such as a selector, in the test output can be eliminated. • Because a RAM test pattern is not necessary, the limit on the number of user patterns can be relaxed. • Because a RAM test pattern is not necessary, the user can check RAM more easily. For details of BIST, refer to Design For Test User’s Manual (A14357E). Design Manual A12982EJ4V0DM 139 CHAPTER 9 BIST 9.2 Type of BIST The following BIST circuits are available for cell-based ICs: • For single-port RAM (synchronous type) • For dual-port (1R/W+1R) RAM (synchronous type) • For dual-port (1R+1R) RAM (synchronous type) 9.2.1 Block name of BIST The blocks of the BIST are named in compliance with a convention. Each character of the name has the following meaning: 1st character 2nd character 3rd character 4th character 5th character 6th character 7th character 8th character (b) Number of bits (a) Function (1) Function The first through third characters indicate the variation of the BIST. Characters 140 Function D8U For single-port RAM DUU For dual-port RAM (1R/W + 1R) DBU For dual-port RAM (1R + 1W) Design Manual A12982EJ4V0DM (c) Number of words CHAPTER 9 BIST (2) Number of bits The fourth and fifth characters indicate the number of bits in base-32 number format. Therefore, the number of bits indicated by these characters ranges from 0 to 1023. For the correspondence between a base-32 number and the number of bits, refer to (4) Correspondence with base-32 numbers. Number of bits = 4th character × 32 + 5th character 4 5 Number of bits 4 5 Number of bits 0 0 Missing number 0 G 16 0 1 1 0 H 17 0 2 2 0 I Missing number 0 3 3 0 J 18 0 4 4 : : : 0 5 5 0 X 30 0 6 6 0 Y 31 0 7 7 0 Z Missing number 0 8 8 1 0 32 0 9 9 1 1 33 0 A 10 1 2 34 0 B 11 : : : 0 C 12 Y Y 1023 0 D 13 Y Z Missing number 0 E 14 Z – Missing number 0 F 15 Design Manual A12982EJ4V0DM 141 CHAPTER 9 BIST (3) Number of words The sixth through eighth characters indicate the number of words in base-32 number format. Therefore, the number of words indicated by three characters ranges from 0 to 32767. For the correspondence between a base-32 number and the number of words, refer to (4) Correspondence with base-32 numbers. Number of words = 6th character × 1024 + 7th character × 32 + 8th character (4) 142 6 7 8 Number of Words 6 7 8 Number of Words 0 0 0 Missing number 0 0 J 18 0 0 1 1 : : : : 0 0 2 2 0 0 X 30 0 0 3 3 0 0 Y 31 0 0 4 4 0 0 Z Missing number 0 0 5 5 0 1 0 32 0 0 6 6 0 1 1 33 0 0 7 7 0 1 2 34 0 0 8 8 : : : : 0 0 9 9 0 Y Y 1023 0 0 A 10 0 Y Z Missing number 0 0 B 11 0 Z – Missing number 0 0 C 12 1 0 0 1024 0 0 D 13 : : : 0 0 E 14 Y Y Y 32767 0 0 F 15 Y Y Z Missing number 0 0 G 16 Y Z – Missing number 0 0 H 17 Z – – Missing number 0 0 I Missing number Correspondence with base-32 numbers This table indicates the correspondence between base-32 numbers and the number of bits or words. The base-32 numbering system is an extension of the hexadecimal numbering system and uses 0 through 9 and alphabetic characters to indicate numbers 0 through 31. Note, however, that I, O, Q, and Z are not used in this numbering system. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 A B C D E F 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 G H J K L M N P R S T U V W X Y Design Manual A12982EJ4V0DM CHAPTER 9 BIST 9.3 BIST Circuit Specifications 9.3.1 Single-port RAM (synchronous type) (1) Symbol diagram D8UXXXXX in out in in in in (2) TIN TOUT TEB TEST BUB BUNRI TDI TA(a:0) out TWEB TBE TCSB out TCMP(b:0) out out out in Pin function list Pin Name/ Signal Name Attribute Function TIN I Test input TOUT O Test output TEB I Test mode input TEST I Test mode input BUB I Backup mode input BUNRI I Separation mode input TDI O Test write data output TA(a:0) O Test address output TWEB O Test write enable output TBE O Test clock output TCSB O Test chip select output TCMP(b:0) I Test comparator input Remark The meanings of the symbols in the above table are as follows: I: Input pin, O: Output pin a = number of address lines – 1 (number of address lines = log 2 number of words) rounded up at decimal point) b = number of bits – 1 Design Manual A12982EJ4V0DM 143 CHAPTER 9 BIST (3) Operation truth table The meanings of the symbols in the following operation truth tables are as follows: X XZ BUB BUNRI TEST TEB TIN TOUT OutputNote 1 0 XZ XZ XZ XZ X X Backup 1 0 X X X X X Normal 1 1 0 X X X X Test (non-select) 1 1 1 1 X X X Test (non-select) 1 1 1 0 0 or 1 0 X Test (select, stop) 1 1 1 0 OUTNote 2 Valid Notes 1. 2. (4) 144 : Undefined state not including high impedance : Undefined state including high impedance TDI, TA (a:0), TWEB, TBE, TCSB If clock is input to TIN in the order of 1-0-1-0, TOUT is output in the order of 1-0-0-0. Macro size 2789 [grids] Design Manual A12982EJ4V0DM Mode Test (operation) CHAPTER 9 BIST 9.3.2 Dual-port (1R/W + 1R) RAM (synchronous type) (1) Symbol diagram DUUXXXXX in out TIN TOUT TEB TEST BUB BUNRI in in in in (2) TDIA TAA(a:0) TAB(a:0) out TWEA TBE TCS out TCMPA(b:0) TCMP(b:0) out out out out in in Pin function list Pin Name/ Signal Name Attribute Function TIN I Test input TOUT O Test output TEB I Test mode input TEST I Test mode input BUB I Backup mode input BUNRI I Separate mode input TDIA O Test write data output (for A port) TAA(a:0) O Test address output (for A port) TAB(a:0) O Test address output (for B port) TWEA O Test write enable output (for A port) TBE O Test clock output (for both A and B ports) TCS O Test chip select output (for both A and B ports) TCMPA(b:0) I Test comparator input (for A port) TCMPB(b:0) I Test comparator input (for B port) Remark The meanings of the symbols in the above table are as follows: I: Input pin, O: Output pin a = number of address lines – 1 (number of address lines = log 2 number of words) rounded up at decimal point) b = number of bits – 1 Design Manual A12982EJ4V0DM 145 CHAPTER 9 BIST (3) Operation truth table The meanings of the symbols in the following operation truth tables are as follows: X XZ BUB BUNRI TEST TEB TIN TOUT OutputNote 1 0 XZ XZ XZ XZ X X Backup 1 0 X X X X X Normal 1 1 0 X X X X Test (non-select) 1 1 1 1 X X X Test (non-select) 1 1 1 0 0 or 1 0 X Test (select, stop) 1 1 1 0 OUTNote 2 Valid Notes 1. 2. (4) 146 : Undefined state not including high impedance : Undefined state including high impedance TDIA, TAA (a:0), TAB (a:0), TWEA, TBE, TCS If clock is input to TIN in the order of 1-0-1-0, TOUT is output in the order of 1-0-0-0. Macro size 4286 [grids] Design Manual A12982EJ4V0DM Mode Test (operation) CHAPTER 9 BIST 9.3.3 Dual-port (1R + 1W) RAM (synchronous type) (1) Symbol diagram DBUXXXXX in out TIN TOUT TEB TEST BUB BUNRI in in in in (2) TDI TAA(a:0) TAB(a:0) out TBEA TBEB TCS out TCMP(b:0) out out out out in Pin function list Pin Name/ Signal Name Attribute Function TIN I Test input TOUT O Test output TEB I Test mode input TEST I Test mode input BUB I Backup mode input BUNRI I Separate mode input TDI O Test write data output (for A port) TAA(a:0) O Test address output (for A port) TAB(a:0) O Test address output (for B port) TBEA O Test clock output (for A port) TBEB O Test clock output (for B port) TCS O Test chip select output (for both A and B ports) TCMP(b:0) I Test comparator input (for B port) Remark The meanings of the symbols in the above table are as follows: I: Input pin, O: Output pin a = number of address lines – 1 (number of address lines = log 2 number of words) rounded up at decimal point) b = number of bits – 1 Design Manual A12982EJ4V0DM 147 CHAPTER 9 BIST (3) Operation truth table The meanings of the symbols in the following operation truth tables are as follows: X XZ BUB BUNRI TEST TEB TIN TOUT OutputNote 1 0 XZ XZ XZ XZ X X Backup 1 0 X X X X X Normal 1 1 0 X X X X Test (non-select) 1 1 1 1 X X X Test (non-select) 1 1 1 0 0 or 1 0 X Test (select, stop) 1 1 1 0 OUTNote 2 Valid Notes 1. 2. (4) 148 : Undefined state not including high impedance : Undefined state including high impedance TDI, TAA (a:0), TAB (a:0), TBEA, TBEB, TCS If clock is input to TIN in the order of 1-0-1-0, TOUT is output in the order of 1-0-0-0. Macro size 2869 [grids] Design Manual A12982EJ4V0DM Mode Test (operation) APPENDIX A NUMBER OF GRIDS Table A-1 High-Speed Single-Port RAM (Synchronous Type) Unit: Grids Number of Bits 1 2 4 8 16 32 Remark Number of Grids Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) X 275 280 286 292 298 305 311 Y 33 38 43 52 72 110 186 X ×Y 9075 10640 12298 15184 21456 33550 57846 X 307 311 318 324 330 336 343 Y 33 38 43 52 72 110 186 X ×Y 10131 11818 13674 16848 23760 36960 63798 X 370 375 381 387 394 400 406 Y 33 38 43 52 72 110 186 X ×Y 12210 14250 16383 20124 28368 44000 75516 X 497 502 508 514 520 527 533 Y 33 38 43 52 72 110 186 X ×Y 16401 19076 21844 26728 37440 57970 99138 X 751 756 762 768 774 781 787 Y 33 38 43 52 72 110 186 X ×Y 24783 28728 32766 39936 55728 85910 146382 X 1286 1291 1297 1304 1310 1316 1322 Y 33 38 43 52 72 110 186 X ×Y 42438 49058 55771 67808 94320 144760 245892 Including macro circumferential wiring area Design Manual A12982EJ4V0DM 149 APPENDIX A NUMBER OF GRIDS Table A-2 High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type) Unit: Grids Number of Bits 1 2 4 8 16 32 Remark 150 Number of Grids Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) X 304 332 388 501 726 1177 2078 Y 35 36 36 37 38 38 39 X ×Y 10640 11952 13968 18537 27588 44726 81042 X 309 338 394 507 732 1182 2084 Y 40 41 42 43 43 44 45 X ×Y 12360 13858 16548 21801 31476 52008 93780 X 330 358 415 527 753 1203 2104 Y 52 52 53 54 54 55 56 X ×Y 17160 18616 21995 28458 40662 66165 117824 X 353 381 437 550 775 1225 2127 Y 74 75 75 76 77 77 78 X ×Y 26122 28575 32775 41800 59675 94325 165906 X 416 444 501 613 839 1289 2190 Y 119 119 120 121 121 122 123 X ×Y 49504 52836 60120 74173 101519 157258 269370 X 534 562 619 731 956 1407 2308 Y 211 212 212 213 214 214 215 X ×Y 112674 119144 131228 155703 204584 301098 496220 Including macro circumferential wiring area Design Manual A12982EJ4V0DM APPENDIX A NUMBER OF GRIDS Table A-3 High-Density Single-Port RAM (Synchronous Type) Unit: Grids Number of Bits 1 2 4 8 16 32 Remark Number of Grids Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) X 225 233 238 245 253 260 265 351 430 Y 31 33 37 44 60 90 150 150 150 X ×Y 6975 7689 8806 10780 15180 23400 39750 52650 64500 X 252 260 264 272 280 287 292 405 537 Y 31 33 37 44 60 90 150 151 150 X ×Y 7812 8580 9768 11968 16800 25830 43800 61155 80550 X 306 313 318 326 333 341 346 512 751 Y 31 33 37 44 60 90 150 151 151 X ×Y 9486 10329 11766 14344 19980 30690 51900 77312 113401 X 416 423 428 436 441 448 453 726 1180 Y 32 34 37 45 60 90 150 152 152 X ×Y 13312 14382 15836 19620 26460 40320 67950 110352 179360 X 633 641 646 653 658 665 670 1155 2038 Y 32 34 38 45 60 91 151 154 153 X ×Y 20256 21794 24548 29385 39480 60515 101170 177870 311814 X 1062 1070 1075 1082 1087 1094 1099 2013 3754 Y 32 34 38 45 60 91 151 157 156 X ×Y 33984 36380 40850 48690 65220 99554 165949 316041 585624 Including macro circumferential wiring area Design Manual A12982EJ4V0DM 151 APPENDIX A NUMBER OF GRIDS Table A-4 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) Unit: Grids Number of Bits 1 2 4 8 16 32 Remark 152 Number of Grids Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) X 344 355 367 379 390 402 Y 34 37 42 52 73 114 X ×Y 11696 13135 15414 19708 28470 45828 X 394 406 417 429 441 452 Y 34 37 42 52 73 114 X ×Y 13396 15022 17514 22308 32193 51528 X 495 506 518 530 541 553 Y 34 37 42 52 73 114 X ×Y 16830 18722 21756 27560 39493 63042 X 696 708 719 731 743 775 Y 34 37 42 52 73 114 X ×Y 23664 26196 30198 38012 54239 86070 X 1099 1111 1122 1134 1146 1157 Y 34 37 42 52 73 114 X ×Y 37366 41107 47124 58968 83658 131898 X 1905 1916 1928 1940 1952 1963 Y 34 37 42 52 73 114 X ×Y 64770 70892 80976 100880 142496 223782 Including macro circumferential wiring area Design Manual A12982EJ4V0DM APPENDIX A NUMBER OF GRIDS Table A-5 Super High-Speed Single-Port RAM (Synchronous Type) Unit: Grids Number of Bits 1 2 4 8 16 Remark Number of Grids Number of Words (number of address lines) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) X 292 297 302 306 311 Y 31 36 45 65 103 X ×Y 9052 10692 13590 19890 32033 X 330 335 340 344 349 Y 31 36 45 65 103 X ×Y 10230 12060 15300 22360 35947 X 406 411 415 420 424 Y 31 36 45 65 103 X ×Y 12586 14796 18675 27300 43672 X 558 562 567 571 576 Y 31 36 45 65 103 X ×Y 17298 20232 25515 37115 59328 X 861 865 870 875 879 Y 31 36 45 65 103 X ×Y 26691 31140 39150 56875 90537 Including macro circumferential wiring area Design Manual A12982EJ4V0DM 153 APPENDIX A NUMBER OF GRIDS Table A-6 Register File (Dual-Port) Unit: Grids Number of Bits 4 8 16 32 64 Remark 154 Number of Grids Number of Words (number of address lines) 8 (3) 16 (4) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) X 233 243 252 261 270 279 288 Y 18 21 25 35 53 90 164 X ×Y 4194 5103 6300 9135 14310 25110 47232 X 315 324 334 343 352 361 370 Y 18 21 25 35 53 90 164 X ×Y 5670 6804 8350 12005 18656 32490 60680 X 491 500 509 518 527 537 546 Y 19 22 26 36 54 91 166 X ×Y 9329 11000 13234 18648 28458 48867 90636 X 833 842 852 861 870 879 888 Y 21 23 28 37 56 93 167 X ×Y 17493 19366 23856 31857 48720 81747 148296 X 1503 1513 1522 1531 1540 1549 1558 Y 22 25 29 39 57 94 169 X ×Y 33066 37825 44138 59709 87780 145606 263302 Including macro circumferential wiring area Design Manual A12982EJ4V0DM APPENDIX A NUMBER OF GRIDS Table A-7 High-Speed ROM (Synchronous Type) Unit: Grids Number of Bits 1 2 4 8 16 32 64 Remark Number of Grids Number of Words (number of address lines) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) X 279 287 294 302 309 317 324 332 Y 30 32 36 42 56 83 137 246 X ×Y 8370 9184 10584 12684 17304 26311 44388 81672 X 290 298 305 313 320 328 335 343 Y 30 32 36 42 56 83 137 246 X ×Y 8700 9536 10980 13146 17920 27224 45895 83378 X 311 319 326 334 341 349 357 364 Y 30 32 36 42 56 83 137 246 X ×Y 9330 10208 11736 14028 19096 28967 48909 89544 X 354 362 369 375 384 392 399 407 Y 30 32 36 42 56 83 137 246 X ×Y 10620 11584 13284 15834 21504 32536 54663 100122 X 439 447 455 462 470 477 485 492 Y 30 32 36 42 56 83 137 246 X ×Y 13170 14304 16380 19404 26320 39591 66445 121032 X 610 618 625 633 640 648 655 663 Y 30 32 36 42 56 83 137 246 X ×Y 18300 19776 22500 26586 35840 53784 89735 163098 X 964 971 979 986 994 1001 1009 1016 Y 32 33 37 44 57 84 138 247 X ×Y 30848 32043 36223 43384 56658 84084 139242 250952 Including macro circumferential wiring area Design Manual A12982EJ4V0DM 155 APPENDIX B OPERATING CURRENT CONSUMPTION LIST The conditions are as follows: External load capacitance (CL): 0.2 pF MAX. Operation rate: 100% VDD = 3.3 ± 0.3 V (read/write operation) (1) Table B-1 High-Speed Single-Port RAM (Synchronous Type) Number of Bits Unit: µA Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 654 690 735 797 898 1085 1452 2 1104 1160 1229 1327 1488 1787 2378 4 1385 1428 1488 1579 1738 2039 2638 8 2359 2412 2491 2620 2857 3312 4220 16 4308 4381 4498 4704 5095 5859 7384 32 8206 8317 8511 8872 9571 10952 13711 Remark Operating frequency: 20 MHz (read operating frequency: 10 MHz, write operating frequency: 10 MHz) Table B-2 High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type) Number of Bits Remark 156 Unit: µA Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 1330 1407 1491 1585 1708 1891 2203 2 1842 1920 2009 2112 2251 2464 2841 4 2867 2949 3044 3166 3335 3613 4120 8 4916 5008 5118 5271 5505 5912 6678 16 9015 9121 9266 9483 9847 10513 11790 32 17211 17352 17558 17905 18527 19708 22014 Operating frequency: 20 MHz (read/write port ......... read operating frequency: 10 MHz, write operating frequency: 10 MHz, read port .................. read operating frequency: 20 MHz) Design Manual A12982EJ4V0DM APPENDIX B OPERATING CURRENT CONSUMPTION LIST Table B-3 High-Density Single-Port RAM (Synchronous Type) Number of Bits Unit: µA Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 1279 1297 1334 1408 1545 1820 2370 3329 2990 2 1443 1452 1491 1568 1721 2018 2632 3753 3670 4 1732 1753 1794 1887 2073 2434 3168 4609 5030 8 2329 2353 2420 2535 2776 3257 4228 6323 7749 16 3513 3563 3653 3832 4192 4911 6359 9750 13198 32 5901 5973 6118 6416 7024 8220 10611 16604 24096 Remark Operating frequency: 20 MHz (read operating frequency: 10 MHz, write operating frequency: 10 MHz) Table B-4 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) Number of Bits 1 Unit: µA Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 595 662 718 800 932 1173 2 782 855 923 1029 1212 1553 4 1165 1249 1343 1499 1782 2321 8 1963 2073 2217 2472 2954 3892 16 3702 3862 4105 4560 5438 7173 32 7738 7997 8439 9292 10968 14294 Remark Operating frequency: 20 MHz (read port .................. read operating frequency: 20 MHz, write port.................. write operating frequency: 20 MHz) Table B-5 Super High-Speed Single-Port RAM (Synchronous Type) Number of Bits Remark Unit: µA Number of Words (number of address lines) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 1 2650 2738 2902 3216 3844 2 4820 4916 5094 5438 6126 4 9160 9272 9478 9882 10690 8 17842 17982 18248 18772 19816 16 35204 35404 35788 36548 38068 Operating frequency: 20 MHz (read operating frequency: 10 MHz, write operating frequency: 10 MHz) Design Manual A12982EJ4V0DM 157 APPENDIX B OPERATING CURRENT CONSUMPTION LIST Table B-6 Register File (Dual-Port) Number of Bits Unit: µA Number of Words (number of address lines) 8 (3) 16 (4) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 4 316 370 476 690 1118 1974 3684 8 594 648 754 968 1396 2250 3960 16 1149 1202 1309 1523 1950 2805 4515 32 2258 2312 2418 2632 3060 3914 5624 64 4476 4530 4636 4850 5278 6133 7843 Remark Operating frequency: 10 MHz Table B-7 High-Speed ROM (Synchronous Type) Number of Bits Remark 158 Unit: µA Number of Words (number of address lines) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 624 654 714 834 1075 1556 2519 4444 2 797 827 887 1007 1248 1729 2692 4617 4 1143 1173 1233 1353 1594 2075 3038 4963 8 1835 1865 1925 2045 2286 2767 3730 5655 16 3219 3249 3309 3429 3670 4151 5114 7039 32 5987 6017 6077 6197 6438 6919 7882 9807 64 11523 11553 11613 11733 11974 12455 13418 15343 Operating frequency: 20 MHz Design Manual A12982EJ4V0DM APPENDIX B OPERATING CURRENT CONSUMPTION LIST VDD = 2.0 ± 0.2 V (read/write operation) (2) Table B-8 High-Speed Single-Port RAM (Synchronous Type) Number of Bits Unit: µA Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 379 401 427 462 521 628 842 2 521 543 572 613 683 812 1070 4 802 828 862 915 1007 1181 1528 8 1367 1397 1443 1518 1655 1919 2443 16 2494 2537 2604 2723 2950 3392 4275 32 4750 4814 4927 5136 5541 6340 7937 Remark Operating frequency: 20 MHz (read operating frequency: 10 MHz, write operating frequency: 10 MHz) Table B-9 High-Density Single-Port RAM (Synchronous Type) Number of Bits Unit: µA Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 739 754 773 801 878 1021 1306 1258 1674 2 953 958 978 1018 1098 1249 1560 1610 2085 4 1360 1376 1398 1442 1530 1705 2067 2322 2886 8 2194 2202 2238 2289 2402 2628 3070 3757 4507 16 3843 3865 3908 3985 4148 4464 5098 6606 7730 32 7160 7189 7248 7375 7629 8137 9142 12315 14186 Remark Operating frequency: 20 MHz (read operating frequency: 10 MHz, write operating frequency: 10 MHz) Table B-10 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) Number of Bits Remark Unit: µA Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 1 294 325 355 400 475 616 2 390 425 463 524 632 837 4 582 625 680 773 946 1280 8 966 1025 1112 1270 1573 2168 16 1731 1823 1975 2263 2825 3939 32 3258 3413 3696 4243 5325 7478 Operating frequency: 20 MHz Design Manual A12982EJ4V0DM 159 APPENDIX B OPERATING CURRENT CONSUMPTION LIST Table B-11 Register File (Dual-Port) Number of Bits Unit: µA Number of Words (number of address lines) 8 (3) 16 (4) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 4 212 246 313 446 713 1247 2314 8 407 440 508 640 908 1441 2509 16 796 829 897 1030 1297 1830 2898 32 1575 1608 1675 1808 2075 2609 3676 64 3131 3165 3231 3365 3631 4166 5233 Remark Operating frequency: 10 MHz Table B-12 High-Speed ROM (Synchronous Type) Number of Bits Remark 160 Unit: µA Number of Words (number of address lines) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 288 304 335 398 524 776 1280 2288 2 380 396 427 490 616 868 1372 2380 4 564 580 611 674 800 1052 1556 2564 8 932 948 979 1042 1168 1420 1924 2932 16 1668 1684 1715 1778 1904 2156 2660 3668 32 3140 3156 3187 3250 3376 3628 4132 5140 64 6084 6100 6131 6194 6320 6572 7076 8084 Operating frequency: 20 MHz Design Manual A12982EJ4V0DM APPENDIX C ACCESS TIME (tACC) LIST The conditions are as follows: External load capacitance (CL): 0.2 pF VDD = 3.3 ± 0.3 V (TA = –40 to +85°C) (1) Table C-1 High-Speed Single-Port RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 3.22 3.24 3.27 3.33 3.46 3.71 4.22 2 3.25 3.27 3.30 3.36 3.49 3.74 4.25 4 3.32 3.33 3.36 3.43 3.55 3.81 4.31 8 3.45 3.46 3.49 3.56 3.68 3.94 4.44 16 3.70 3.72 3.75 3.81 3.94 4.19 4.70 32 4.22 4.23 4.26 4.33 4.45 4.71 5.21 Table C-2 High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 3.26 3.29 3.34 3.44 3.65 3.98 4.64 2 3.27 3.30 3.36 3.46 3.67 4.01 4.69 4 3.31 3.33 3.39 3.50 3.71 4.07 4.78 8 3.37 3.40 3.46 3.58 3.80 4.19 4.97 16 3.49 3.53 3.59 3.73 3.96 4.42 5.33 32 3.74 3.78 3.87 4.04 4.30 4.89 6.07 Design Manual A12982EJ4V0DM 161 APPENDIX C ACCESS TIME (tACC) LIST Table C-3 High-Density Single-Port RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 7.07 7.12 7.20 7.37 7.71 8.40 9.76 12.09 12.36 2 7.12 7.17 7.25 7.42 7.76 8.45 9.81 12.15 12.47 4 7.22 7.26 7.35 7.52 7.86 8.55 9.92 12.27 12.68 8 7.41 7.46 7.54 7.72 8.06 8.75 10.12 12.51 13.10 16 7.80 7.85 7.93 8.11 8.46 9.15 10.54 12.99 13.94 32 8.58 8.63 8.72 8.89 9.25 9.96 11.37 13.94 15.63 Table C-4 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 1 4.97 5.12 5.41 6.00 7.19 9.55 2 5.01 5.15 5.45 6.04 7.22 9.59 4 5.08 5.23 5.52 6.12 7.30 9.66 8 5.23 5.38 5.67 6.26 7.45 9.81 16 5.53 5.67 5.97 6.56 7.74 10.11 32 6.12 6.27 6.56 7.15 8.34 10.70 Table C-5 Super High-Speed Single-Port RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 162 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 1 2.45 2.51 2.63 2.87 3.35 2 2.46 2.52 2.64 2.88 3.36 4 2.49 2.55 2.67 2.91 3.40 8 2.56 2.62 2.74 2.98 3.46 16 2.69 2.75 2.87 3.11 3.59 Design Manual A12982EJ4V0DM APPENDIX C ACCESS TIME (tACC) LIST Table C-6 Register File (Dual-Port) Unit: ns Number of Words (number of address lines) Number of Bits 8 (3) 16 (4) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 4 4.28 4.51 4.96 5.87 7.68 11.30 18.55 8 4.36 4.59 5.04 5.95 7.76 11.38 18.63 16 4.52 4.75 5.20 6.11 7.92 11.55 18.79 32 4.85 5.07 5.53 6.43 8.25 11.87 19.12 64 5.49 5.72 6.17 7.08 8.89 12.52 19.76 Table C-7 High-Speed ROM (Synchronous Type) Unit: ns Number of Bits Number of Words (number of address lines) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 5.21 5.25 5.32 5.46 5.75 6.33 7.49 9.81 2 5.22 5.25 5.33 5.47 5.76 6.34 7.50 9.82 4 5.24 5.27 5.35 5.49 5.78 6.36 7.52 9.84 8 5.28 5.31 5.39 5.53 5.82 6.40 7.56 9.88 16 5.36 5.39 5.47 5.61 5.90 6.48 7.64 9.96 32 5.51 5.55 5.62 5.77 6.06 6.64 7.80 10.11 64 5.83 5.87 5.94 6.08 6.37 6.95 8.11 10.43 Design Manual A12982EJ4V0DM 163 APPENDIX C ACCESS TIME (tACC) LIST VDD = 2.0 ± 0.2 V (TA = –40 to +85°C) (2) Table C-8 High-Speed Single-Port RAM (Synchronous Type) Unit: ns Number of Bits Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 7.08 7.13 7.23 7.45 7.87 8.72 10.42 2 7.13 7.18 7.29 7.50 7.92 8.77 10.47 4 7.23 7.29 7.39 7.60 8.03 8.88 10.58 8 7.44 7.49 7.60 7.81 8.24 9.09 10.79 16 7.86 7.91 8.02 8.23 8.66 9.51 11.21 32 8.70 8.75 8.86 9.07 9.49 10.34 12.04 Table C-9 High-Density Single-Port RAM (Synchronous Type) Unit: ns Number of Bits Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 15.61 15.69 15.87 16.22 16.91 18.31 21.09 27.04 27.58 2 15.72 15.81 15.99 16.34 17.04 18.44 21.23 27.16 27.78 4 15.96 16.05 16.22 16.58 17.28 18.69 21.51 27.42 28.18 8 16.43 16.52 16.70 17.06 17.77 19.21 22.07 27.94 28.99 16 17.37 17.46 17.65 18.02 18.76 20.24 23.20 28.96 30.61 32 19.25 19.34 19.54 19.93 20.72 22.29 25.44 31.02 33.84 Table C-10 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 164 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 1 12.61 13.02 13.83 15.46 18.71 25.21 2 12.66 13.07 13.88 15.51 18.76 25.26 4 12.77 13.18 13.99 15.61 18.87 25.37 8 12.98 13.39 14.20 15.82 19.08 25.58 16 13.40 13.81 14.62 16.24 19.50 26.00 32 14.24 14.65 15.46 17.08 20.34 26.84 Design Manual A12982EJ4V0DM APPENDIX C ACCESS TIME (tACC) LIST Table C-11 Register File (Dual-Port) Unit: ns Number of Words (number of address lines) Number of Bits 8 (3) 16 (4) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 4 9.42 9.92 10.94 12.96 17.00 25.10 41.28 8 9.65 10.16 11.17 13.19 17.24 25.33 41.51 16 10.12 10.62 11.63 13.66 17.70 25.79 41.98 32 11.05 11.55 12.56 14.59 18.63 26.73 42.91 64 12.91 13.42 14.43 16.45 20.50 28.59 44.77 Table C-12 High-Speed ROM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 12.29 12.34 12.44 12.65 13.05 13.87 15.51 18.78 2 12.30 12.35 12.45 12.66 13.07 13.89 15.52 18.80 4 12.33 12.38 12.48 12.69 13.09 13.91 15.55 18.82 8 12.38 12.43 12.53 12.74 13.15 13.97 15.60 18.87 16 12.49 12.54 12.64 12.84 13.25 14.07 15.71 18.98 32 12.70 12.75 12.85 13.06 13.47 14.28 15.92 19.19 64 13.13 13.18 13.28 13.48 13.89 14.71 16.35 19.62 Design Manual A12982EJ4V0DM 165 APPENDIX D CYCLE TIME (tRC) LIST The conditions are as follows: External load capacitance (CL): 0.2 pF (1) VDD = 3.3 ± 0.3 V (TA = –40 to +85°C) Table D-1 High-Speed Single-Port RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 5.44 5.46 5.52 5.62 5.80 6.20 7.20 2 5.50 5.52 5.58 5.68 5.88 6.26 7.30 4 5.64 5.66 5.70 5.80 6.00 6.44 7.50 8 5.88 5.92 5.96 6.06 6.32 6.84 7.90 16 6.62 6.64 6.72 6.84 7.10 7.64 8.68 32 8.20 8.24 8.30 8.44 8.70 9.22 10.28 Table D-2 High-Speed Dual-Port (1R/W + 1R) RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 166 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 6.40 6.44 6.54 6.76 7.18 7.84 9.16 2 6.42 6.48 6.58 6.80 7.22 7.90 9.26 4 6.48 6.54 6.66 6.88 7.30 8.02 9.44 8 6.60 6.66 6.78 7.02 7.46 8.24 9.80 16 6.86 6.92 7.06 7.34 7.80 8.72 10.54 32 7.36 7.44 7.60 7.94 8.46 9.64 12.00 Design Manual A12982EJ4V0DM APPENDIX D CYCLE TIME (tRC) LIST Table D-3 High-Density Single-Port RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 7.07 7.12 7.25 7.74 8.70 10.65 14.54 16.49 17.38 2 7.12 7.17 7.31 7.80 8.77 10.72 14.60 16.55 17.47 4 7.22 7.26 7.44 7.92 8.89 10.83 14.71 16.68 17.62 8 7.41 7.46 7.69 8.17 9.14 11.08 14.94 16.93 17.95 16 7.83 7.95 8.19 8.67 9.63 11.55 15.40 17.44 18.61 32 8.83 8.96 9.19 9.67 10.62 12.53 16.33 18.44 19.91 Table D-4 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 1 9.14 9.44 10.02 11.20 13.58 18.30 2 9.22 9.50 10.10 11.28 13.64 18.38 4 9.36 9.66 10.24 11.44 13.80 18.52 8 9.66 9.96 10.54 11.72 14.10 18.82 16 10.26 10.54 11.14 12.32 14.68 19.42 32 11.44 11.74 12.32 13.50 15.88 20.60 Table D-5 Super High-Speed Single-Port RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 1 2.96 3.08 3.30 3.76 4.68 2 2.98 3.10 3.34 3.78 4.70 4 3.06 3.16 3.40 3.86 4.76 8 3.18 3.30 3.52 3.98 4.90 16 3.44 3.56 3.78 4.24 5.16 Design Manual A12982EJ4V0DM 167 APPENDIX D CYCLE TIME (tRC) LIST Table D-6 Register File (Dual-Port) Unit: ns Number of Words (number of address lines) Number of Bits 8 (3) 16 (4) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 4 4.21 4.44 4.89 5.80 7.61 11.23 18.48 8 4.29 4.52 4.97 5.88 7.69 11.31 18.56 16 4.45 4.68 5.13 6.04 7.85 11.47 18.72 32 4.78 5.00 5.46 6.36 8.17 11.80 19.05 64 5.42 5.65 6.10 7.01 8.82 12.44 19.69 Table D-7 High-Speed ROM (Synchronous Type) Unit: ns Number of Bits 168 Number of Words (number of address lines) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 8.34 8.40 8.52 8.75 9.21 10.14 12.00 15.71 2 8.36 8.42 8.53 8.76 9.23 10.16 12.01 15.73 4 8.39 8.45 8.57 8.79 9.26 10.19 12.05 15.76 8 8.46 8.52 8.63 8.86 9.32 10.25 12.11 15.83 16 8.58 8.65 8.76 8.99 9.45 10.38 12.24 15.96 32 8.84 8.89 9.02 9.25 9.71 10.64 12.50 16.21 64 9.35 9.41 9.52 9.76 10.22 11.15 13.00 16.72 Design Manual A12982EJ4V0DM APPENDIX D CYCLE TIME (tRC) LIST (2) VDD = 2.0 ± 0.2 V (TA = –40 to +85°C) Table D-8 High-Speed Single-Port RAM (Synchronous Type) Unit: ns Number of Bits Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 1 12.16 12.26 12.46 12.86 13.66 15.26 18.48 2 12.26 12.36 12.56 12.96 13.76 15.38 18.58 4 12.46 12.56 12.78 13.18 13.98 15.58 18.80 8 12.88 12.98 13.18 13.60 14.40 16.00 19.22 16 13.72 13.82 14.02 14.42 15.24 16.84 20.06 32 15.70 15.76 15.88 16.10 16.90 18.52 21.72 Table D-9 High-Density Single-Port RAM (Synchronous Type) Unit: ns Number of Bits Number of Words (number of address lines) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 15.61 15.69 15.87 16.47 18.27 21.87 29.09 34.51 36.22 2 15.72 15.81 15.99 16.60 18.41 22.02 29.26 34.64 36.36 4 15.96 16.05 16.22 16.86 18.68 22.32 29.59 34.88 36.64 8 16.43 16.52 16.70 17.38 19.22 22.90 30.26 35.39 37.21 16 17.37 17.46 17.65 18.42 20.30 24.08 31.62 36.39 38.34 32 19.25 19.34 19.54 20.50 22.48 26.43 34.31 38.39 40.60 Table D-10 High-Density Dual-Port (1R + 1W) RAM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 1 23.26 24.08 25.70 28.96 35.46 48.46 2 23.38 24.18 25.82 29.06 35.56 48.56 4 23.58 24.40 26.02 29.28 35.78 48.78 8 24.00 24.82 26.44 29.70 36.20 49.20 16 24.84 25.66 27.28 30.54 37.04 50.04 32 26.52 27.34 28.96 32.22 38.72 51.72 Design Manual A12982EJ4V0DM 169 APPENDIX D CYCLE TIME (tRC) LIST Table D-11 Register File (Dual-Port) Unit: ns Number of Words (number of address lines) Number of Bits 8 (3) 16 (4) 32 (5) 64 (6) 128 (7) 256 (8) 512 (9) 4 9.27 9.78 10.79 12.81 16.86 24.95 41.13 8 9.50 10.01 11.02 13.04 17.09 25.18 41.37 16 9.97 10.48 11.49 13.51 17.56 25.65 41.83 32 10.90 11.41 12.42 14.44 18.49 26.58 42.76 64 12.76 13.27 14.28 16.30 20.35 28.44 44.63 Table D-12 High-Speed ROM (Synchronous Type) Unit: ns Number of Words (number of address lines) Number of Bits 170 64 (6) 128 (7) 256 (8) 512 (9) 1024 (10) 2048 (11) 4096 (12) 8192 (13) 1 16.49 16.58 16.77 17.17 17.94 19.48 22.59 28.79 2 16.51 16.61 16.81 17.19 17.97 19.52 22.61 28.82 4 16.57 16.66 16.86 17.25 18.03 19.57 22.67 28.87 8 16.68 16.77 16.97 17.36 18.13 19.69 22.78 28.99 16 16.90 17.00 17.19 17.58 18.36 19.90 23.01 29.20 32 17.34 17.44 17.64 18.03 18.80 20.35 23.45 29.66 64 18.24 18.33 18.53 18.92 19.69 21.24 24.34 30.54 Design Manual A12982EJ4V0DM Facsimile Message From: Name Company Tel. Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us. FAX Address Thank you for your kind support. North America Hong Kong, Philippines, Oceania NEC Electronics Inc. NEC Electronics Hong Kong Ltd. Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +1-800-729-9288 +1-408-588-6130 Korea Europe NEC Electronics Hong Kong Ltd. NEC Electronics (Europe) GmbH Seoul Branch Market Communication Dept. Fax: +82-2-528-4411 Fax: +49-211-6503-274 Taiwan NEC Electronics Taiwan Ltd. Fax: +886-2-2719-5951 South America NEC do Brasil S.A. Fax: +55-11-6462-6829 Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608 P.R. China NEC Electronics Shanghai, Ltd. Fax: +86-21-6841-1137 Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583 I would like to report the following error/make the following suggestion: Document title: Document number: Page number: If possible, please fax the referenced page or drawing. Document Rating Excellent Good Acceptable Poor Clarity Technical Accuracy Organization CS 02.3