SAMSUNG KS9287

DIGITAL SIGNAL PROCESSOR
KS9287
KS9287
PRELIMINARY
DATA SHEET
1999.6.7
1
DIGITAL SIGNAL PROCESSOR
KS9287
INTRODUCTION
The KS9287 is a Digital Signal Processor for VCD and Hi-Fi CD players. It has enhanced the picture quality of
VCD. This IC, when compared to the existing product, has vastly improved its performance in the following areas.
—
Frame Sync Detect
—
Error Correcting Code Ability
—
CLV Performance
—
DPLL Capture Range
—
EFM Signal Compensation
FEATURES
•
EFM data demodulation
•
Enhanced Frame sync detection/protection/insertion
•
Error Correction (C1: double correction, C2: double correction / quadruple correction)
•
Interpolation
•
Subcode Data serial output
•
Enhanced CLV servo controller
•
Enhanced DPLL
•
MICOM Interface
•
Digital Audio Out
•
Built-in 16 K SRAM
•
2x Playback Capability
•
5 V +/- 10% Single Power Supply
•
CMOS Process
ORDERING INFORMATION
Device
Package
Operating Temperature
KS9287
80-QFP-1420C
-20 °C ~ +75 °C
2
DIGITAL SIGNAL PROCESSOR
KS9287
BLOCK DIAGRAM
S0S1
SBCK
SBDT
Subcode
Sync
Detector
Subcode
Out
EFM
Phase
Detector
Shift
Register
EFM
Demodulator
VCOI
CNTVOL
DPFIN
DPFOUT
DPDO
DPLL
Fsync
Detector
Protector
Insertor
SMEF
SMON
SMDP
SMDS
LOCK
CLV
Servo
16K
SRAM
X'tal
Timing
Generator
Address
Generator
EFMI
APDO
XIN
XOUT
MCK
MDAT
MLT
Micom
Interface
TEST
Mode
Selector
XTALSEL,DPLL,
CDROM, SRAM,
DSPEED
Subcode-Q
Register
SQDT
SQCK
ECC
Tracking
Counter
8bit
data
bus
Interpolator
Digital
Out
TRCNT
/ISTAT
DATX
C2PO, SADT,
BCK, LRCH,
WDCH
3
DIGITAL SIGNAL PROCESSOR
KS9287
SMDS
SMDP
VDD
SMON
SMEF
WBCK
LOCK
TRCNT
/ISTAT
DSVO
EFMI
TEST1
79
VCOO
DSPEED
80
VCOI
APDO
PIN CONFIGURATION
78
77
76
75
74
73
72
71
70
69
68
67
66
65
VDDA
1
64
SRAM
DPDO
2
63
CDROM
DPFIN
3
62
DPFOUT
4
61
CNTVOL
5
60
/CS
VSSA
6
59
/WE
DATX
7
58
C16M
XIN
8
57
C4M
XOUT
9
56
/JIT
WDCH
10
55
ULKFS
LRCH
11
54
FSDW
SADT
12
53
VSS
VSS
13
52
/PBCK
BCK
14
51
FLAG5
C2PO
15
50
FLAG4
TIM2
16
49
FLAG3
EFMFLAG
17
48
FLAG2
UDTFLAG
18
47
FLAG1
FSYNC
19
46
RD0
EFMZ
20
45
RD1
V34M
21
44
RD2
TEST0
22
43
RD3
RBCK
23
42
RD4
EMPH
24
41
RD5
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
LKFS
S0S1
RESET
SQEN
SQCK
SQDT
SQOK
SBCK
SBDT
VDD
MUTE
MLT
MDAT
MCK
RD7
RD6
KS9287
DPLL
XTALSEL
4
DIGITAL SIGNAL PROCESSOR
KS9287
PIN DESCRIPTION
No.
Pin Name
I/O
Description
1
VDDA
-
Analog VDD
2
DPDO
O
Charge pump output for Digital PLL
3
DPFIN
I
Filter input for Digital PLL
4
DPFOUT
O
Filter output for Digital PLL
5
CNTVOL
I
VCO control voltage for Digital PLL
6
VSSA
-
Analog Ground
7
DATX
O
Digital Audio Serial Output
8
XIN
I
X'tal oscillator input
9
XOUT
O
X'tal oscillator output
10
WDCH
O
Word clock output of 48 bits/Slot (88.2 kHz)
11
LRCH
O
Channel clock output of 48 bits/Slot (44.1 kHz)
12
SADT
O
Serial audio data output of 48 bits/Slot (MSB first)
13
VSS
-
Digital Ground
14
BCK
O
Bit clock output of 48 bits/Slot (2.1168 MHz)
15
C2PO
O
C2 Pointer for Serial audio data
16
TIM2
O
Normal or Double speed control output
17
EFMFLAG
O
8 to14 demodulation error flag
18
UDTFLAG
O
Undesiable T Flag (Lower 3T signal in EFM signal)
19
FSYNC
O
Detected Frame Sync
20
EFMZ
O
EFM signal demodulated NRZI
21
V34M
O
Internal VCO clock (34.5744MHz)
22
TEST0
I
Test input (H: Test, L: Normal)
23
RBCK
I
Read base clock
24
EMPH
O
Emphasis output (H: Emphasis On, L: Emphasis Off)
25
LKFS
O
The Lock Status output of frame sync
26
S0S1
O
Output of subcode sync signal (S0+S1)
27
RESET
I
System reset at "L"
28
SQEN
I
SQCK control signal (H: External clock, L: Internal clock)
29
SQCK
I/O
Subcode-Q data bit clock
30
SQDT
O
Serial output of Subcode-Q data
31
SQOK
O
The CRC check result signal output of Subcode-Q
32
SBCK
I
Subcode data bit clock
5
DIGITAL SIGNAL PROCESSOR
KS9287
PIN DESCRIPTION (Continued)
No.
Pin Name
I/O
Description
33
SBDT
O
Subcode data serial output
34
VDD
-
Digital VDD
35
MUTE
I
Mute control input ("H": Mute ON)
36
MLT
I
Latch Signal Input from MICOM
37
MDAT
I
Serial data input from MICOM
38
MCK
I
Serial data transfering clock input from MICOM
39
RD7
I/O
SRAM data I/O port (MSB)
40
RD6
I/O
SRAM data I/O port 6
41
RD5
I/O
SRAM data I/O port 5
42
RD4
I/O
SRAM data I/O port 4
43
RD3
I/O
SRAM data I/O port 3
44
RD2
I/O
SRAM data I/O port 2
45
RD1
I/O
SRAM data I/O port 1
46
RD0
I/O
SRAM data I/O port 0 (LSB)
47
FLAG1
I/O
Monitoring output for ECC (RA0)
48
FLAG2
I/O
Monitoring output for ECC (RA1)
49
FLAG3
I/O
Monitoring output for ECC (RA2)
50
FLAG4
I/O
Monitoring output for ECC (RA3)
51
FLAG5
I/O
Monitoring output for ECC (RA4)
52
/PBCK
I/O
VCO/2 clock output (4.3218 MHz) (RA5)
53
VSS
I/O
Digital ground
54
FSDW
I/O
Frame Sync protection Window (RA6)
55
ULKFS
I/O
Frame sync protection status (RA7)
56
/JIT
I/O
Display of either RAM overflow or underflow for ±4 frame jitter margin (RA8)
57
C4M
I/O
4.2336 MHz signal output (RA9)
58
C16M
I/O
16.9344 MHz signal output (RA10)
59
/WE
I/O
Write enable signal for external SRAM
60
/CS
I/O
Chip select signal for external SRAM
61
XTALSEL
I
Mode Selection1 (H: 33.8688 MHz, L: 16.9344 MHz)
62
DPLL
I
Mode Selection2 (H: APLL, L: DPLL)
63
CDROM
I
Mode Selection3 (H: CD-ROM, L: CDP)
64
SRAM
I
Mode selection4 (H: External SRAM, L: Internal SRAM)
6
DIGITAL SIGNAL PROCESSOR
KS9287
PIN DESCRIPTION (Continued)
No.
Pin Name
I/O
Description
65
TEST1
I
TEST input terminal (GND connection)
66
EFMI
I
EFM signal input
67
DSVO
O
Digital sum value output
68
/ISTAT
O
The internal status output
69
TRCNT
I
Tracking counter input signal
70
LOCK
O
Output signal of LKFS condition sampled PBFR/16
(if LKFS is "H", LOCK is "H",
if LKFS is sampled "L" at least 8 times by PBFR/16, LOCK is "L")
71
WBCK
O
Write frame clock (Lock : 7.35 kHz)
72
SMEF
O
LPF time constant control of the spindle servo error signal
73
SMON
O
ON/OFF control signal for spindle servo
74
VDD
-
Digital VDD
75
SMDP
O
Spindle Motor drive
(Rough control in the SPEED mode, Phase control in the PHASE mode)
76
SMDS
O
Spindle Motor drive (Velocity control in the PHASE mode)
77
VCOO
O
VCO output
78
VCOI
I
VCO input (8.6436MHz when locked by WBCK)
79
DSPEED
I
Double speed mode select (H: Normal, L: 2 times)
80
APDO
O
Analog PLL charge pump output
7
DIGITAL SIGNAL PROCESSOR
KS9287
ABSOLUTE MAXIMUM RATINGS
Item
Symbol
Min
Typ
Max
Unit
VDD
−0.3
−
7.0
V
Input Voltage
VI
−0.3
−
7.0
V
Output Voltage
VO
−0.3
−
7.0
V
Operating Temperature
TOPR
−20
−
75
°C
Storage Temperature
TSTG
−40
−
125
°C
Supply Voltage
ELECTRICAL CHARACTERISTICS
DC Characteristics (VDD = 5 V, VSS = 0 V, Ta = 25 °C)
Item
Symbol
Condition
Min
Typ
Max
Unit
Related pins
'H' Input Voltage1
VIH1
−
0.7VDD
−
−
V
'L' Input Voltage1
VIL1
−
−
−
0.3VDD
V
'H' Input Voltage2
VIH2
−
0.8VDD
−
−
V
'L' Input Voltage2
VIL2
−
-
−
0.2VDD
V
All bi-direction,
MLT, MCK,
MDT
'H' Output Voltage1
VOH1
IOH=−1mA
VDD-0.5
−
VDD
V
All output pins
'L' Output Voltage1
VOL1
IOL=1mA
0
−
0.4
V
'H' Output Voltage2
VOH2
IOH=−1mA
VDD-0.5
−
VDD
V
'L' Output Voltage2
VOL2
IOL=1mA
0
−
0.4
V
'H' Output Voltage3
VOH3
IOH=−1mA
VDD-0.5
−
VDD
V
'L' Output Voltage3
VOL3
IOL=1mA
0
−
0.4
V
Input Leakage Current1
ILKG1
VI=0~VDD
-5
−
5
µA
All input
(except XIN,
VCOI)
Input Leakage Current2
ILKG2
VI=0~VDD
-10
−
10
µA
XIN, VCOI
Three State Output
Leakage Current
IOLKG
VO=0~VDD
-5
−
5
µA
SMEF, SMDP,
SMDS, APDO,
DPDO
All input
All bi-direction
All Tri-state
output
8
DIGITAL SIGNAL PROCESSOR
KS9287
AC Characteristics
(1) When pulse is input to XI pin (VDD=5V, VSS=0V, Ta=25°C)
Item
Symbol
Min
Typ
Max
Unit
'H' Level Pulse Width
TWH
13
-
-
ns
'H' Level Pulse Width
TWL
13
-
-
ns
Pulse Frequency
TCK
26
-
-
ns
Input 'H' Level
VIH
VDD-1.0
-
-
V
Input 'L' Level
VIL
-
-
0.8
V
Rising & Falling Time
tR,tF
-
-
10
ns
TCK
tWH
tWL
VIH
VIH X 0.9
VDD / 2
VIL X 0.1
VIL
tR
tF
(2) MCK, MDAT, MLT, TRCNT (VDD=5V, VSS=0V, Ta=25°C)
Item
Symbol
Min
Typ
Max
Unit
fCK1
-
-
1
MHz
tWCK1
500
-
-
ns
Setup Time
tSU
300
-
-
ns
Hold Time
tH
300
-
-
ns
Delay Time
tD
300
-
-
ns
Latch Pulse Width
tW
1000
-
-
ns
fCK2
-
-
1
MHz
tWCK2
500
-
-
ns
Clock Frequency
Clock Pulse Width
TRCNT, SQCK Frequency
TRCNT, SQCK Pulse Width
9
DIGITAL SIGNAL PROCESSOR
KS9287
1/fCK1
tWCK1
tWCK1
MCK
MDAT
tD
MLT
tSU
tW
tH
TRCNT
SQCK
tWCK2
tWCK2
1/fCK2
SQDT
tSU
tH
10
DIGITAL SIGNAL PROCESSOR
KS9287
FUNCTIONAL DESCRIPTION
MICOM INTERFACE
Data input from MICOM is received in MDAT, and transmitted by MCK. This signal is stored in the Control Register
by MLT. The Timing diagram for this process is shown in Figure 1
.
MDAT
D0
D1
D2
D3
D4
D5
D6
D7 <MSB>
MCK
MLT
Register
(9X ~ FX)
Valid
MDAT
D0
D1
D2
D3
¡ó
D4
D11
D12
D13
D14
D15 <MSB>
MCK
¡ó
MLT
Register
(88XX ~ 8DXX)
Valid
Figure 1. MICOM Data Input Timing Diagam
Table 1. Control Register and Data
Register
Name
Address
D7~D4
Data
D3
D2
D1
D0
/ISTAT
Pin
CNTL-Z
Data control
1001
(9X)
ZCMT
HIPD
NCLV
CRCQ
HI-Z
CNTL-S
Frame sync protect,
attenuation control
1010
(AX)
FSEM
FSEL
WSEL
ATTM
HI-Z
CNTL-L
Tracking counter
(lower)
1011
(BX)
TRC3
TRC2
TRC1
TRC0
/complete
CNTL-U
Tracking counter
(upper)
1100
(CX)
TRC7
TRC6
TRC5
TRC4
/count
CNTL-W
CLV control
1101
(DX)
-
WB
WP
GAIN
HI-Z
CNTL-C
CLV-mode
1110
(EX)
CNTL-D
Double-speed
1111
(FX)
/(Pw ≥ 64)
CLV MODE
-
-
DS1
DS2
HI-Z
11
DIGITAL SIGNAL PROCESSOR
Register
Name
Address
D11~D8
KS9287
Data
D7
D6
D5
D4
D3
D2
D1
D0
/ISTAT
Pin
CNTL-F
Function control
10001000
(88X)
CDROM
IIS
-
ERA
OFF
C1PNT
SADT
SW
WDCH
SEL1
WDCH
SEL0
HI-Z
CNTL-T
EFM Signal
control
10001011
(8BX)
VCON
-
-
-
-
-
VSEL
DSV
INV
HI-Z
CNTL-E
Frame Sync
detection control
10001100
(8CX)
RBSEL
FWSEL
FSMD1
FSMD0
-
-
-
-
HI-Z
CNTL-H
DPLL, monitor
pin control
10001101
(8DX)
RES8
-
-
-
DUMB3
DUMB2
DUMB1
DUMB0
HI-Z
12
DIGITAL SIGNAL PROCESSOR
KS9287
Detail Description of Control Register
1. CNTL-Z ($9X)
This register carries out the following functions: audios zero cross mute, phase pin control,
phase servos control signal management, and the decision whether or not to include SQOK data
in SQDT.
Bit
Identifier
ZCMT
HIPD
NCLV
3
2
1
0
ZCMT
HIPD
NCLV
CRCQ
Zero cross mute
0
Zero cross mute is OFF
1
Zero cross mute is ON
Phase pin control
0
Phase operates normally
1
Phase goes from low to Hi-Z by LKFS
Phase servos control
0
Phase Servo controlled by Frame Sync
1
Phase Servo controlled by Base Counter
0
SQDT output not including SQOK
1
SQDT = SQOK, when SOS1 is “H”.
CRCQ
2. CNTL-S ($AX)
This register sets the frame sync protection and attenuation. FWSEL of CNTL-D is added to define
window size. .
Bit
Identifier
FSEM, FSEL
3
2
1
0
FSEM
FSEL
WSEL
ATTM
Frame sync protection
0
0
2
0
1
4
1
0
8
1
1
13
13
DIGITAL SIGNAL PROCESSOR
KS9287
FWSEL, WSEL Frame Sync protection window size
ATTM, MUTE
0
0
+/- 3T
0
1
+/- 7T
1
0
+/- 13T
1
1
+/- 26T
Control the Frame Sync attenuation
0
0
0 dB
0
1
- ∞ dB
1
0
-12 dB
1
1
-12 dB
3. CNTL-L, U ($BX, $CX)
When the number of tracks to be counted is input from MICOM, the CNTL-L, or CNTL-U register
loads the data into the tracking counter. This tracking counter is used for improving track jump
characteristics.
When the number of tracks to be jumped is input from MICOM, the track number is loaded from
MLTs positive edge to the register. If CNTL-L is selected, /COMPLETE signal is output to the
/ISTAT pin, and if CNTL-U is selected, /COUNT signal is output. The Timing Diagrams of the
tracking counters are Figure-2 and Figure-3.
MLT
CNTL-L,
CNTL-U
TRCNT
/ISTAT
=(/count)
N
/ISTAT
=(/complete)
N
N
N
N
N
Figure 2. Tracking Counter Timing Diagram
14
DIGITAL SIGNAL PROCESSOR
KS9287
MDAT
MLT
CNTL State
CNTL-L
CNTL-U
CNTL State
/complete
/count
CNTL-C
/(PW > 64)
Other Mode
Hi-Z
Figure 3. /ISTAT Output Signal According to the CNTL Register
4. CNTL-W ($DX)
This register sets the CLV-Servos control period and gain..
3
2
1
0
Bit
Identifier
WB
WP
GAIN
–
WB
WP
GAIN
Bottom Hold period control in Speed-Mode
0
XTFT/32
1
XTFR/16
Peak Hold period control in Speed-Mode
0
XTFR/4
1
XTFR/2
SMDS Gain control in Speed-Mode
0
- 12 dB
1
0 dB
5. CNTL-C ($EX)
This register sets the CLV-Servos operating Mode.
Bit
Identifier
CM3 ~ CM0
3
2
1
0
CM3
CM2
CM1
CM0
Operating Mode control
1
0
0
0
Forward
1
0
1
0
Reverse
1
1
1
0
Speed
1
1
1
1
Phase
0
1
1
0
XPHSP
0
0
0
0
Stop
15
DIGITAL SIGNAL PROCESSOR
KS9287
6. CNTL-D ($FX)
This register sets the normal speed and double speed mode..
Bit
3
2
1
0
Identifier
-
-
DS1
DS0
DS1, DS0
Speed control
0
0
Normal Speed
1
1
Double Speed (2X)
7. CNTL-F ($88XX)
This register sets the ECC, Interpolation, communication protocol control mode.
Bit
Identifier
CDROM
ERAOFF
C1PNT
SADTSW
7
6
5
4
3
2
1
0
CDROM
-
-
ERA
OFF
C1PNT
SADT
SW
WDCH
SEL1
WDCH
SEL0
Set the interpolation function On/Off
0
CD-DA mode
(Interpolation ON)
1
CD-ROM mode (Interpolation OFF)
Set the Erasure Correcting Feature while in Error Correcting Mode.
0
Erasure Correction On
1
Erasure Correction Off
Set the C1 Flag Information after the C1 error correcion .
0
C1 flag set
1
C1 flag reset
Set the Data communication protocal.
0
48 bits/slot mode
1
64 bits/slot mode
WDCHSEL1, WDCHSEL0
Set the WDCH clock mode.
0
88.2KHz
1
176.4KHz
16
DIGITAL SIGNAL PROCESSOR
KS9287
8.CNTL-M ($8AXX)
This register sets the frequency error equation in CLV-P mode
Bit
Identifier
CLVSW
7
6
5
4
3
2
1
0
CLVSW
-
-
-
-
-
-
-
Set the frequency error equation
0
((tHW - 279t) + 1) * 32
1
(tHW - 560t) * 32
8. CNTL-T ($8BXX)
This register sets the EFM Function control mode.
Bit
Identifier
VCON
VSEL
DSVINV
7
6
5
4
3
2
1
0
VCON
-
-
-
-
-
VSEL
DSVINV
Set the EFM signal compensation function mode.
0
Compensation OFF
1
Compensation ON
Select the EFM signal latck clock.
0
4.3218MHz
1
8.6436MHz
Set the DSV inversion output .
0
DSV
1
DSV inverted
9. CNTL-E ($8CXX)
This register is used for setting the RBCK output and Frame Sync protection window size.
Bit
Identifier
RBSEL
7
6
RBSEL
FWSEL
5
4
FSMD1 FSMD0
3
2
1
0
-
-
-
-
Set the RBCK output
0
RBCK/4
1
RBCK
17
DIGITAL SIGNAL PROCESSOR
KS9287
FWSEL, WSEL
Frame Sync protection window size (Refer to WSEL of CNTL-S register)
0
0
+/- 3T
0
1
+/- 7T
1
0
+/- 13T
1
1
+/- 26T
FSMD1, FSMD0
Set the Frame Sync Detection mode
0
0
Pattern mode detect
0
1
Period mode detect
1
0
Compensation mode detect
1
1
Mixed mode detect (only 22T)
12. CNTL-H ($8DXX)
This register sets the Digital PLLs Processing Mode and Monitoring pin output Mode.
Bit
Identifier
RES8
7
6
5
4
3
2
1
0
RES8
-
-
-
DUMB3
DUMB2
DUMB1
DUMB0
PLCK Resolution when 2X speed
0
PLCK = VCO * 6
1
PLCK = VCO * 8
DUMB3, DUMB2, DUMB1, DUMB0
Set the Monitoring Pin Output Mode
0
Monitoring pin output disable
1
Monitoring pin output enable
- DUMB3 : DSVO, APDO
- DUMB2 : C4M
- DUMB1 : C16M
- DUMB0 : EFMFLAG, UDTFLAG, EFMZ, V34M, FSYNC, FLAG5 ~ FLAG1, /PBCK, FSDW,
ULKFS, /JIT
18
DIGITAL SIGNAL PROCESSOR
KS9287
EFM DEMODULATION
The EFM block is composed of the following parts: EFM demodulator to demodulate the EFM signal read from the
disc, EFM phase detector, and the control signal generator.
1) EFM Phase Detector
The EFM signal input from the Disc includes 2.1609 MHz components. To detect the phase of this signal, a Bit
Clock (/PBCK) of 4.3218 MHz is used. PBCK detects the phase of the EFM signals Edge, and sends the results to
the APD0 pin.
VCOI
PBCK
EFMI
EFMD
APDO
¨ç
¨è
¨é
(1) When theEFM signal is slower than the VCO signal
(2) When the EFM signal is locked to the VCO signal
(3) When the EFM signal is faster than the VCO signal.
Figure 4. EFM Phase Detector Timing Diagram
2) EFM Demodulation
The modulated 14 channel bit data is demodulated into 8-bit data. There are two types of demodulated data:
subcode data and audio data. Subcode data is input into the subcode handling block, and the audio data is stored
in the internal SRAM, and its errors are corrected.
3) Frame Sync Detect/Protect/Insert
• Frame Sync Detect
Data is composed of units of frame, and a frame is composed of frame sync, subcode data, audio data, and
redundancy data. This IC detects frame sync to maintain synchronization, and there are three detection methods
(refer to CNTL-E Command):
(1) Pattern Detect Method
(2) Period Detect Method
(3) Compensation Detect Method: Combination of the methods above
• Frame Sync Protect/Insert
There are some cases in which frame sync is not detected, or detected it from other data which does not include
frame sync, due to disc error or jitter. In these cases, the frame sync must be protected and inserted.
To protect frame sync, a window is made by WSEL of the CNTL-S register. The frame sync entering this window is
considered valid data, and the frame sync which leaves this window is ignored. If frame sync is not detected within
the frame sync protect window, insert instead the frame sync made in the internal counter. If frame sync is inserted
continuously, reaching the number of frames set by FSEM and FSEL of the CNTL-S register, the following occurs:
ULKFS becomes H, the frame sync protect window is ignored, and the frame sync detected next is accepted
unconditionally. When a frame sync is accepted, the ULKFS signal becomes L, and accepts the frame sync
detected within the window (refer to below Table).
19
DIGITAL SIGNAL PROCESSOR
KS9287
LKFS
ULKFS
Comment
1
1
Play back frame sync and the generated sync coincide.
0
1
1) The play back frame sync and the generated frame sync do not coincide,
but PBFR sync is detected from within the window selected by WEL.
2) PBFR sync and XTFR sync do not coincide, and are not detected from within the window
selected by WSEL. Sync insert is carried out.
0
0
1) Immediately after the following situation: Frame sync is not detected within the window,
so frame is inserted in the amount set by CNTL-S registers FSEM and FSEL.
2) If PBFR sync is still undetected after 1).
ECC
When disc data is damaged, it is corrected using the ECC (Error Correcting Code) block. It uses the CIRC (Cross
Interleaved Reed-Solomon Code), correcting up to 2 errors when C1(32, 28), and up to 4 erasures when C2(28,
24). Error correction handles the data in units of 8-bit 1 symbol.
The ECC block has Pointer handling function, and can generate a C1 pointer in C1 correction, and a C2 pointer in
the C2 correction. The C1 and C2 pointers output a flag about the ECC-handled data to mark it as error data. This
Flag information signal is input into the interpolator, and used for handling the error data. Also, the Error correcting
results can be monitored using the FALF5 ~ FLAG1 pins.
Table 2. Error Correction Monitoring Flag Results
Mode
FLAG5
FLAG4
FLAG3
FLAG2
FLAG1
C1 No error
0
0
0
0
0
C1 Correction start
C1 1 error Correction
0
0
0
0
1
-
C1 2 error Correction
0
0
0
1
0
-
C1 No Correction
0
1
1
1
1
C1 flag set
C2 No error
1
0
0
0
0
C2 Correction start
C2 1 error Correction
1
0
0
0
1
-
C2 2 error Correction
1
0
0
1
0
-
C2 3 error Correction
1
0
0
1
1
-
C2 4 error Correction
1
0
1
0
0
-
C2 No Correction
1
1
1
1
0
C1 flag copy
C2 No Correction
1
1
1
1
1
C2 flag set
Note:
Remark
When carrying out forward or backward fast search, MICOM must give the Attenuation, or the MUTE command
to the DSP IC. If not, an error can occur when carrying out erasure correction during fast search.
20
DIGITAL SIGNAL PROCESSOR
KS9287
CLV SERVO
CNTL-C, E, G1, G2, and G3 registers are selected to control the CLV (Constant Linear Velocity) servo using the
data input from MICOM. Also, the design is such that the servo control is stable when setting the speed. When
setting the speed, the /(Pw≥64) signal can be detected from the /ISTAT pin only if the CNTL-D register is first set
before the CNTL-C register is selected.
1) Forward
This mode rotates the spindle motor in the forward direction. The related output pin status are as follows.
SMDP
SMDS
SMEF
SMON
H
Hi-Z
L
H
2) Reverse
This mode rotates the spindle motor in the reverse direction. The related output pin status are as follows.
SMDP
SMDS
SMEF
SMON
L
Hi-Z
L
H
3) Speed-mode
This mode is used for rough control of the spindle motor when the track jump or EFM phase is unlocked. If one
period of VCO is T, the pulse width of the frame sync is 22T. There are some cases in which the signal detected in
the EFM signal is larger than 22T because of disc noise. If you do not eliminate this signal, the correct frame sync
cannot be detected. In that case, the EFM signals pulse width is detected using the period of the peak hold clock
RBCK/2 or RBCK/4. Also, detect the EFM signals pulse width using the period of the bottom hold clock RBCK/16
or RBCK/32.
SMDP
SMDS
SMEF
SMON
H: Accelerate
L: Decelerate
Hi-Z: Maintain
Hi-Z
L
H
5) Phase-Mode
This mode controls the EFM phase. It detects and outputs to the SMDP pin, the WBCK/4 and RBCKs phase
difference, when in CLV Normal Control mode and when CNTL-Z registers NCLV is “L” (refer to Figure-5). If VCO/
2s signal period is T, the amount of time during which WBCK is “H” is called t HW, and FRSLP is “0”, “H” is output
from WBCKs negative edge to the SMDS pin during (tHW - 279T) +1 x 32 or (tHW - 560T) x 32 and “L” is output
until the next WBCKs negative edge (refer to Figure 5).
SMDP
SMDS
SMEF
SMON
H: Accelerate
L: Decelerate
Hi-Z: Maintain
H/L
L
H
21
DIGITAL SIGNAL PROCESSOR
KS9287
6) Stop
This mode stops the spindle motor.
SMDP
SMDS
SMEF
SMON
L
Hi-Z
L
L
1) SPEED mode
P22T
N22T
SMDP
deceleration
acceleration
under 22 t
= 22 t
over 22 t
2) PHASE mode
- Phase Error Signal
RBCK/4
WBCK/4
DOWN
UP
SMDP
- Frequency Error Signal
CLV_SW = 0 : Frequency Error Signal = ( tHW - 279 t ) + 1* 32
tHW
287 t
tHW
294 t
WBCK
SMDS
288t
512 t
CLV_SW = 1 : Frequency Error Signal = ( tHW - 560 t ) * 36
tHW
570 t
tHW
580 t
WBCK
SMDS
360 t
720 t
Figure 5. SMDS, SMDP Output Timing Diagram in Normal Control Mode
22
DIGITAL SIGNAL PROCESSOR
KS9287
SUBCODE
The subcode sync signals S0 and S1 are detected in the Subcode sync block. S1 is detected one frame after S0 is
detected. At this time, S0+S1 signal is output to the S0S1 pin, and when the S0S1 signal is H, the S0S1 signal is
output to the SDAT pin. Out of the data input into the EFMI pin, the 14-bit subcode data is EFM demodulated to 8bit (P, Q, R, S, T, U, V, W) subcode data, synchronized with the WBCK signal , and output to SDAT by the SBCK
clock. Out of the 8 subcode data, only Q data is stored in the 80 shift registers by the WBCK signal. If the CRC
result is error, L is output to the SQCK pin, and if not, H is output. If the CNTL-Z registers CRCQ is H, the CRC
result is output to the SQDT pin from when the S0 and S1 are H to SQCKs negative edge. The Subcode blocks
timing diagram is as follows:
1) The Timing Relation of SQCK, SQDT and S0S1 when SQEN=H
* If subcode-Q datas CRCQ is H, the SQOK signal is output to SQDT according to the SQCK, and if CRCQ is L,
the SQOK signal is not output to SQDT..
S0S1
¡ó
¡ó
SQOK
¡ó
SQCK
SQDT
(CRCQ=1)
SQDT
(CRCQ=0)
¡ó
SQOK(n)
Q4
Q3
Q2
Q1
Q8
Q7
Q6
Q5
¡ó
Q80
Q79
Q78
Q77
SQCK(n+1)
Q4
Q3
Q80
Q79
Q78
Q77
0
Q4
Q3
¡ó
0
Q4
Q3
Q2
Q1
Q8
Q7
Q6
Q5
¡ó
¡ó
Figure 6. Subcode-Q Timing Diagram 1
2) The Timing Relation of SQCK, SQDT, and S0S1 when SQEN=H
SQCK
¡ó
S0S1
¡ó
¡ó
SQOK
SQDT
¡ó
Q97
SQOK
Q1
Q2
Q3
Q4
Q5
Q6
¡ó
¡ó
Q93
Q94
Q95
Q96
Q97
SQOK
Q1
Q2
Figure 7. Subcode-Q Timing Diagram 2
23
DIGITAL SIGNAL PROCESSOR
KS9287
3) Timing Relation of SDAT and SBCK
WBCK
a
1
2
3
4
5
6
7
8
SBCK
SDAT
b
Q
R
S
T
U
V
W
C
a) After PBFR goes negative edge, SBCK is set to L for about 10 us.
b) If S0S1 is L, subcode P is output, and if S0S1 is H, S0S1 is output.
c) If there are more than 7 pulses input into the SBCK pin, the subcode data P, Q, R, S, T,
U, V, and W data are output repeatedly.
Figure 8. Subcode-Q Data Output Timing Diagram 3
24
DIGITAL SIGNAL PROCESSOR
KS9287
INTERPOLATION / MUTE
Interpolator
If a burst error occurs on the disc, sometimes data cannot be corrected even if you carry out the ECC process. The
Interpolator block uses the ECCs C2 pointer to interpolate the data.
The audio data is input into the Data bus in the following order: for each L/R-ch: 8-bit C2 point, lower data 8-bit, and
upper data 8-bit.
If C2P0 pin is H, and one error has occurred, the average value interpolation is carried out, and if 3 consecutive
errors occurred, the previous value hold interpolation is carried out.
For one period of LRCH, if LRCH is L, R-ch data is output, and if H, L-ch data is output. Please refer to Figure 7 for
the Interpolator blocks Timing Chart.
A
B
C
H
G
D
E
F
I
J
C2
Pointer
B : Average value Interpolation
F , E , D : Previous value Hold Interpolation
G : Average value Interpolation
Figure 9. Interpolation Method
Mute/Attenuation
The audio data can be muted or weakened by the ATTM signal of the MUTE pin and CNTL-S register.
• Zero Cross Mute
The audio data is muted when the CNTL-Z registers ZCMT is H, mute is H, and the upper 6 bits of audio data
are all H.
•Muting
The audio data is in Muting is the CNTL-Z registers ZCMT is L and the Mute pin is H.
•Attenuation
Audio signal is weakened by the CNTL-Z registers ATTM and Mute signal.
25
KS9287
DIGITAL SIGNAL PROCESSOR
1
For 48 bits/slot
LRCH
BCK
WDCH
SADT
1
For 64 bits/slot
LRCH
BCK
WDCH
SADT
2
2
R-CH (MSB) 15
14 13 12 11 10 9
L-CH (LSB) 0
8
16
7
6
1
5
2
4
3
3
4
2
5
1
6
24
32
25
25
9 10 11 12 13 14 15
L-CH (MSB) 15
24
8
0
7
14 13 12 11 10 9
8
7
6
5
4
R-CH (LSB) 0
3
2
1
48
0
1
1
2
Figure 10. Serial Audio Data Output Timing Diagram
26
DIGITAL SIGNAL PROCESSOR
KS9287
DIGITAL AUDIO OUT
This block serially outputs 2 channel and 16-bit data with the digital audio interface format as reference.
1) Digital audio interface format for CD
191 R
0L
0R
1L
1R
190 L
190 R
191L
191R
0L
-R
T
192 T
0L: L-ch format including the block sync preamble
1L ~ 191L: L-ch format including the L-ch sync preamble
0R ~ 191R: R-ch format including the R-ch sync preamble
1 LRCH
Left Channel
Preamble
Right Channel
Modulated "0" 8-bit
Modulated 16-bit audio data
V
U
C
P
control signal
Figure 11. Digital Audio Out Format
• Preamble
The Preamble is used to distinguish the datas block and L/R ch data
.
8.4672 MHz
L-ch. sync
(except block sync)
R-ch. sync
Block sync (L-ch.)
Figure 12. Preamble Signal
27
DIGITAL SIGNAL PROCESSOR
KS9287
• Control Signal
(1) Validity bit: shows the presence of error in 16-bit audio data: “H”=error, “L”=valid data
(2) User definable bit: subcode data out
SOS1
PBFR
SBCK
SBDT
Sync Pattern
P
Q
R
S
T
U
V
W
Figure 13. Digital Audio Data Out Timing Diagram
(3) Channel status bit: subcode-Qs upper 4-bit data output, shows number of channels, pre-emphasis, copy, CDPcategory, etc.
SOS1
SQDT
ID0 ID1 COPY EMPH
PBFR
Figure 14. Channel Status Data Out Timing Diagram
(4) Parity Bit: makes even parity
28
DIGITAL SIGNAL PROCESSOR
KS9287
DIGITAL PLL
This IC has a built-in analog PLL and a digital PLL to generate a stable channel clock needed during EFM signal
demodulation. Figure-15 shows the DPLL application.
Frequency Synthesizer
X'tal
Phase
Comparator
Voltage
Cotrolled
Oscillator
Low Pass Filter
1/N Devider
Digital Main PLL
EFMI
/PBCK
Figure 15. Application Diagram of Digital PLL
29