SAMSUNG KB9223-L

PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
OVERVIEW
80-QFP-1420C
The KB9223 is a 1-chip BICMOS integrated circuit to perform the function of RF amp and servo signal processor for
compact disc player applications.It consist of blocks for RF
signal processing ,focus, tracking, sled and spindle
servo.Also this IC has adjustment free function and embedded opamp for audio post filter.
FEATURES
• RF amplifier & RF equalizer
ORDERING INFORMATION
• Focus error amplifier & servo control
• Tracking error amplifier & servo control
Device
• Mirror & defect detector circuit
KB9223
• Focus OK detector circuit
KB9223-L
Package
Tempe. Range
80-QFP-1420C
-20°C ~ +70°C
• APC(Auto Laser Power Control) circuit for constant laser
APPLICATIONS
power
• FE bias & focus servo offset adjustment free
• CD Player
• EF balance & tracking error gain adjustment free
• Video-CD
• Embedded audio post filter
RELATED PRODUCT
• The circuit for Interruption countermeasure
• Double speed play available
• KS9286 Data Processor
• Operating voltage range
• KS9284 Data Processor
• KA9258D/KA9259D Motor Driver
KB9223 : 5V
KB9223-L : 3.4V
M/M-97-P006
1997. 10. 17
1
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
RF-
ISTAT
RESET
MLT
MDATA
MCK
ATSC
TZC
29
31
38
37
36
35
51
52
73
RFO
74
PD1
65
PD2
66
FEBIAS
63
58
26
28
27
3
Focus Phase
Compensation
Micom Data
Interface Logic
RF Amp
FRSH
LOCK
30
FS3
TRCNT
22
FGD
WDCH
54
FE2
TE1
59
FLB
FE1
BLOCK DIAGRAM
& Offset cancel circuit
Focus Error Amp
FE-BIAS Adjustment
F
67
E
68
EI
79
PD
Tracking Error Amp
E/F Balance & Gain
Control
MICOM TO SERVO CONTROL
AUTO SEQUENCER
69
APC Amp
LD
Tracking Phase
Compensation Block
& Jump Pulse GEN.
LDON
70
Sled Servo Amplifier
ADJUSTMENT-FREE CONTROL
33
RFI
77
DCB
DCC2
2
4
Spindle Servo LPF
( Double Speed )
EFM
Comparator
Mirror Detection
Circuit
Built-in Post Filter Amp ( L&R )
Defect Detection
Circuit
FOK Detection
Circuit
5
15
16
13
14
19
17
12
11
9
10
GC2O
EFM
GC2I
32
GA1~
GA5
CH2I
ASY
TM1~ BAL1~ PS1~
TM6 BAL5 PS4
CH2O
75
FS1~
FS4
RRC
IRF
RF Level AGC
&
Equalizer
MUTEI
76
CH1I
EQO
CH1O
78
& Sled Kick GEN.
GC1I
EQC
Center Voltage Amp.
GC1O
71
DCC1
VR
60
FDFCT
47
FE-
48
FEO
57
TDFCT
49
TE-
50
TEO
53
TE2
55
LPFT
62
TG2
61
TGU
43
SLO
44
SL-
42
SL+
46
SPDLO
45
SPDL-
23
SMDP
24
SMON
25
SMEF
6
FSET
39
MIRROR
1
MCP
40
FOK
Figure 1. Block diagram
M/M-97-P006
1997. 10. 17
2
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
PIN CONFIGURATION
65 PD1
SSTOP
SL+
SLO
SL-
SPDL-
SPDLO
FE-
FEO
TE-
TEO
TZC
ATSC
TE2
TE1
LPFT
DVDD
TDFCT
FE2
FE1
TGU
FDFCT
TG2
FEBIAS
DVEE
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
FOK 40
66 PD2
MIRROR 39
67 F
RESET 38
68 E
MLT 37
69 PD
MDATA 36
70 LD
MCK 35
71 VR
VSSA 34
KB9223
72 VCC
EFM 33
73 RF-
ASY 32
74 RFO
ISTAT 31
75 IRF
TRCNT 30
76 EQO
LOCK 29
77 RFI
FGD 28
78 EQC
FS3 27
79 EI
FLB 26
SMON
SMDP
WDCK
GC2O
VREG
GC2I
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
ISET
VCCP
MUTEI
VDDA
5
VSSP
FSET
4
RRC
DCC1
3
GC1I
DCC2
GC1O
FRSH
2
CH1I
DCB
1
CH2I
MCP
CH1O
SMEF 25
CH2O
80 GND
Figure 2. Pin configuration
M/M-97-P006
1997. 10. 17
3
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
PIN DESCRIPTION
Table 1. PIN DESCRIPTION
Pin No.
Symbol
Description
1
MCP
Capacitor connection pin for mirror hold
2
DCB
Capacitor connection pin for defect Bottom hold
3
FRSH
Capacitor connection pin for time constant to generate focus search waveform
4
DCC2
The input pin through capacitor of defect bottom hold output
5
DCC1
The output pin of defect bottom hold
6
FSET
The peak frequency setting pin for focus,tracking servo and cut off frequency of CLV
LPF
7
VDDA
Analog VCC for servo part
8
VCCP
VCC for post filter
9
GC2I
Amplifier negative input pin for gain and low pass filtering of DAC output CH2
10
GC2O
Amplifier output pin for gain and low pass filtering of DAC output CH2
11
CH2I
The input pin for post filter channel2
12
CH2O
The output pin for post filter channel2
13
CH1O
The output pin for post filter channel1
14
CH1I
The input pin for post filter channel1
15
GC1O
Amplifier output pin for gain and low pass filtering of DAC output CH1
16
GC1I
Amplifier negative input pin for gain and low pass filtering of DAC output CH1
17
RRC
The pin for noise reduction of post filter bias
18
VSSP
VSS for post filter
19
MUTEI
The input pin for post filter muting control
20
ISET
21
VREG
The output pin of regulator
22
WDCK
The clock input pin for auto sequence
23
SMDP
The input pin of CLV control output pin SMDP of DSP
24
SMON
The input pin for spindle servo ON through SMON of DSP
25
SMEF
The input pin of provide for an external LPF time constant
26
FLB
The input pin for current setting of focus search,track jump and sled kick voltage
Capacitor connection pin to perform rising low bandwidth of focus loop
M/M-97-P006
1997. 10. 17
4
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 1. PIN DESCRIPTION (Continued)
Pin No.
Symbol
Description
27
FS3
The pin for high frequency gain change of focus loop with internal FS3 switch
28
FGD
Reducing high frequency gain with capacitor between FS3 pin
29
LOCK
Sled runaway prevention pin
30
TRCNT
Track count output pin
31
ISTAT
Internal status output pin
32
ASY
The input pin for asymmetry control
33
EFM
EFM comparator output pin
34
VSSA
Analog VSS for servo part
35
MCK
Micom clock input pin
36
MDATA
Micom data input pin
37
MLT
38
RESET
39
MIRROR
40
FOK
The output pin of focus OK comparator
61
TGU
The capacitor connection pin for high frequency tracking gain switch
62
TG2
The pin for high frequency gain change of tracking servo loop with internal TG2 switch
63
FEBIAS
64
DVEE
65
PD1
The negative input pin of RF I/V amplifier1(A+C signal)
66
PD2
The negative input pin of RF I/V amplifier2(B+D signal)
67
F
The negative input pin of F I/V amplifier (F signal)
68
E
The negative input pin of E I/V amplifier(E signal)
69
PD
The input pin for APC
70
LD
The output pin for APC
71
VR
The output pin of (AVEE+AVCC)/2 voltage
72
VCC
VCC for RF part
73
RF-
RF summing amplifier inverting input pin
74
RFO
RF summing amplifier output pin
Micom data latch input pin
Reset input pin
The mirror output for test
Focus error bias voltage control pin
The DVEE pin for logic circuit
M/M-97-P006
1997. 10. 17
5
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 1. PIN DESCRIPTION (Continued)
Pin No.
Symbol
Description
75
IRF
76
EQO
77
RFI
Tne input pin for EFM comparision
78
EQC
The capacitor connection pin for AGC
79
EI
80
GND
The input pin for AGC
The output pin for AGC
Feedback input pin of E I/V amplifier for EF Balance control
GND for RF part
M/M-97-P006
1997. 10. 17
6
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
ABSOLUTE MAXIMUM RATINGS
Table 2. Absolute Maximum Ratings
Characteristic
Symbol
Value
Unit
Vmax
6
V
PD
200
mW
Operating Temperature
TOPR
-20 ~ +70
o
C
Storage temperature
TSTG
-55 ~ +150
o
C
Supply Voltage
Power Dissipation
ELECTRICAL CHARACTERISTICS
Table 3. Electrical Characteristics
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
Supply Current High
ICCHI
Supply Current Typ
Test Conditions
Output
Min
Typ
Max
Unit
VCC=6V,No load
-
20
40
60
mA
ICCTY
VCC=5V,No Load
-
12
30
48
mA
Supply Current Low
ICCLO
VCC=3.4V,No Load
-
10
25
40
mA
RF Amp Offset Voltage
Vrfo
input open
pin 74
-80
0
+80
mV
RF Amp Voltage Gain
Grf
SG3 f=10KHz,40mVp-p,sine
pin 74
25.1
28.1
31.1
dB
RF THD
Grfmd
SG3 f=1KHz,40mVp-p,sine
pin 74
-
-
5
%
RF Amp Max. Output Voltage
Vrfpp1
SG3 DC 2.7V
pin 74
3.8
-
-
V
RF Amp Min. Output Voltage
Vrfpp2
SG3 DC 2.3V
pin 74
-
-
1.2
V
Focus Error Amp Offset Voltage
Vfeo1
input open
pin 59
-450
-250
-50
mV
Focus Error Amp Auto Offset
Voltage
Vfeo2
WDCH=88.2KHz Pulse ,$841
pin 59
-35
0
35
mV
Focus Error Amp PD1 Voltage Gain
Gfe1
SG3 f=10KHz,32mVp-p,sine
pin 59
27
30
33
dB
Focus Error Amp PD2 Voltage Gain
Gfe2
SG3 f=10KHz,32mVp-p,sine
pin 59
27
30
33
dB
Focus Error Amp Voltage Difference
Gfe∆
∆Gfe1-∆Gfe1
pin 59
-3
0
+3
dB
Focus Error Amp Max. Output
Voltage
Gfepp1
SG3 DC 2.7V
pin 59
4.4
-
-
V
Focus Error Amp Min. Output Voltage
Gfepp2
SG3 DC2.3V
pin 59
-
-
0.6
V
AGC Max Gain
Gagc
SG4 f=500KHz,20mVp-p,sine
pin 76
16
19
22
dB
AGC EQ Gain
Geq
Gain Difference of Gagc at
f=1.5MHz
pin 76
0
1
2
dB
AGC Gain2
Gagc2
SG4 f=500KHz,0.5Vp-p,sine
pin 76
3.5
6
9
dB
AGC Cpmpress Ratio
Cagc
Gain Difference of Gagc2 at
0.1Vp-p
pin 76
0
2.5
5
dB
AGC Frequency
Fagc
Gain Difference
SG4 f=1.5MHz,0.1Vp-p,sine
and f=500KHz,0.1Vp-p,sine
pin 76
-1.5
0
2.5
dB
M/M-97-P006
1997. 10. 17
7
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 3. Electrical Characteristics (Continued)
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
Tracking Error Offset Voltage
Vteo
Tracking Error Amp Voltage Gain F
Test Conditions
Output
Min
Typ
Max
Unit
$800,$820,input open
pin 54
-50
0
+50
mV
Gtef
$800,$820
SG3 0.3Vp-p,10KHz,sine
pin 54
2.1
5.1
8.1
dB
Tracking Error AmpVoltage Gain E
Gtee
SG3 0.3Vp-p,40KHz,sine
pin 54
-0.75
2.25
5.25
dB
Tracking Error Amp
Voltage Gain Difference
Gte∆
Gtef-Gtee
pin 54
-0.25
2.75
5.75
dB
Tracking Error Amp
Maximum Output Voltage H
Vtepp1
DG3 DC 4.5V
pin 54
3.5
-
-
V
Tracking Error Amp
Minimum Output Voltage L
Vtepp2
SG3 DC 0.5V
pin 54
-
-
1.5
V
Tracking Error Amp Gain up F
Tguf
$830 SG3 0.3Vp-p,10KHz,sine
pin 54
8.0
11.0
14.0
dB
Tracking Error Amp Gain up E
Tgue
$830 SG3 0.3Vp-p,10KHz,sine
pin 54
5.3
8.3
11.3
dB
Tracking Gain Normal
Fgfn
SG3 0.3Vp-p,10KHz,sine,$820
pin 54
2.1
5.1
8.1
dB
Tracking F Gain 1
Fgf1
SG3 0.3Vp-p,10KHz,sine,$821
pin 54
0.1
3.1
6.1
dB
Tracking F Gain 2
Fgf2
SG3 0.3Vp-p,10KHz,sine,$822
pin 54
-1.7
1.3
4.3
dB
Tracking F Gain 3
Fgf3
SG3 0.3Vp-p,10KHz,sine,$824
pin 54
-5.0
-2.0
1.0
dB
Tracking F Gain 4
Fgf4
SG3 0.3Vp-p,10KHz,sine,$824
pin 54
-9.2
-6.2
-3.2
dB
Tracking E Balance Normal
Tben
SG3 0.3Vp-p,10KHz,sine,$800
pin 54
-0.27
2.27
5.27
dB
Tracking E Balance 1
Tbe1
SG3 0.3Vp-p,10KHz,sine,$801
pin 54
-0.51
2.51
5.51
dB
Tracking E Balance 2
Tbe2
SG3 0.3Vp-p,10KHz,sine,$802
pin 54
-0.74
2.74
5.74
dB
Tracking E Balance 3
Tbe3
SG3 0.3Vp-p,10KHz,sine,$804
pin 54
0.17
3.17
6.17
dB
Tracking E Balance 4
Tbe4
SG3 0.3Vp-p,10KHz,sine,$808
pin 54
1.03
4.03
7.03
dB
Tracking E Balance 5
Tbe5
SG3 0.3Vp-p,10KHz,sine,$810
pin 54
2.63
5.63
8.63
dB
FGFN-FGF1
∆FG1
-
-
0
1.5
3
dB
FGFN-FGF2
∆FG2
-
-
0.5
2.0
3.5
dB
FGFN-FGF3
∆FG3
-
-
2.0
3.25
4.5
dB
FGFN-FGF4
∆FG4
-
-
3.0
4.25
5.5
dB
TBE5 - TBE4
∆TB1
-
-
0.6
1.6
2.6
dB
TBE4 - TBE3
∆TB2
-
-
-0.14
0.86
1.86
dB
TBE3 - TBE2
∆TB3
-
-
-0.57
0.43
1.43
dB
TBE2 - TBE1
∆TB4
-
-
-0.77
0.23
1.23
dB
APC PSUB Voltage 1
Vapc1
LDON,$853,PN=open,
SG4 GND+85mV
pin 70
-
-
1.2
V
APC PSUB Voltage 2
Vapc2
LDON,$853,PN=open,
SG4 GND+185mV
pin 70
3.8
-
-
V
M/M-97-P006
1997. 10. 17
8
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 3. Electrical Characteristics (Continued)
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
APC NSUB Voltage 1
Vapc3
APC NSUB Voltage 2
Test Conditions
Output
Min
Typ
Max
Unit
LDON,$857,PN=2.5V,
SG4 GND+95mV
pin 70
3.8
-
-
V
Vapc4
LDON,$857,PN=2.5V,
SG4 GND+165mV
pin 70
-
-
1.2
V
APC LD Off Voltage 1
Vapc5
LDOFF,$85C,PN=open,SG4
2.5V
pin 70
4.0
-
-
V
APC LD Off Voltage 2
Vapc6
LDOFF,$858,PN=2.5V.SG4 2.5V
pin 70
-
-
1.0
V
APC Maximum Output Current H
Vapc7
LDON,$854,PN=open, SG4 GND
+ 185mV
pin 70
2.5
-
-
V
APC Minimum Output Current L
Vapc8
LDON,$854,SG4 GND + 85mV
pin 70
-
-
2.5
V
Mirror Maximum Output Voltage H
Vmirh
SG4 2.1V+0.8Vp-p,1KHz,sine
pin 39
4.3
-
-
V
Mirror Minimum Output Voltage L
Vmirl
SG4 2.1V+0.8Vp-p,1KHz,sine
pin 39
-
-
0.7
V
Mirror Minimum Operating
Frequency
Fmirh
SG4 2.1V+0.8Vp-p,900Hz,sine
pin 39
-
550
900
Hz
Mirror Maximum Operating
Frequency
Fmirb
SG4 2.1V+0.8Vp-p,30KHz,sine
pin 39
30
75
-
KHz
Mirror AM Frequency Characteristic
Fmir
SG4 2.1V+0.8Vp-p
600Hz,fc=500KHz
55% modulation
pin 39
-
400
600
Hz
Mirror Minimum Input Voltage
Vmir
SG4 2.1V+0.2Vp-p,10KHz,sine
pin 39
-
0.1
0.2
V
Mirror Maximum Input Voltage
Vmih
SG4 2.1V+1.8Vp-p,10KHz,sine
pin 39
1.8
-
-
V
FOK Threshold Voltage
Vfokt
SG4 2.25V~2.0V,DCsweep,
10mV step
pin 40
-420
-360
-300
mV
FOK Output Voltage H
Vfokh
SG4 DC 1.5V
pin 40
4.3
-
-
V
FOK Output Voltage L
Vfokl
SG4 DC 2.5V
pin 40
-
-
0.7
V
Defect Output Voltage H
Vdfcth
$863,SG3 2.520V+0.04Vp-p,
f=1Khz,sine
pin 41
4.3
-
-
V
Output Voltage L
Vdfcth
$863,SG3 2.520V+0.04Vp-p,
f=1Khz,sine
pin 41
-
-
0.7
V
Focus Loop Mute
Fmute
SG2 2.5V+0.1Vp-p,1KHz,sine
pin 48
-100
0
100
mV
Tracking Loop Mute
Tmute
SG2 2.5V+0.1Vp-p,1KHz,sine
pin 50
-100
0
120
mV
Interruption
Imute
SG2 2.5V+0.1Vp-p,1KHz,sine
pin 50
-100
0
120
mV
Defect Bottom Voltage
Fdfct1
SG3 2.520 V+0.04Vp-p,
1KHz,sine
pin 41
-
670
1000
Hz
Defect Max Freq. Voltage
Fdfct2
SG3 2.520V+0.04Vp-p,
2KHz,sine
pin 41
2.0
4.7
-
KHz
Defect Minimum Input Voltage
Vdfct1
SG 3 2.510V+0.020Vp-p,
1KHz,sine
pin 41
-
0.3
0.5
V
M/M-97-P006
ELECTRONICS
1997. 10 .17
14
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 3. Electrical Characteristics (Continued)
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
Test Conditions
Output
Min
Typ
Max
Unit
Defect Maximum Input Voltage
Vdfct2
SG32.535V+0.070Vp-p,
1KHz,sine
pin 41
1.8
-
-
V
EFM Duty Voltage 1
Defm1
SG4 2.5V+0.75Vp-p,
750KHz,sine
pin 32
-50
0
50
mV
EFM Duty Voltage 2
Defm2
SG42.75V+0.75Vp-p,
750KHz,sine
pin 32
0
50
100
mV
EFM Minimum input Voltage
Vefm1
SG4 2.5V+0.12Vp-p,
750KHz,sine
pin 33
-
-
0.12
V
EFM Maximum input Voltage
Vefm2
SG4 2.5V+1.8Vp-p,750KHz,sine
pin 33
1.8
-
-
V
EFM Maximum Operating
Frequency
Fefm
SG4 2.5V+0.75Vp-p,4MHz
pin 33
4
-
-
MHz
FZC Threshold Voltage
Vfzc
DC 2.5V+38mV,100mV
pin 31
39
69
100
mV
ATSC Threshold Voltage 1
Vatsc1
$10,SG2 DC 2.5V-6mV,-45mV
pin 31
-67
-32
-7
mV
ATSC Threshold Voltage 2
Vatsc2
SG2 DC 2.5V+6mV,+45mV
pin 33
7
32
67
mV
TZC Threshold Voltage
Vtzc
$20,SG2 DC 2.5V-20mV,+20mV
pin 31
-30
0
30
mV
SSTOP Threshold Voltage
Vsstop
$30,SG2 DC 2.5V-71mV,-30mV
pin 31
-100
-50
-30
mV
VtGW
$840+$830 SG2 2.5V 2.9V 5mV
DC
pin 30
200
250
300
mV
VTGW2
$848+$830 SG2 2.5V 5mV DC
sweep
pin 30
100
150
200
mV
VTBW
$844+$810 SG2 2.555V ~
2.475V 5mV DC sweep
pin 31
-25
15
55
mV
VTBW2
$844+$810 SG2 2.555V ~
2.470V 5mV DC sweep
pin 31
-25
15
55
mV
Vreg Threshold Voltage
Vreg
-
pin 21
3.2
3.4
3.6
V
Center Voltage
VCVO
2.5V Reference
pin 71
-100
0
100
mV
VREF Current Drive Voltage 1
VCVO1
2.5V Reference
pin 71
-100
0
100
mV
VREF Current Drive Voltage 2
VCVO2
2.5V Reference
pin 71
-100
0
100
mV
Post CH1 Freq. Characteristic
Fpos1
SG1 2.5V+1Vp-p,40KHz,sine
pin 13
-4.5
-3.0
-1.5
dB
Post CH2 Freq. Characteristic
Fpos2
SG1 2.5V+1Vp-p,40KHz,sine
pin 12
-4.5
-3.0
-1.5
dB
Post CH1 Mute
Mute1
Mute=5V
SG1 2.5V+1Vp-p,1KHz,sine
pin13
-
-
-35
dB
Post CH2 Mute
Mute2
Mute=5V
SG1 2.5V+1Vp-p,1KHz,sine
pin 12
-
-
-35
dB
Focus Loop DC Gain
Gf
$08,SG2 DC 2.6V,2.4V average
pin 48
19.0
21.5
24.0
dB
Focus Off Offset
Vosf1
$00
pin 48
-100
0
100
mV
Focus On Offset
Vofs2
$08,DC 2.5V
pn 48
0
250
500
mV
Focus Auto Offset
Vaof
$842,WDCK,after100ms
pin 48
-65
0
65
mV
Tracking gain window voltage
Tracking gain window range
Tracking balance window voltage
Tracking balance window range
M/M-97-P006
1997. 10. 17
10
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 3. Electrical Characteristics (Continued)
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
Focus Output Voltage H
Vfoh1
Focus Output Voltage L
Test Conditions
Output
Min
Typ
Max
Unit
$08,DC 3.0V
pin 48
4.40
-
-
V
Vfol1
$08,DC 2.0V
pin 48
-
-
0.60
V
Focus Output Drive Voltage H
Vfoh2
$08,DC 3.0V
pin 48
3.68
-
-
V
Focus Output Drive Voltage L
Vfol2
$08,DC 2.0V
pin 48
-
-
1.32
V
Focus Oscillation Voltage
Vosc
$08,DC2.5V
pin 48
0
100
200
mV
Focus Feed Through
Gff
Gain Difference at Servo on
and off
pin 48
-
-
-35
dB
Focus AC Gain 1
Gfa1
$08,
SG2 2.5V+0.1Vp-p,1.2KHz,sine
pin 48
19.0
23.0
27.0
dB
Focus AC Phase 1
Pfa1
$08,
SG2 2.5V+0.1Vp-p,1.2KHz,sine
pin 48
40
65
90
deg
Focus AC Gain 2
Gfa2
$08,
SG2 2.5V+0.1Vp-p,2.7KHz,sine
pin 48
14.0
18.5
23.0
dB
Focus AC Phase 2
Pfa2
$08,
SG2 2.5V+0.1Vp-p,2.7KHz,sine
pin 48
40
65
90
deg
Focus Search Voltage1
Vfs1
$30+$02
pin 48
-0.64
-0.50
-0.36
V
Focus Search Voltage2
Vfs2
$30+$03
pin 48
0.36
0.50
0.64
V
Focus Loop Total Gain
Gftg
Focus PD gain + Focus loop DC
gain
pin 48
49.5
51.5
53.5
dB
Tracking DC Gain
Gto
$25
SG2 DC 2.3V,2.7V average gain
pin 50
13.5
15.5
17.5
dB
Tracking Off Offset
Vost1
$20
pin 50
-100
0
100
mV
Tracking On Offset
Vost2
SG2 DC 2.5V,$25
pin 50
-100
0
120
mV
Tracking Oscillation Voltage
Vosa1
$25,SG2 DC2.5V
pin 50
0
100
200
mV
Tracking gain boost for ATSC
Gatsc
2.5V+0.1Vp-p,1KHz,sine
pin 50
17.5
20.5
23.5
dB
Tracking gain boost on LOCK (L)
Glock
2.5V+0.1Vp-p,1KHz,sine
pin 50
17.5
20.5
23.5
dB
Tracking Output Voltage H
Vth1
$25,SG2 DC 1.0V
pin 50
4.48
-
-
V
Tracking Output Voltage L
Vtl1
$25SG2 ,DC 4.0V
pin 50
-
-
0.52
V
Tracking Output Drive Voltage H
Vth2
$25,SG2 DC2.0V
pin 50
3.68
-
-
V
Tracking Output Drive Voltage L
Vtl2
$25, SG2 DC3.0V
pin 50
-
-
1.32
V
Tracking Jump Voltage 1
Vtj1
$2C
pin 50
-0.64
-0.5
-0.36
V
Tracking Jump Voltage 2
Vtj2
$28
pin 50
0.36
0.5
0.64
V
Tracking Feed Through
Gtf
Gain Difference at Tracking servo
on and off
pin 50
-
-
-39
dB
Tracking AC Gain 1
Gta1
$10,$25,SG2 2.5V+0.1Vp-p,
1.2KHz,sine
pin 50
9.0
12.5
16.0
dB
M/M-97-P006
1997. 10. 17
11
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 3. Electrical Characteristics (Continued)
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
Tracking AC Phase 1
Pta1
Tracking AC Gain 2
Test Conditions
Output
Min
Typ
Max
Unit
$10,$25,SG2 2.5V+0.1Vp-p,
1.2KHz,sine
pin 50
-140
-115
-90
deg
Gta2
$10,$25,SG2 2.5V+0.1Vp-p,
2.7KHz,sine
pin 50
17.5
21.5
25.5
dB
Tracking AC Phase 2
Pta2
$10,$25,SG2 2.5V+0.1Vp-p,
2.7KHz,sine
pin 50
-195
-150
-100
deg
Tracking Loop Gain
Gtrt
tracking Amp F gain+ servo DC
gain
-
18.5
20.5
22.5
dB
Sled DC Gain
Gsl
SG2 DC 2.6V,2.4V
pin 43
20.5
22.5
24.5
dB
Sled Feed Through
Gslf
Gain Difference at sled servo
on and off
SG2 2.5V+0.1Vp-p,1.2KHz,sine
pin 43
-
-
-34
dB
Sled Output Voltage H
Vslh1
$25,SG2 DC 2.9V
pin 43
4.48
-
-
V
Sled Output Voltage L
Vsll1
$25,SG2 DC 2.1V
pin 43
-
-
0.52
V
Sled Output Drive Voltage H
Vslh2
$25,SG2 DC 2.9V
pin 43
3.68
-
-
V
Sled Output Drive Voltage L
Vsll2
$25,SG2 DC 2.1V
pin 43
-
-
1.32
V
Sled Forward Kick Voltage
Vsk1
$22
pin 43
0.38
0.60
0.75
V
Sled Reverse Kick Voltage
Vsk2
$23
pin 43
-0.75
-0.6
-0.38
V
Spindle Normal Speed Gain
Gsp
$F0
SG1 DC 2.6V,2.4V, average gain
pin 46
14.0
16.5
19.0
dB
Spindle Double Speed Gain
Gsp2
$F3
SG1 DC 2.6V,2.4V, average gain
pin 46
19.0
23.0
27.0
dB
Spindle Output Voltage H
Gsph1
$F0, SG1 DC 3.5V
pin 46
4.48
-
-
V
Spindle Output Voltage L
Gspl1
$F0, SG1 DC 1.5V
pin 46
-
-
0.52
V
Spindle Output Drive Voltage H
Gsph2
$F0,SG1 DC 3.5V
pin 46
3.68
-
-
V
Spindle Output Drive Voltage L
Gspl2
$F0,SG1 DC 1.5V
pin 46
-
-
1.32
V
Spindle AC Gain
Gspa
$F0,SG1 2.5V+0.2Vp-p,
2KHz,sine
pin 46
-7.0
-3.5
0
dB
Spindle AC Phase
Pspa
$F0,SG1 2.5V+0.2Vp-p,
2KHz,sine
pin 46
-120
-90
-60
deg
M/M-97-P006
1997. 10. 17
12
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 3. Electrical Characteristics (Continued)
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
Test Conditions
Output
Min
Typ
Max
Unit
FOCUS output voltage H
Vfh1l
pin 48
2.88
-
-
V
FOCUS output voltage L
Vfl1l
pin 48
-
-
0.68
V
FOCUS SEARCH voltage 1
Vfs1l
pin 48
-0.64
-0.50
-0.36
V
FOCUS SEARCH voltage 2
Vfs2l
pin 48
0.36
0.50
0.64
V
Vost21
pin 50
-100
0
+120
mV
TRACKING output voltage H
Vth1l
pin 50
2.88
-
-
V
TRACKING output voltage L
Vtl1l
pin 50
-
-
0.68
V
TRACKING jump voltage 1
Vtj1l
pin 50
-0.64
-0.50
-0.36
V
TRACKING jump voltage 2
Vtj2l
pin 50
0.36
0.50
0.64
V
SLED output voltage H
Vslh1l
pin 43
2.88
-
-
V
SLED output voltage L
Vsll1l
pin 43
-
-
0.68
V
SLED forward kick voltage
Vsk1l
pin 43
0.38
0.60
0.75
V
SLED reverse kick voltage
Vsk2l
pin 43
-0.75
-0.60
-0.38
V
SPINDLE output voltage H
Vsph1l
pin 46
2.88
-
-
V
SPINDLE output voltage L
Vspl1l
pin 46
-
-
0.68
V
RF amp OFFSET voltage
Vrfol
pin 74
-80
0
+80
mV
Tracking error offset
Vteol
pin 54
-50
0
+50
mV
TRACKING on OFFSET
VDD, DVDD, VCC = +3.4V
Low Voltage Test for Servo Part
& RF part
: the test method is the same as
5V test
RF amp output voltage H
Vrfpp1l
pin 74
2.8
-
-
V
RF amp output voltage L
Vrfpp2l
pin 74
-
-
0.6
V
FOCUS error output voltage H
Vfepp1l
pin 59
2.8
-
-
V
FOCUS error output voltage L
Vfepp2l
pin 59
-
-
0.6
V
Tracking error output voltage
Vtepp1l
pin 54
2.2
-
-
V
Tracking error output voltage
Vtepp2l
pin 54
-
-
1.2
V
APC output voltage 1L
Vapc1l
pin 70
-
-
1.2
V
APC output voltage 2L
Vapc2l
pin 70
2.5
-
-
V
APC output voltage 3L
Vapc3l
pin 70
2.5
-
-
V
APC output voltage 4L
Vapc4l
pin 70
-
-
1.2
V
APC output voltage 5L
Vapc5l
pin 70
-
-
1.1
V
APC output voltage 6L
Vapc6l
pin 70
2.7
-
-
V
FOK threshold voltage
Vfoktl
pin 40
-420
-360
-300
V
pin 13
1.1
1.3
-
Vrms
Post Filter Output Voltage max. 1
Vpom1
SG1 2.5V+3.2Vp-p,1KHz,
within THD 1%
M/M-97-P006
ELECTRONICS
1997. 10 .17
14
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 3. Electrical Characteristics (Continued)
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
Post Filter Output Voltage max. 2
Vpom2
Total Harmonic Distoration 1
Output
Min
Typ
Max
Unit
SG1 2.5V+3.2Vp-p,1KHz,
within THD 1%
pin 12
1.1
1.3
-
Vrms
THD11
SG1 f=100Hz,0dBm
pin 13
-
0.01
0.05
%
Total Harmonic Distoration 1
THD12
SG1 f=1KHz,0dBm
pin 13
-
0.01
0.05
%
Total Harmonic Distoration 1
THD13
SG1 f=10KHz,0dBm
pin 13
-
0.05
0.1
%
Total Harmonic Distoration 1
THD14
SG1 f=16KHz,0dBm
pin 13
-
0.1
0.2
%
Total Harmonic Distoration 1
THD15
SG1 f=20KHz,0dBm
pin 13
-
0.1
0.2
%
Total Harmonic Distoration 2
THD21
SG1 f=100Hz,0dBm
Pin 12
-
0.01
0.05
%
Total Harmonic Distoration 2
THD22
SG1 f=1KHz,0dBm
Pin 12
-
0.01
0.05
%
Total Harmonic Distoration 2
THD23
SG1 f=10KHz,0dBm
Pin 12
-
0.05
0.1
%
Total Harmonic Distoration 2
THD24
SG1 f=16KHz,0dBm
Pin 12
-
0.1
0.2
%
Total Harmonic Distoration 2
THD25
SG1 f=20KHz,0dBm
Pin 12
-
0.1
0.2
%
Frequency Characteristics 1
fv11
SG1 f=100Hz,0dBm
pin 13
-0.1
0
0.1
dB
Frequency Characteristics 1
fv12
SG1 f=1KHz,0dBm
pin 13
-0.25
0
+0.25
dB
Frequency Characteristics 1
fv13
SG1 f=10KHz,0dBm
pin 13
-0.5
0
0.5
dB
Frequency Characteristics 1
fv14
SG1 f=16KHz,0dBm
pin 13
-1.0
0
1.0
dB
Frequency Characteristics 1
fv15
SG1 f=20KHz,0dBm
pin 13
-1.5
0
1.5
dB
Frequency Characteristics 2
fv21
SG1 f=100Hz,0dBm
Pin 12
-0.1
0
0.1
dB
Frequency Characteristics 2
fv22
SG1 f=1KHz,0dBm
Pin 12
-0.25
0
+0.25
dB
Frequency Characteristics 2
fv23
SG1 f=10KHz,0dBm
Pin 12
-0.5
0
0.5
dB
Frequency Characteristics 2
fv24
SG1 f=16KHz,0dBm
Pin 12
-1.0
0
1.0
dB
Frequency Characteristics 2
fv25
SG1 f=20KHz,0dBm
Pin 12
-1.5
0
1.5
dB
Crosstalk 1
CT11
SG1 100Hz,0dBm,ratio on Ch2
pin 13
70
80
-
dB
Crosstalk 1
CT12
SG1 1KHz,0dBm,ratio on Ch2
pin 13
65
75
-
dB
Crosstalk 1
CT13
SG1 10KHz,0dBm,ratio on Ch2
pin 13
60
65
-
dB
Crosstalk 2
CT21
SG1 100Hz,0dBm,ratio on Ch1
pin 12
70
80
-
dB
Crosstalk 2
CT22
SG1 1KHz,0dBm,ratio on Ch1
pin 12
65
75
-
dB
Crosstalk 2
CT23
SG1 10KHz,0dBm,ratio on Ch1
pin 12
60
65
-
dB
Output
Min
Typ
Max
Unit
Characteristic
Symbol
Test Conditions
Test Conditions
Signal to Noise Ratio 1
S/N 1
DC 2.5V 0dbm,ratio on Noise
pin 13
73
80
-
dB
Signal to Noise Ratio 2
S/N 2
DC 2.5V 0dbm,ratio on Noise
pin 12
73
80
-
dB
CB
Gain Difference Ch1 and Ch2
-
-0.1
0
+0.1
dB
Channel Balance
M/M-97-P006
1997. 10. 17
14
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 3. Electrical Characteristics (Continued)
(Ta=25°C, VDD = DVDD = VCC = +5V, VSS = DVSS = GND = VSSP = 0V )
Characteristic
Symbol
Post filter output voltage mix.1L
Output
Min
Typ
Max
Unit
Vpom1L
pin 13
0.5
0.55
-
Vrms
Post filter output voltage mix. 2L
Vpom2L
pin 12
0.5
0.55
-
Vrms
Total harmonic distortion 1L
THD11L
pin 13
-
0.01
0.05
%
Total harmonic distortion 1L
THD12L
pin 13
-
0.01
0.05
%
Total harmonic distortion 1L
THD13L
pin 13
-
0.05
0.1
%
Total harmonic distortion 1L
THD14L
pin 13
-
0.1
0.2
%
Total harmonic distortion 1L
THD15L
pin 13
-
0.1
0.2
%
Total harmonic distortion 2L
THD21L
pin 12
-
0.01
0.05
%
Total harmonic distortion 2L
THD22L
pin 12
-
0.01
0.05
%
Total harmonic distortion 2L
THD23L
pin 12
-
0.05
0.1
%
Total harmonic distortion 2L
THD24L
pin 12
-
0.1
0.2
%
Total harmonic distortion 2L
THD25L
pin 12
-
0.1
0.2
%
Frequency Characteristics 1L
fv11L
pin 13
-0.1
0
0.1
dB
Frequency Characteristics 1L
fv12L
pin 13
-0.25
0
+0.25
dB
Frequency Characteristics 1L
fv13L
pin 13
-0.5
0
0.5
dB
Frequency Characteristics 1L
fv14L
pin 13
-1.0
0
1.0
dB
Frequency Characteristics 1L
fv15L
pin 13
-1.5
0
1.5
dB
Frequency Characteristics 2L
fv21L
pin 12
-0.1
0
0.1
dB
Frequency Characteristics 2L
fv22L
pin 12
-0.25
0
+0.25
dB
Frequency Characteristics 2L
fv23L
pin 12
-0.5
0
0.5
dB
Frequency Characteristics 2L
fv24L
pin 12
-1.0
0
1.0
dB
Frequency Characteristics 2L
fv25L
pin 12
-1.5
0
1.5
dB
Cross talk 1L
CT11L
pin 13
67
80
-
dB
Cross talk 1L
CT12L
pin 13
62
75
-
dB
Cross talk 1L
CT13L
pin 13
57
65
-
dB
Cross talk 2L
CT21L
pin 12
67
80
-
dB
Cross talk 2L
CT22L
pin 12
62
75
-
dB
Cross talk 2L
CT23L
pin 12
57
65
-
dB
Signal to noise ratio 1L
S/N1L
pin 13
67
80
-
dB
Signal to noise ratio 2L
S/N2L
pin 12
67
80
-
dB
CBL
-
-0.1
0
+0.1
dB
Channel balance L
Test Conditions
VDD, DVDD, VCC
VCCP= +3.4V
Low voltage test for post filter.
The test method is the same as
5V test except for input signal
: SG1 1.7V + 1.55Vp-p
Note1) The notation $ means hexa decimal of micom command
Note2) Low voltage test items only refer to KB9223-L
M/M-97-P006
1997. 10. 17
15
PRELIMINARY
DC
SG3
33UF
GND(0V)
AC
10K SW30
10K SW31
390K SW32
390K SW33
SW34
3K SW35
3K SW36
0.5K SW37
65 PD1
66 PD2
67 F
68 E
69 PD
70 LD
+
SG2
AC
1 2
1 2
SW17
1
SW16
SW18
2
1
2
SW15
SW13
72 VCC
74 RFO
76 EQO
78 EQC
80 GND
5
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
4
8
3
7
2
6
1
+
3300PF
27K
LPFT
330PF
+
330PF
5.6K 5.6K
+
VSSP
FE+
10PF
AC
+
FEO
27K
KB9223
TE2
5.6K 5.6K
10PF
+
TE1
CH2I
+
SG_D12
RESET 38
VECTOR_TEST_IN
VECTOR_TEST_IN
VECTOR_TEST_IN
VECTOR_TEST_IN
VECTOR_TEST_IN
SG-D3
SG-D4
SG-D5
SG-D6
SG-D7
SG-D8
FOK 40
MLT 37
VECTOR_TEST_IN
SW11
SW10
SW8
VECTOR_TEST_IN
SW9
1000PF
SG-D2
MCK 35
11K 0.01UF
+
MDATA 36
SMEF 25
FLB 26
FS3 27
FGD 28
LOCK 29
VECTOR_TEST_OUT
TRCNT 30
ISTAT 31 VECTOR_TEST_OUT
ASY 32
EFM 33
VSSA 34
MIRROR 39
SL+
VECTOR_TEST_IN
SW19
SW20
0.25K
DC
+
13K
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
200K
13K
RRC
DC
SG1
MUTEI
SSTOP
SMON
SW7
+
SW14
SLO
SMDP
VECTOR_TEST_IN
WDCK
SW6
71 VR
100K
TEO
GC1O
0.5K SW38
13K
SL-
SG-D1
73 RF-
60K
VREG
SW5
SPDLISET
240K
22K
100K
0.1UF
SW3
2PF
0.25K
TE-
4.7UF
0.01UF SW39
0.25K
5K
13K
SPDLO
0.25K
GC1I
SWP2
ATSC
CH1I
5.6K
10K
4.7UF 27K
SW2
TZC
CH1O
3.3UF
CH2O
3.3UF
75 IRF
SW22 VERTOR_TEST_IN
SG-_D10
DVDD
10K
SW-VC
AC
SW21
GC2I
GC2O
5.6K
VCC(5V)
DC
SW23 VERTOR_TEST_IN
SG-_D11
TDFCT
0.001UF
SW40
SW24
VCCP
SW1
VC(2.5V)
SG4
SW25
FE2
4.7UF 27K
77 RFI
VERTOR_TEST_IN
FE1
VDDA
SWP1
SW41
100K
0.01UF
SW26
FSET
DCC1
+
SW27
FDFCT
DCC2
0.01PF
79 EI
96K
FRSH
SW44.7UF
1997. 10. 17
200K
0.01UF
SW28
TG2
TGU
510K
DVEE
DCB
16
M/M-97-P006
SW29
FEBIAS
MCP
1000PF
1uF
SW42
3300PF
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
TEST CIRCUIT
Figure 3. Test Circuit
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
FUNCTION DESCRIPTION
1.RF Amp Block
1.1 RF Amplifier
The optical currents inputted through pins PD1(A+C) and PD2(B+D) are converted into voltages through
I-V amp, and they are added to RF summing amp. The voltage, converted from the photo diode
(A+B+C+D) signal, is outputted through RFO(pin74) and the eye pattern can be checked at this pin.
58K
PD1
-
65
VA
+
10K
-
RFO
74
I-V amp(1)
+
VC
RF summing amp
VC
58K
PD2
-
66
VB
RF-
10K
73
+
I-V amp(2)
VC
Figure 4. RF amp circuit
1.2 Focus Error Amp
The output of the focus error amp is the difference between I-V amp(1) output VA and
RF I-V amp(2) output VB. The focus error bias voltage applied to the (+) of focus error amp can be
changed by output voltage of D/A converter as shown in diagram, so that the offset of focus error amp
can be adjusted automatically by controlling 5 bits counter switches. Focus error bias can be adjusted
from the range of +100mV ~ -100mV by connecting the resistor on pin 63 (FEBIAS).
164K
32K
VB >
-
FE1
59
32K
VA >
+
sev-stopb
160K
FEBIAS
SW1
63
sev-stop
<5 Bit Counter>
4K
-
3K
X1
X2
X4
X8
X16
+
fcmpo
+
FEBIAS
vc
fe-stopb
Figure 5. Focus error amp circuit
note1> VA and VB refer to output signal of PD1 and PD2 I/V amp.
note2> sev-stopb,sev-stop,fe-stopb and fcmpo are internal signals
M/M-97-P006
1997. 10. 17
17
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
1.3 Tracking Error Amp
The optical currents detected from the side photo diode (E and F) pf pick-up are inputted to the E and F
pin and converted into voltage signals by E I-V and F I-V amp. The output of tracking error amp
generates the difference between E I-V AMP and F I-V AMP voltage output.
The E-F balance can be adjusted by modifying the gain of E I-V AMP, and the tracking gain
can be adjusted automatically by controlling the peak voltage at pin TE2 by micom program.
TE1
F
67
I-V AMP
-
68
I-V AMP
+
TE2
54
55
53
LPFT
Balance
Window Comp
3.3K
Gain
Window Comp
1.5K
16K
7.5K
27K
BAL < 4 : 0 >
13K
56K
110K
79
75K
EI
220K
E
13K
-
To ISTAT
To ISTAT
To TRCNT
GAIN_UP/DOWN
GAIN < 3 : 0 >
Figure 6. Tracking error amp circuit
1.4 Focus OK Circuit
The FOK is the output. The focus OK circuit generates a timing window to enable focus servo operation
from focus search status. When the difference of the RFO (pin74)signal and DC coupled signal
IRF(pin75) are above the predefined voltage the Focus OK circuit output (pin40) becomes active(High
output). The predefined voltage is -0.39V
40K
40K
RFO
IRF
74
-
75
+
40K
57K
FOK
40
90K
+
VC+0.625V
Figure 7. Focus OK circuit
M/M-97-P006
1997. 10. 17
18
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
1.5 Mirror Circuit
IRF signal is amplified by the mirror amp, and the peak and bottom component of amplified signal are
detected by peak and bottom hold circuit. The peak hold circuit covers traverse signal of up to 100KHz
component and bottom hold circuit capable of covering the envelope frequency of disc rotation. The time
constant for the mirror hold must be sufficiently larger than that of the traverse signal.
38K
IRF
75
17K
2.5K
-
Peak and
Bottom
Hold
+
19K
1.5K
1
MCP
39
MIRROR
+
17K
+
96K
+
-
Figure 8. Mirror Circuit
1.6 EFM Comparator
The EFM comparator converts a RF signal into a binary signal.
Beacuse the asymmetry generated due to variations in disc manufacturing can not be eliminated by the
AC coupling alone, this circuit uses to control reference voltage of EFM comparator for eliminating
asymmetry.
40K
RFI
+
77
1
EFM
39
ASY
100K
+
19K
+
20K
100K
85K
Figure 9. EFM Comparator & asymmetry circuit
M/M-97-P006
1997. 10. 17
19
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
1.7 Defect Circuit
The RFO signal bottom, after being inverted, is held with two time constants of long and short.
The short time-constant bottom hold is done for a disc mirror defect more than 0.1msec, the long timeconstant bottom hold is done with the mirror level prior to the defect. By differentiating this with a
capacitor coupling and shifting the level, both signals are compared to generate the mirror defect
detection signal.
DCC1
DCC2
5
4
75K
RFO
75
37.5K
-
BOTTOM
+
HOLD
28K
75K
-
BOTTOM
VC+0.6254V
HOLD
DFCT
41
43K
SSTOP/DFCT
+
2
DCB
Figure 10. Defect Circuit
1.8 APC (Auto Power Control) Circuit
The laser diode has large negative temperature characteristic in its optical output when driven with a
constant current on laser diode. Therefore, the output on processing monitor photo diode, must be a
controlled current for getting regular output power, thus the APC (Auto Power Control) circuit is
composed.
PN (From micom command)
150K
+
PD 69
43.5K
0.75K
70
-
150K
LD
300K
150K
1.25V
+
5.5K
LDON (From micom command)
Figure 11. APC Circuit
M/M-97-P006
1997. 10. 17
20
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
1.9 AGC Stability Circuit
The AGC block is the function used to maintain the constant level of RF peak to peak voltage. After the
operation of RF envelop detection and comparing with reference voltage, RFO level is kept stable in 1Vpp, and inputted to EFM Slice.
IRF
VCA
75
EQUALIZE
78
EQC
76 EQO
Figure 12. AGC block
1.10 Post Filter
The adjustment of audio output gain and the integration of possible de-emphasis output are executed by
this circuit. This block has amps of 2 channel for gain and filter setting and mute pin for audio signal
muting.
CH2I
VCC
12 CH2O
+
GC2I
25K
-
10 GC2O
+
+
+
GC1I
25K
CH1I
15 GC1O
+
13 CH1O
-
19
MUTEI
Figure 13. Post Filter circuit
VCC
1.11 Center Voltage Generation Circuit
The center voltage is generated by voltage
divide using resistor .
30K
71 VR
+
Figure 14. Center
Voltage
Generation Circuit
M/M-97-P006
1997. 10. 17
30K
21
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
2.Servo Block
2.1 Focus Servo Block
When defect is "H"(the defect signal is detected), the focus servo loop is muting in case of focus phase
compensation. At this time, the focus error signal is outputted through the low pass filter formed by
connecting a capacitor(0.1uF) and a built-in 470KΩ resistor to the FDFCT pin(pin 60). Accordingly, the
focus error output is held at the error value just before defect error during defect occurring. The peak
frequency of focus loop phase compensation is at about 1.2KHz when the resistor connected to FSET
pin(pin 6) is 510KΩ, and it is inversely proportional to the resistor connected to the FSET pin. While the
focus search is operating, the FS4 switch is on and then the focus error signal is isolated, accordingly the
focus search signal is outputted by FEO pin(pin 48). When the FS2 switch is on(focus on), the focus
servo loop is on and the focus error signal from FE2 pin(pin 58) is outputted through the focus servo loop.
3.6K
60K
VC
-
FZCI
48
+
20K
58
48K
X4
92K
Focus Phase
Compensation
470K
FDFCT
FSCMPO
-
+
FE2
+
X3
X2
FEO
X1
-
60
+
40K
FS4B
FS2B
130K
FE-
47
DFCTI
10K
470K
FGD
28
50K
40K
PS
3.6K
FS3
27
4
3
X1
0
0
X2
0
1
X3
1
0
X4
1
1
FS1
46K
580K
+
FS3
26
3
6
FLB
FSET
FRCH
Figure 15. Focus servo block
M/M-97-P006
1997. 10. 17
22
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
2.2 Tracking Servo Block
During detection of defect, the tracking error signal is outputted through the tracking servo loop after
passing the low pass filter formed by connecting a capacitor(0.1uF) and a built-in 470KΩ resistor to the
TDFCT pin(pin57) in case of tracking phase compensation. The value of tracking gain up/down can be
controlled by TGU and TG2 pin. The peak frequency of tracking loop phase compensation, the dynamic
range and offset of opamp can be adjusted by changing the value of resistor connected to FSET pin
same as focus loop. In case of unstable status of actuator after jumping, the ON/OFF of tracking loop is
controlled by TM7 switch of break circuit.
After 10-track jumping, servo circuit gets out of the liner range and actuator's tracking becomes
occasionally unstable. Hence unnecessary jumping with many tracking error should be prevented.
TE2
TM4
53
470K
680K
57
TDFCT
49
680K
TG1
TE-
TM3
TG1
DFCTI
10K
66PF
TM1
TGU
110K
61
20K
TG2
TRACKING
PHASE
COMPENSATION
10K
90K
50
TEO
+
82K
TM7
62
TG2
470K
6
FSET
Figure 16. Tracking servo block
M/M-97-P006
1997. 10. 17
23
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
2.3 Sled Servo Block
The moving of pick-up is controlled by tracking servo output through a low pass filter.
The sled kick voltage is outputted for track jump operation.
43
TM6
TM7
-
44
+
42
PS
SLO
SLSL+
4
3
X1
0
0
X2
0
1
X3
1
0
X4
1
1
TM2
Figure 17. Sled servo block
2.4 Spindle Servo Block
The 20KΩ resistor and 0.33uF capacitor form the 200Hz low pass filter, and the carrier component of
spindle servo error signals is eliminated. In CLV-S mode, SMEF becomes "L" and pin 25 low pass filter fc
lowers, strengthening the filter further. The characteristics of high frequency phase compensation in
focus tracking servo and the characteristics of cut off frequency in CLV low pass filter are tested by FSET
pin.
SMON 24
22K
22K
220K
15K
220K
SMDP
23
20K
-
+
220K
25
46
SPDLO
50K
220K
15K
+
100K
-
Double
speed
45 SPDL-
6
SMEF
FSET
Figure 18. Spindle servo block
M/M-97-P006
1997. 10. 17
24
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
3.Digital Block
3.1 Description
Digital block is transferred serial data by micom and 8-bit serial data is converted to parallel data by
serial to parallel register. This data is decoded by latch signal. The status output of focus servo,tracking servo,and sled servo system,etc is determined by each data. The auto-sequence function process
2~4 micom command by one auto-sequence command.
MDATA
D0
D1
D2
D4
D3
D6
D5
D7
tsu
twck
twck
tsn
MCK
MLT
td
twl
Figure 19. CPU serial interface timing chart
Table 4. CPU serial interface timing characteristics
Item
Symbol
Min
Typ
Max
Unit
fck
-
-
1
MHz
fwck
500
-
-
ns
Hold Time
tsu
500
-
-
ns
Setup Time
tn
500
-
-
ns
Delay Time
td
500
-
-
ns
Latch Pulse Width
twl
1000
-
-
ns
Clock Frequency
Clock Pulse Width
M/M-97-P006
1997. 10. 17
25
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
3.2 Micom Command Set
Table 5. Servo control command set
Item
Hexa
Address
Data
ISTA
D7
D6
D5
D4
D3
D2
D1
D0
TOUT
Focus Control
$0X
0
0
0
0
FS4
Focus On
FS3
Gain Down
FS2
Search On
FS1
Search Up
FZC
Tracking
Control
$1X
0
0
0
1
Anti Shock
Brake On
TG2
Gain Set
TG1
Gain Set
A.S
Tracking
Mode
$2X
0
0
1
0
Select
$3X
0
0
1
1
PS4
Focus
Search+2
PS3
Focus
Search+2
PS2
Sled Kick+2
PS1
Sled Kick+1
STOP
Auto
Sequence
$4X
0
1
0
0
AS3
AS2
AS1
AS0
/
BUSY
0.18ms
0.09ms
0.045ms
0.022ms
$5X
0
1
0
1
0.36ms
0.18ms
0.09ms
0.045ms
11.6ms
5.80ms
0.09ms
0.045ms
64
32
16
8
128
64
32
16
R
A
M
Blind/
overflow
S
E
T
Break
Kick
$6X
0
1
1
0
2N
jump
Tracking Mode
Sled Mode
TZC
Hi-Z
$7X
0
1
1
1
Auto Adj.
$8XX
1
0
0
0
Offset,Balance,Gain,APC Control
-
Speed
$FX
1
1
1
1
$F0:Normal Speed, $F3:Double Speed
-
move
(M)
M/M-97-P006
1997. 10. 17
26
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
3.2.1 Focus Control($0X)
This command consists of 8 bits data and expressed by two hexa $0X.
D7
D6
D5
D4
D3
D2
D1
D0
ISTAT
0
0
0
0
FS4
FS3
FS2
FS1
FZC
FS4,FS3,FS2,FS1:internal switch for focus control
-Focus Search Operation(FS2,FS1)
$02:FS2 switch become off and the value of servo output pin is as below.
(10uA-5uA)*50k*(feedback Resistor/50k)
$03:If FS1 switch is 1, the current supply is cut off and the discharge is performed.
The waveform is as below and the time constant is determined by internal resistor 50K
and external capacitor.
0V
Figure 20. Waveform at pin 3 when FS1 is switched from 0 to 1
The waveform of servo output pin according to FS1 and FS2 switches is as below.
$00
02
03
02
03
02
03
00
Figure 21. Focus search waveform at pin 48 by $02 and $03
FS4 is switch for on/off control of focus servo loop
$00:Focus servo off
$08:Focus servo on
M/M-97-P006
1997. 10. 17
27
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
3.2.2 Tracking Control($1X)
This command is used for tracking loop gain control, break circuit and anti-shock on/off control.
D7
D6
D5
D4
D3
D2
D1
D0
ISTAT
0
0
0
1
Anti
shock
on/off
Break
circuit
on/off
TG2
TG1
Anti
shock
TG2 and TG1 are internal switch for tracking gain set.
3.2.3 Tracking mode($2X)
This command is used for tracking and sled servo on/off and jump for searching track.
D7
D6
D5
D4
0
0
1
0
D3
D2
Tracking control
D1
D0
ISTA
T
Sled control
TZC
<Tracking control & Sled control>
D3
D2
Tracking mode
D1
D0
Sled mode
0
0
Tracking servo off
0
0
Sled servo off
0
1
servo on
0
1
servo on
1
0
Forward jump
1
0
Forward kick
1
1
Reverse jump
1
1
Reverse kick
3.2.4 Peak value set($3X)
This command is used for the peak value setting of focus search and sled kick .
D0,D1:Sled kick
D2,D3:Focus search peak value
3.2.5 Auto Sequencer command($4X)
This command is used for reducing control time and replacing several command by one auto- sequence
command.
•Auto sequencer mode is performed from the first falling edge of WDCK clock after the falling of
the latch pulse.
•Auto sequencer does not carry out tracking gain up,brake,anti-shock and focus gain down.
•Micom checks ISTAT pin(/BUSY) and sends to $40 command to reset preceding auto
sequencer status
M/M-97-P006
1997. 10. 17
28
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
Table 6. Auto sequence command
Hexa
AS3
AS2
AS1
AS0
Remark
Cancel
$40
0
0
0
0
Reset
Auto focus
$47
0
1
1
1
-
1 Track jump
$48
$49
1
1
0
0
0
0
0
1
Forward
Reverse
10 Track
jump
$4A
$4B
1
1
0
0
1
1
0
1
Forward
Reverse
2N track jump
$4C
$4D
1
1
1
1
0
0
0
1
Forward
Reverse
M track move
$4E
$4F
1
1
1
1
1
1
0
1
Forward
Reverse
3.2.6 RAM Set($5X~$7X)
The value of RAM set is somewhat different to the actual count and the initial value is like below
Table 7. RAM set table
Item
Initial value
Blind
$55
actual count value
Set value +4~5 WDCK clock
overflow, Brake
Set value +3 WDCK clock
Kick
$67
Set value +5 WDCK clock
2N ,M Track jump
$7E
Set value +3 WDCK clock
4.Auto Adjustment Command
This command is used for auto control of offset,balance,gain adjustment and reference voltage setting. .
This command is also in control of on/off and sub type of laser diode and test or set mode.
4.1 Tracking balance ($800~$81F)
Item
Hexa
Data(5bits)
initial value
ISTAT(pin31)
TRCNT(pin30)
Tracking balance
$800~$81F
D4~D0
$81F
BAL
TRCNT
M/M-97-P006
1997. 10. 17
29
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
4.2 Tracking gain ($820~$83F)
Item
Hexa
Data(5bits)
initial value
ISTAT(pin31)
TRCNT(pin30)
Tracking gain
$820~$83F
D4~D0
$820
GAIN
TGL
4.3 Tracking balance & gain window level setting
Item
Hexa
D3
D2
D1
D0
initial value
window level setting
$84X
gain
balance
0
0
$840
•The tracking balance and gain window level is set by D2,D3 data and the value has two
kinds of window levels set
4.3.1 Tracking balance window level
D2 data
0
1
Tracking balance window level
-10~+15mV
-20~+20mV
4.3.2 Tracking gain window level
D3 data
0
1
Tracking gain window level
250~400mV
150~300mV
4.4 Focus loop offset adjustment start command($841,$842)
This command is used for adjusting focus error bias and removing focus servo offset.
This command is executed during laser diode off.
Hexa command
meaning
$841
Focus error bias adjustment start command
$842
Focus servo offset cancel adjustment start command
4.5 APC circuit operation and Interruption on/off setting condition($85X)
This command is used for setting of laser diode on/off ,sub type(P_sub or N_sub) of laser diode and
interruption countermeasure circuit on/off.
Item
Hexa
D3
D2
APC &
Interruption on/off
condition
$85X
LD on/off
0 : On
1 : Off
Sub-type
0:N_sub
1:P_sub
D1
Interruption ON/OFF
and time setting
M/M-97-P006
1997. 10. 17
D0
initial value
$858
30
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
4.5.1 Time setting for Interruption countermeasure circuit on/off
D1
D0
Meaning
0
0
Countermeasure circuit on for all mirror signal
0
1
Countermeasure circuit on up to 20KHz mirror signal
1
0
Countermeasure circuit off
1
1
Countermeasure circuit on up to 10KHz mirror signal
4.6 Focus servo offset reset command and set mode command (86X)
This command is used for set and release before focus servo loop offset adjustment and
mode change.
Item
Hexa
D3
D2
D1
D0
Set mode
&
focus servo offset
reset command
$86X
0:offset
release
1:offset
reset
option
(Pin41 output)
0:Defect
1:SSTOP
1
1
(note1) The set mode command is sent by micom right after tracking gain is tuned.
(note2) The ISTAT pin is outputted the internal status of $00 ~ $7X command.
4.7 Direct command(DIRC) and focus bias reset command($87X)
This command is used for direct 1 track jump on/off setting and focus bias adjustment set and
release
Item
Hexa
D3
D2
D1
D0
DIRC
&
focus bias reset
$87X
0:DIRC On
1:DIRC Off
0:reset
1:reset
release
X
X
M/M-97-P006
1997. 10. 17
31
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
5.The Example of Adjustment Free Algorithm
5.1 Focus Error Bias & Servo Offset Cancel Adjustment
Focus_RF_Offset Adjustment
[Command:841]
Increment Count
5bit Counter
17mV/Bit
Tuning range : + 260mV
ISTAT
Check
L--> H
no
Time
Max 100msec
yes
Finish
[RF CNT value Latch]
Focus_Servo_Offset Adjustment [Command:842]
Increment Count
4bit Counter
40mV/Bit
tuning range : + 280mV
ISTAT
Check
L--> H
no
Time
Max 100msec
yes
Finish
[Servo value Latch]
Figure 22. Focus error bias & servo offset cancel adjustment flow chart
M/M-97-P006
1997. 10. 17
32
PRELIMINARY
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
5.2 Tracking Balance Adjustment
Balance adjustment Range window
setting + 20mv, + 15mv setting
ISTAT
Check
L--> H
YES
Micom Balance
5Bit adjustment
Command Up
NO
ISTAT
Check
L--> H
$844
$800 ~ $81F
YES
NO
Finish
[RF CNT value Latch
Figure 23. Tracking balance adjustment flow chart
5.3 Tracking Gain Adjustment
Gain adjustment range
setting Command
ISTAT
Check
L--> H
NO
$848
5 Bit Gain adjustment Command
$820 ~ $83F
YES
Gain adjustment finish
TOC READ
Figure 24. Tracking gain adjustment flow chart
M/M-97-P006
1997. 10. 17
33
VC GNDVCC
+
A
GND
104p
VCC
100K 150K
102p
1K
222p
100K
39K
to KA9258D
+
391p
120K
120K
47K
+
683p
103p
56K
to KA9258D
3
4
5
6
7
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
TZC
KB9223
331p
+
5.6K
331p
5.6K
+
TEO
5.6K
FE+
VSSP
150p
FEO
27K
SL+
from deck
to MOCOM
from MOCOM
from MOCOM
from MOCOM
from MOCOM
333p
103p
from DSP
to MOCOM
to MOCOM
to DSP
MCK 35
VSSA 34
EFM 33
+
104p
ASY 32 0.47uF +
ISTAT 31
LOCK 29
TRCNT 30
FGD 28
FS3 27
FLB 26
SMEF 25
104p
MDATA 36
MLT 37
100K
RESET 38
MIRROR 39
FOK 40
8
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
2
FE2
SL-
WDCK
SLO
3.3uF
to KA9258D
RRC
+
ISET
B
C
65 PD1
68 E
67 F
66 PD2
22K
D
E
F
69 PD
70 LD
71 VR
72 VCC
73 RF74 RFO
75 IRF
76 EQO
78 EQC
77 RFI
222p
VDDA
VCC
1K
from pick-up
102
+
4pF
472p
103p
1uF
79 EI
SSTOP
SMON
from DSP(SMON)
VREG
from DSP
SMDP
from DSP(SMDP)
1997. 10. 17
47K
15K
10uF
SPDL180K
34
M/M-97-P006
0.47uF
TE-
GND (POST)
MUTEI
from MICOM
1
5.6K
152p
12K
333p
ATSC
CH1I
5.6K
CH1O
CH2 out
4.7uF
TE2
CH2O
CH1 out
150p
27K
152p
GC1I
27K
TE1
CH2I
5.6K
GC1O
4.7uF
from DSP(SMEF)
104p
333p
27K
LPFT
4.7uF
+
1M 0.47uF
104p
DVDD
from DAC CH1
8.2K
to KA9258D
SPDLO
103p
TDFCT
GC2I
GC2O
VCC(POST)
100uF
10K
FE1
VCC
from DSP(SMSD)
104p
VCCP
from DAC CH2
+
10K
FSET
510K
VCC
to pick-up
+
33uF
FDFCT
DCC1
22K
TG2
103p
RF AMP & SERVO SIGNAL PROCESSOR
KB9223 / KB9223-L
TGU
DCC2
4.7uF
FRSH
103p
33uF
+
DVEE
DCB
80 GND
152p
FEBIAS
MCP
+
PRELIMINARY
APPLICATION CIRCUIT
Figure 25. Application circuit