RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 INTORDUCTION 80-TQFP-1212 The S1L9223B02 is a 1-chip BICMOS integrated circuit to perform the function of RF amp and servo signal processor for compact disc player applications. It consist of blocks for RF signal processing, focus, tracking, sled and spindle servo. Also this IC has adjustment free function and embedded OP-AMP for audio post filter. FEATURES • RF amplifier & RF equalizer • Focus error amplifier & servo control • Tracking error amplifier & servo control • Mirror & defect detector circuit • Focus OK detector circuit • APC (Auto Laser Power Control) circuit for constant laser power • FE bias & focus servo offset adjustment free • EF balance & tracking error gain adjustment free • Embedded audio post filter • The circuit for Interruption countermeasure • Double speed play available • Operating voltage range: S1L9223B02: 3.4V ORDERING INFORMATION Device Package Temperature Range S1L9223B02-T0R0 80-TQFP-1212 −20 to +70 °C RELATED PRODUCT • S5L9286F02 Data Processor 1 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR RF- 72 RFO 73 FE2 FLB FGD FS3 FRSH 25 27 26 2 ATSC 57 MCK TZC MDATA 35 34 50 51 MICOM Data Interface Logic Focus Phase Compensation & Offset cancel circuit 64 PD2 65 FEBIAS 62 F 66 E 67 EI 78 PD 68 LD 69 VR 70 EQC 77 EQO 75 IRF 74 ASY MLT 21 29 28 30 37 36 RF Amp PD1 RESET WDCH 53 ISTAT TE1 58 LOCK FE1 TRCNT BLOCK DIAGRAM 32 RFI 76 FDFCT 46 FE- 47 FEO 56 TDFCT 48 54 TETEO TE2 LPFT 61 TG2 60 TGU 42 SLO SLSL+ Focus Error Amp FE-BIAS Adjustment Tracking Error Amp E/F Balance & Gain Control Tracking Phase Compensation Block & Jump Pulse GEN. MICOM TO SERVO CONTROL AUTO SEQUENCER LDON APC Amp 49 52 Center Voltage Amp. Sled Servo Amplifier & Sled Kick GEN. ADJUSTMENT-FREE CONTROL RF Level AGC & Equalizer 31 EFM 59 EFM Comparator 43 41 45 FS1FS4 TM1- BAL1- PS1- GA1TM6 BAL5 PS4 GA5 Spindle Servo LPF ( Double Speed ) 44 22 23 24 5 2 Built-in Post Filter Amp ( L&R ) 8 9 GC2O CH2I CH2O RRC MUTEI 14 15 12 13 18 16 11 10 CH1I 4 GC2I FOK Detection Circuit CH1O 3 GC1I DCC2 Defect Detection Circuit GC1O 1 DCC1 DCB Mirror Detection Circuit SPDLO SPDLSMDP SMON SMEF FSET 80 MIRROR MCP 39 FOK 38 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 SL+ 41 SL- FE- TE- TZC TE2 TE1 FE2 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 FE1 SLO SPDL- SPDLO FEO TEO ATSC LPFT DVDD TDFCT FDFCT TGU PIN CONFIGURATION 61 40 SSTOP FEBIAS 62 39 FOK DVEE 63 38 MIRROR PD1 64 37 RESET PD2 65 36 MLT F 66 35 MDATA E 67 34 MCK 68 33 VSSA 69 32 EFM 70 31 ASY 30 ISTAT TG2 PD LD VR S1L9223B02 LOCK IRF 74 27 FGD EQO 75 26 FS3 RFI 76 25 FLB EQC 77 24 SMEF EI 78 23 SMON 79 22 SMDP 80 21 WDCH 10 11 12 13 14 15 16 17 18 19 20 VREG 9 ISET 8 VSSP 7 MUTEI 6 RRC 5 GC1I 4 CH1I 3 GC1O 2 CH1O 1 CH2O MCP DCB FRSH GND CH2I 73 GC2O RFO GC2I TRCNT 28 VCCP 29 VDDA 72 DCC1 RF- FSET 71 DCC2 VCC 3 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR PIN DESCRIPTION 4 Pin No. Symbol Description 1 DCB 2 FRSH Capacitor connection pin for time constant to generate focus search waveform 3 DCC2 The input pin through capacitor of defect bottom hold output 4 DCC1 The output pin of defect bottom hold 5 FSET The peak frequency setting pin for focus, tracking servo and cut off frequency of CLV LPF 6 VDDA Analog VCC for servo part 7 VCCP VCC for post filter 8 GC2I Amplifier negative input pin for gain and low pass filtering of DAC output CH2 9 GC2O Amplifier output pin for gain and low pass filtering of DAC output CH2 10 CH2I The input pin for post filter channel2 11 CH2O The output pin for post filter channel2 12 CH1O The output pin for post filter channel1 13 CH1I The input pin for post filter channel1 14 GC1O Amplifier output pin for gain and low pass filtering of DAC output CH1 15 GC1I Amplifier negative input pin for gain and low pass filtering of DAC output CH1 16 RRC The pin for noise reduction of post filter bias 17 VSSP VSS for post filter 18 MUTEI The input pin for post filter muting control 19 ISET 20 VREG The output pin of regulator 21 WDCK The clock input pin for auto sequence 22 SMDP The input pin of CLV control output pin SMDP of DSP 23 SMON The input pin for spindle servo ON through SMON of DSP 24 SMEF The input pin of provide for an external LPF time constant 25 FLB Capacitor connection pin to perform rising low bandwidth of focus loop 26 FS3 The pin for high frequency gain change of focus loop with internal FS3 switch 27 FGD Reducing high frequency gain with capacitor between FS3 pin 28 LOCK 29 TRCNT 30 ISTAT Capacitor connection pin for defect Bottom hold The input pin for current setting of focus search, track jump and sled kick voltage Sled runaway prevention pin Track count output pin Internal status output pin RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 PIN DESCRIPTION (Continued) Pin No. Symbol Description 31 ASY The input pin for asymmetry control 32 EFM EFM comparator output pin 33 VSSA Analog VSS for servo part 34 MCK MICOM clock input pin 35 MDATA MICOM data input pin 36 MLT 37 RESET 38 MIRROR 39 FOK 40 SSTOP 41 SL+ The noninverting input pin of sled servo amplifier 42 SLO The output pin of sled servo amplifier 43 SL- The inverting input pin of sled servo amplifier 44 SPDL- The noninverting input pin of spindle servo amplifier 45 SPDLO The output pin of spindle servo amplifier 46 FE- The inverting input pin of focus servo amplifier 47 FEO The output pin of focus servo amplifier 48 TE- The inverting input pin of tracking servo amplifier 49 TEO The output pin of tracking servo amplifier 50 ATSC The input pin for Anti-shock detection 51 TZC The comaparator input pin for tracking zero crossing detection 52 TE2 Tracking servo input pin 53 TE1 Tracking error amplifier output pin 54 LPFT The input pin of tracking error low pass filtering signal 55 DVDD The power supply pin for logic circuit 56 TDFCT The capacitor connection pin for tracking defect compensation 57 FE2 Focus servo input pin 58 FE1 Focus error amplifier output pin 59 FDFCT 60 TGU The capacitor connection pin for high frequency tracking gain switch 61 TG2 The pin for high frequency gain change of tracking servo loop with internal TG2 switch MICOM data latch input pin Reset input pin The mirror output for test The output pin of focus OK comparator The pin for detection whether pick_up position is innermost or not The capacitor connection pin for focus defect compensation 5 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR PIN DESCRIPTION (Continued) Pin No. Symbol 62 FEBIAS 63 DVEE 64 PD1 The negative input pin of RF I/V amplifier1(A+C signal) 65 PD2 The negative input pin of RF I/V amplifier2(B+D signal) 66 F The negative input pin of F I/V amplifier (F signal) 67 E The negative input pin of E I/V amplifier (E signal) 68 PD The input pin for APC 69 LD The output pin for APC 70 VR The output pin of (AVEE+AVCC)/2 voltage 71 VCC VCC for RF part 72 RF- RF summing amplifier inverting input pin 73 RFO RF summing amplifier output pin 74 IRF The input pin for AGC 75 EQO 76 RFI The input pin for EFM comparison 77 EQC The capacitor connection pin for AGC 78 EI 79 GND GND for RF part 80 MCP Capacitor connection pin for mirror hold 6 Description Focus error bias voltage control pin The DVEE pin for logic circuit The output pin for AGC Feedback input pin of E I/V amplifier for EF Balance control RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 ABSOLUTE MAXIMUM RATINGS Characteristic Symbol Value Unit VMAX 6 V PD 150 mW Operating Temperature TOPR −20 to + 70 o C Storage temperature TSTG −55 to + 150 o C Supply Voltage Power Dissipation ELECTRICAL CHARACTERISTICS (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit Supply Current High ICCHI VCC = 3.6V, No load − 12 27 42 mA Supply Current Typ ICCTY VCC = 3.2V, No Load − 8 23 38 mA RF Amp Offset Voltage Vrfo Input open −80 0 +80 mV RF Amp Voltage Gain Grf SG3 f = 10kHz, 40mVp-p, sine 25.1 28.1 31.1 dB RF THD Rfthd SG3 f =1kHz, 40mVp-p,sine − − 5 % pin 73 RF Amp Max. Output Voltage Vrfpp1 SG3 DC 1.8V 2.8 − − V RF Amp Min. Output Voltage Vrfpp2 SG3 DC 1.4V − − 0.6 V RF oscillation voltage Rfosc1 Input open 0 50 100 mV Focus Error Amp Offset Voltage Vfeo1 input open −450 −250 −50 mV Focus Error Amp Auto Offset Voltage Vfeo2 WDCH=88.2kHz Pulse, $841 −35 0 35 mV Focus Error Amp PD1 Voltage Gain Gfe1 SG3 f=10kHz, 32mVp-p, sine 27 30 33 dB Focus Error Amp PD2 Voltage Gain Gfe2 SG3 f = 10kHz, 32mVp-p, sine 27 30 33 dB Focus Error Amp Voltage Difference Gfe∆ ∆Gfe1-∆Gfe1 −3 0 +3 dB Focus Error Amp Max. Output Voltage Gfepp1 SG3 DC 2.7V 2.7 − − V Focus Error Amp Min. Output Voltage Gfepp2 SG3 DC2.3V − − 0.6 V ISTAT output status Vistat1 $878+$87F+$840 2.7 - - V pin 58 Pin 30 7 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit AGC Max Gain Gagc SG4 f = 500kHz, 20mVp-p, sine 16 19 22 dB AGC EQ Gain Geq Gain Difference of Gagc at f =1.5MHz 0 1 2 dB AGC Gain2 Gagc2 SG4 f = 500kHz, 0.5Vp-p, sine 3.5 6 9 dB AGC Compress Ratio Cagc Gain Difference of Gagc2 at 0.1Vp-p 0 2.5 5 dB AGC Frequency Fagc Gain Difference SG4 f=1.5MHz,0.1Vp-p,sine and f=500kHz,0.1Vp-p,sine −1.5 0 2.5 dB RF& AGC oscillation voltage2 Rfosc2 Pin 74 IRF = 1.6V 0 25 50 mV pin 75 Tracking Error Offset Voltage Vteo $800, $830, input open −50 0 +50 mV Tracking Error Amp Voltage Gain F Gtef $800, $820 SG3 0.3Vp-p, 10kHz, sine 2.1 5.1 8.1 dB Tracking Error Amp Voltage Gain E Gtee SG3 0.3Vp-p, 40kHz, sine −0.75 2.25 5.25 dB Tracking Error Amp Voltage Gain Difference Gte∆ Gtef-Gtee −0.25 2.75 5.75 dB Tracking Error Amp Maximum Output Voltage H Vtepp1 DG3 DC 2.7V 2.2 − − V Tracking Error Amp Minimum Output Voltage L Vtepp2 SG3 DC 0.5V − − 1.2 V Tracking Error Amp Gain up F Tguf $800,820 SG3 0.3Vp-p, 10kHz, sine 8.0 11.0 14.0 dB Tracking Error Amp Gain up E Tgue $800, 820 SG3 0.3Vp-p, 10kHz, sine 5.3 8.3 11.3 dB Tracking Gain Normal Fgfn SG3 0.3Vp-p, 1kHz, sine, $830 2.1 5.1 8.1 dB Tracking F Gain 1 Fgf1 SG3 0.3Vp-p, 1kHz, sine, $831 0.1 3.1 6.1 dB Tracking F Gain 2 Fgf2 SG3 0.3Vp-p,1kHz, sine, $832 −1.7 1.3 4.3 dB Tracking F Gain 3 Fgf3 SG3 0.3Vp-p, 1kHz, sine, $833 −5.0 −2.0 1.0 dB Tracking F Gain 4 Fgf4 SG3 0.3Vp-p, 1kHz, sine, $834 −9.2 −6.2 −3.2 dB 8 pin 53 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit Tracking E Balance Normal Tben SG3 0.3Vp-p, 1kHz, sine, $800 −0.27 2.27 5.27 dB Tracking E Balance 1 Tbe1 SG3 0.3Vp-p, 1kHz, sine, $801 −0.51 2.51 5.51 dB Tracking E Balance 2 Tbe2 SG3 0.3Vp-p, 1kHz, sine, $802 −0.74 2.74 5.74 dB Tracking E Balance 3 Tbe3 SG3 0.3Vp-p, 1kHz, sine, $804 0.17 3.17 6.17 dB Tracking E Balance 4 Tbe4 SG3 0.3Vp-p, 1kHz, sine, $808 1.03 4.03 7.03 dB Tracking E Balance 5 Tbe5 SG3 0.3Vp-p, 1kHz, sine, $810 2.63 5.63 8.63 dB FGFN-FGF1 ∆FG1 − − 0 1.5 3 dB FGFN-FGF2 ∆FG2 − − 0.5 2.0 3.5 dB FGFN-FGF3 ∆FG3 − − 2.0 3.25 4.5 dB FGFN-FGF4 ∆FG4 − − 3.0 4.25 5.5 dB TBE5 − TBE4 ∆TB1 − − 0.6 1.6 2.6 dB TBE4 − TBE3 ∆TB2 − − −0.14 0.86 1.86 dB TBE3 − TBE2 ∆TB3 − − −0.57 0.43 1.43 dB TBE2 − TBE1 ∆TB4 − − −0.77 0.23 1.23 dB APC PSUB Voltage 1 Vapc1 LDON, $854, SG4 GND+85mV − − 1.2 V APC PSUB Voltage 2 Vapc2 LDON, $854, SG4 GND+185mV 2.5 − − V APC NSUB Voltage 1 Vapc3 LDON, $850, SG4 GND+95mV 2.5 − − V APC NSUB Voltage 2 Vapc4 LDON, $850, SG4 GND+165mV − − 1.2 V APC LD Off Voltage 1 Vapc5 LDOFF, $85C, SG4 1.6V 2.6 − − V APC LD Off Voltage 2 Vapc6 LDOFF, $858, SG4 2.5V − − 1.1 V APC Maximum Output Current H Vapc7 LDON, $854, SG4 GND + 185mV 1.6 − − V APC Minimum Output Current L Vapc8 LDON, $854, SG4 GND + 85mV − − 1.6 V pin 53 pin 69 9 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit Mirror Maximum Output Voltage H Vmirh SG4 1.2V+0.8Vp-p, 1kHz,sine 2.7 − − V Mirror Minimum Output Voltage L Vmirl SG4 1.2V+0.8Vp-p, 1kHz,sine − − 0.5 V Mirror Minimum Operating Frequency Fmirh SG4 1.2V + 0.8Vp-p, 900Hz,sine − 550 900 Hz Mirror Maximum Operating Frequency Fmirb SG4 1.2V+0.8Vp-p, 30kHz,sine 30 75 − kHz Mirror AM Frequency Characterstic Fmir SG4 1.2V+0.8Vp-p, 600Hz, fc=600kHz 55% modulation - 400 600 Hz Mirror Minimum Input Voltage Vmir SG4 1.2V + 0.2Vp-p, 10kHz,sine − 0.1 0.2 V Mirror Maximum Input Voltage Vmih SG4 1.2V+1.8Vp-p, 10kHz,sine 1.8 − − V FOK Threshold Voltage Vfokt SG4 1.35V - 1.1V, DCsweep, 5mV step −420 −360 −300 mV FOK Output Voltage H Vfokh SG4 DC 1.0V 2.7 − − V FOK Output Voltage L Vfokl SG4 DC 1.6V − − 0.5 V Defect Output Voltage H Vdfcth $863,SG3 1.615V+0.032Vp-p f = 1kHz,sine 2.7 − − V Defect Output Voltage L Vdfcth $863,SG3 1.615V+0.032Vp-p f = 1kHz,sine − − 0.5 V Focus Loop Mute Fmute SG2 1.6V+0.1Vp-p 1kHz,sine −100 0 100 mV Tracking Loop Mute Tmute SG2 1.6V+0.1Vp-p 1kHz,sine −100 0 120 mV Loop mute offset voltage Vteo1 No input -100 0 100 mV Interruption Imute $854 SG2 1.6V+0.1Vp-p 1kHz,sine −100 0 120 mV pin 38 pin 39 pin 40 pin 47 pin 49 Interruption on 1 Imute1 $857 SG2 1.6V+0.1Vp-p 1kHz,sine -100 0 100 mV Interruption on 2 Imute2 $855 SG2 1.6V+0.1Vp-p 1kHz,sine -100 0 100 mV 10 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit Defect Bottom Voltage Fdfct1 SG3 1.620V+0.04Vp-p, 1kHz,sine − 670 1000 Hz Defect Max Freq. Voltage Fdfct2 SG3 1.620V+0.04Vp-p, 2kHz,sine 2.0 4.7 − kHz Defect Minimum Input Voltage Vdfct1 SG 3 1.610V+0.020Vp-p, 1kHz,sine − 0.3 0.5 V Defect Maximum Input Voltage Vdfct2 SG3 1.635V+0.070Vp-p, 1kHz,sine 1.8 − − V EFM Duty Voltage 1 Defm1 SG4 1.6V+0.75Vp-p, 750kHz,sine −50 0 50 mV EFM Duty Voltage 2 Defm2 SG4 1.85V+0.75Vp-p, 750kHz,sine 0 50 100 mV EFM Minimum input Voltage Vefm1 SG4 1.6V+0.12Vp-p, 750kHz,sine − − 0.12 V 1.8 − − V 4 − − MHz pin 40 pin 31 EFM Maximum input Voltage Vefm2 SG4 1.2V+1.8Vp-p 750kHz,sine EFM Maximum Operating Frequency Fefm SG4 1.6V+0.75Vp-p 4MHz sine EFM duty check EFMduty SG4 1.6V+0.75Vp-p 750kHz sine 45 50 55 % FZC Threshold Voltage Vfzc DC 1.6V+34mV,100mV 35 69 100 mV ATSC Threshold Voltage 1 Vatsc1 $10,SG2 DC 1.6V-6mV −67mV pin 30 −67 −37 −7 mV ATSC Threshold Voltage 2 Vatsc2 SG2 DC 1.6V+6mV,+67mV pin 33 7 37 67 mV TZC Threshold Voltage Vtzc $20,SG2 DC 1.6V-30mV +30mV −30 0 30 mV SSTOP Threshold Voltage Vsstop $30,SG2 DC 1.6V-100mV −30mV −100 −50 −30 mV Tracking gain window voltage VtGW $840+$830 SG2 1.6V+ 199mV, 300mV DC sweep 5mV step 200 250 300 mV Tracking gain window range VTGW2 $848+$830 SG2 1.6V+ 99mV, 200mV DC sweep 5mV step 100 150 200 mV pin 32 pin 30 pin 29 11 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit pin 30 −25 15 55 mV −25 15 55 mV Tracking balance window voltage VTBW $844+$810 SG2 1.6V + 99mV, -25mV 5mV DC sweep Tracking balance window range VTBW2 $844+$810 SG2 1.6V + 99mV, -25mV 5mV DC sweep Center Voltage VCVO 1.6V Reference pin 70 −100 0 100 mV VREF Current Drive Voltage 1 VCVO1 1.6V Reference pin 70 −100 0 100 mV VREF Current Drive Voltage 2 VCVO2 1.6V Reference pin 70 −100 0 100 mV Post CH1 Freq. Characteristic Fpos1 SG1 1.6V+1Vp-p 40kHz,sine pin 12 −4.5 −3.0 −1.5 dB Post CH2 Freq. Characteristic Fpos2 SG1 1.6V+1Vp-p 40kHz,sine pin 11 −4.5 −3.0 −1.5 dB Post CH1 Mute Mute1 Mute=3.2V SG1 1.6V+1Vp-p,1kHz,sine pin12 − − -35 dB Post CH2 Mute Mute2 Mute=3.2V SG1 1.6V+1Vp-p,1kHz,sine pin 11 − − -35 dB Post CH1 offset Vpos1 Mute=0V pin 12 -50 0 50 mV Post CH2 offset Vpos2 Mute=0V pin 11 -50 0 50 mV Post CH1 Gain Gpos1 Mute=0V, 1.6V+1Vp-p, 20kHz sine pin 12 -1.5 0 1.5 dB Post CH2 Gain Gpos2 Mute=0V, 1.6V+1Vp-p, 20kHz sine pin 11 -1.5 0 1.5 dB Focus Loop DC Gain Gf $08, SG2 DC 1.7V, 1.5V average pin 47 19.0 21.5 24.0 dB Focus Off Offset Vosf1 $00 pin 47 −100 0 100 mV Focus On Offset Vofs2 $08,DC 1.5V pin 47 0 250 500 mV Focus Auto Offset Vaof $842, WDCK, after 100ms pin 47 −65 0 65 mV ISTAT status after focus offset adjustment Vistat2 $86F+842 pin 30 2.7 - - V 12 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit FE bias voltage after focus offset adjustment Vteo3 after focus offset adjustment pin 47 -50 0 50 mV Focus Output Voltage H Vfoh1 $08, DC 2.1V pin 47 2.8 − − V Focus Output Voltage L Vfol1 $08, DC 1.1V pin 47 − − 0.60 V Focus Oscillation Voltage Vosc $08, DC 1.6V pin 47 0 100 200 mV Focus Feed Through Gff Gain Difference at Servo on and off pin 47 − − −35 dB Focus AC Gain 1 Gfa1 $08, SG2 1.6V+0.1Vp-p 1.2kHz,sine pin 47 19.0 23.0 27.0 dB Focus AC Phase 1 Pfa1 $08, SG2 1.6V + 0.1Vp-p 1.2kHz,sine pin 47 40 65 90 deg Focus AC Gain 2 Gfa2 $08, SG2 1.6V + 0.1Vp-p 2.7kHz,sine pin 47 14.0 18.5 23.0 dB Focus AC Phase 2 Pfa2 $08, SG2 1.6V+0.1Vp-p 2.7kHz,sine pin 47 40 65 90 deg Focus Search Voltage1 Vfs1 $30+$02 pin 47 −0.65 −0.50 −0.35 V Focus Search Voltage2 Vfs2 $30+$03 pin 47 0.35 0.50 0.65 V Focus Loop Total Gain Gftg Focus PD gain + Focus loop DC gain pin 47 49.5 51.5 53.5 dB Tracking DC Gain Gto $25 SG2 DC 1.4V, 1.8V average gain pin 49 13.5 15.5 17.5 dB Tracking Off Offset Vost1 $20 pin 49 −100 0 100 mV Tracking On Offset Vost2 SG2, DC 1.6V, $25 pin 49 −100 0 120 mV Tracking Oscillation Voltage Vosa1 $25, SG2 DC 1.6V pin 49 0 100 200 mV Tracking gain boost for ATSC Gatsc 1.6V + 0.1Vp-p, 1kHz, sine pin 49 17.5 20.5 23.5 dB Tracking gain boost on LOCK (L) Glock 1.6V + 0.1Vp-p,1kHz,sine pin 49 17.5 20.5 23.5 dB Tracking Output Voltage H Vth1 $25,SG2 DC 0.6V pin 49 2.8 − − V Tracking Output Voltage L Vtl1 $25, SG2 , DC 2.6V pin 49 − − 0.6 V Tracking Jump Voltage 1 Vtj1 $2C pin 49 −0.65 −0.5 −0.35 V Tracking Jump Voltage 2 Vtj2 $28 pin 49 0.35 0.5 0.65 V Direct 1 track jump 1 Vdir1 $28 + 877 pin 49 0.35 0.5 0.65 V Direct 1 track jump 2 Vdir2 $2C + 877 pin 49 −0.65 −0.5 −0.35 V 13 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit Tracking Feed Through Gtf Gain Difference at Tracking servo on and off pin 49 − − −39 dB Tracking AC Gain 1 Gta1 $10,$25,SG2 1.6V + 0.1Vp-p, 1.2kHz,sine pin 49 9.0 12.5 16.0 dB Tracking AC Phase 1 Pta1 $10, $25, SG2 1.6V+ 0.1Vp-p, 1.2kHz,sine pin 49 −140 −115 −90 deg Tracking AC Gain 2 Gta2 $10, $25, SG2 1.6V+ 0.1Vp-p, 2.7kHz, sine pin 49 17.5 21.5 25.5 dB Tracking AC Phase 2 Pta2 $10,$25,SG2 1.6V + 0.1Vp-p, 2.7kHz,sine pin 49 −195 −150 −100 deg Tracking Loop Gain Gtrt tracking Amp F gain+ servo DC gain - 18.5 20.5 22.5 dB Sled DC Gain Gsl SG2 DC 1.8V, 1.4V pin 42 20.5 22.5 24.5 dB Sled Feed Through Gslf Gain Difference at sled servo on and off SG2 1.6V + 0.1Vp-p 1.2kHz,sine pin 42 − − −34 dB Sled Output Voltage H Vslh1 $25, SG2 DC 2.0V pin 42 2.8 − − V Sled Output Voltage L Vsll1 $25, SG2 DC 1.2V pin 42 − − 0.6 V Sled Forward Kick Voltage Vsk1 $22 pin 42 0.38 0.60 0.75 V Sled Reverse Kick Voltage Vsk2 $23 pin 42 −0.75 −0.6 −0.38 V Spindle Normal Speed Gain Gsp $F0 SG1 DC 1.7V, 1.5V, average gain pin 45 14.0 16.5 19.0 dB Spindle Double Speed Gain Gsp2 $F3 SG1 DC 1.7V, 1.5V, average gain pin 45 19.0 23.0 27.0 dB Spindle Output Voltage H Gsph1 $F0, SG1 DC 2.5V pin 45 2.8 − − V Spindle Output Voltage L Gspl1 $F0, SG1 DC 0.7V pin 45 − − 0.6 V Spindle AC Gain Gspa $F0,SG1 1.6V + 0.2Vp-p, 2kHz,sine pin 45 −7.0 −3.5 0 dB Spindle AC Phase Pspa $F0,SG1 1.6V + 0.2Vp-p, 2kHz,sine pin 45 −120 −90 −60 deg 14 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit Post filter output voltage mix.1L Vpom1L SG1 1.6V + 1.5Vp-p, 1kHz, within THD 1% pin 12 0.5 0.55 − Vrms Post filter output voltage mix. 2L Vpom2L SG1 1.6V + 1.5Vp-p, 1kHz, within THD 1% pin 11 0.5 0.55 − Vrms Total harmonic distortion 1L THD11L SG1 f = 100Hz, 0dBm pin 12 − 0.01 0.05 % Total harmonic distortion 1L THD12L SG1 f=1kHz,0dBm pin 12 − 0.01 0.05 % Total harmonic distortion 1L THD13L SG1 f = 10kHz, 0dBm pin 12 − 0.05 0.1 % Total harmonic distortion 1L THD14L SG1 f = 16kHz, 0dBm pin 12 − 0.1 0.2 % Total harmonic distortion 1L THD15L SG1 f = 20kHz, 0dBm pin 12 − 0.1 0.2 % Total harmonic distortion 2L THD21L SG1 f = 100Hz, 0dBm pin 11 − 0.01 0.05 % Total harmonic distortion 2L THD22L SG1 f = 1kHz, 0dBm pin 11 − 0.01 0.05 % Total harmonic distortion 2L THD23L SG1 f = 10kHz, 0dBm pin 11 − 0.05 0.1 % Total harmonic distortion 2L THD24L SG1 f = 16kHz, 0dBm pin 11 − 0.1 0.2 % Total harmonic distortion 2L THD25L SG1 f = 20kHz, 0dBm pin 11 − 0.1 0.2 % Frequency Characteristics 1L fv11L SG1 f = 100Hz, 0dBm pin 12 −0.1 0 0.1 dB Frequency Characteristics 1L fv12L SG1 f = 1kHz, 0dBm pin 12 −0.25 0 +0.25 dB Frequency Characteristics 1L fv13L SG1 f = 10kHz, 0dBm pin 12 −0.5 0 0.5 dB Frequency Characteristics 1L fv14L SG1 f = 16kHz, 0dBm pin 12 −1.0 0 1.0 dB Frequency Characteristics 1L fv15L SG1 f = 20kHz, 0dBm pin 12 −1.5 0 1.5 dB Frequency Characteristics 2L fv21L SG1 f = 100Hz, 0dBm pin 11 −0.1 0 0.1 dB Frequency Characteristics 2L fv22L SG1 f = 1kHz, 0dBm pin 11 −0.25 0 +0.25 dB Frequency Characteristics 2L fv23L SG1 f = 10kHz, 0dBm pin 11 −0.5 0 0.5 dB Frequency Characteristics 2L fv24L SG1 f = 16kHz, 0dBm pin 11 −1.0 0 1.0 dB Frequency Characteristics 2L fv25L SG1 f = 20kHz, 0dBm pin 11 −1.5 0 1.5 dB 15 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR ELECTRICAL CHARACTERISTICS (Continued) (Ta = 25°C, VDD = DVDD = VCC = +3.2V, VSS = DVSS = GND = VSSP = 0V) Characteristic Symbol Test Conditions Output Min. Typ. Max. Unit Cross talk 1L CT11L SG1 100Hz, 0dBm, ratio on Ch2 pin 12 67 80 − dB Cross talk 1L CT12L SG1 1kHz, 0dBm, ratio on Ch2 pin 12 62 75 − dB Cross talk 1L CT13L SG1 10kHz, 0dBm, ratio on Ch2 pin 12 57 65 − dB Cross talk 2L CT21L SG1 100Hz,0dBm,ratio on Ch1 pin 11 67 80 − dB Cross talk 2L CT22L SG1 1kHz,0dBm,ratio on Ch1 pin 11 62 75 − dB Cross talk 2L CT23L SG1 10kHz,0dBm, ratio on Ch1 pin 11 57 65 − dB Signal to noise ratio 1L S/N1L DC 2.5V 0dbm, ratio on Noise pin 12 67 80 − dB Signal to noise ratio 2L S/N2L DC 2.5V 0dbm, ratio on Noise pin 11 67 80 − dB Channel balance L CBL Gain Difference Ch1 and Ch2 - −0.1 0 +0.1 dB NOTE: The notation $ means hexa decimal of MICOM command, and Low voltage test items only refer to S1L9223B02-L 16 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 TEST CIRCUIT 17 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR FUNCTIONAL DESCRIPTION RF AMP BLOCK RF AMPLIFIER The optical currents input through pins PD1(A+C) and PD2(B+D) are converted into voltages through I-V amp, and they are added to RF summing amp. The voltage, converted from the photo diode (A+B+C+D) signal, is output through RFO (pin74) and the eye pattern can be checked at this pin. 58K PD1 - 64 + VA 10K - RFO 73 I-V amp(1) + VC RF summing amp VC 58K PD2 - 65 + VB RF- 10K 72 I-V amp(2) VC Figure 1. RF Amplifier Circuit FOCUS ERROR AMP The output of the focus error amp is the difference between I-V amp(1) output VA and RF I-V amp(2) output VB. The focus error bias voltage applied to the (+) of focus error amp can be changed by output voltage of D/A converter as shown in diagram, so that the offset of focus error amp can be adjusted automatically by controlling 5 bits counter switches. Focus error bias can be adjusted from the range of +100mV — -100mV by connecting the resistor on pin 63 (FEBIAS). 18 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 164K 32K VB > - VA > FE1 58 32K + sev-stopb 160K FEBIAS SW1 62 sev-stop <5 Bit Counter> 4K - 3K X1 X2 X4 X8 X16 FEBIAS + 1. 2. fcmpo + vc fe-stopb VA and VB refer to output signal of PD1 and PD2 I/V amp. sev-stopb,sev-stop,fe-stopb and fcmpo are internal signals Figure 2. Focus Error Amplifier Circuit TRACKING ERROR AMP The optical currents detected from the side photo diode (E and F) pf pick-up are input to the E and F pin and converted into voltage signals by E I-V and F I-V amp. The output of tracking error amp generates the difference between E I-V AMP and F I-V AMP voltage output. The E-F balance can be adjusted by modifying the gain of E I-V AMP, and the tracking gain can be adjusted automatically by controlling the peak voltage at pin TE2 by MICOM program. TE2 TE1 53 F 66 I-V AMP - 67 I-V AMP + 54 52 BAL < 4 : 0 > 1.5K 3.3K 16K 7.5K 13K 27K 56K 110K 78 75K EI 220K E 13K - LPFT Balance Window Comp 30 ISTAT Gain Window Com 29 TRCNT GAIN_UP/DOWN GAIN < 3 : 0 > Figure 3. Tracking Error Amplifier Circuit 19 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR FOCUS OK CIRCUIT The FOK is the output. The focus OK circuit generates a timing window to enable focus servo operation from focus search status. When the difference of the RFO (pin74) signal and DC coupled signal IRF (pin75) are above the predefined voltage the Focus OK circuit output (pin40) becomes active (High output). The predefined voltage is 0.39V 40K 40K RFO IRF 73 - 74 + 57K FOK 39 40K + 90K VC+0.625V Figure 4. Focus OK Circuit MIRROR CIRCUIT IRF signal is amplified by the mirror amp, and the peak and bottom component of amplified signal are detected by peak and bottom hold circuit. The peak hold circuit covers traverse signal of up to 100KHz component and bottom hold circuit capable of covering the envelope frequency of disc rotation. The time constant for the mirror hold must be sufficiently larger than that of the traverse signal. 38K IRF 74 17K + 19K 2.5K Peak and Bottom Hold 80 MCP 38 MIRROR 17K + 96K + - Figure 5. Mirror Circuit 20 1.5K + RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 EFM COMPARATOR The EFM comparator converts a RF signal into a binary signal. Because the asymmetry generated due to variations in disc manufacturing can not be eliminated by the AC coupling alone, this circuit uses to control reference voltage of EFM comparator for eliminating asymmetry. 40K + 76 RFI 32 EFM 31 ASY 100K + + 19K 20K - 100K 85K Figure 6. EFM Comparator & Asymmetry Circuit DEFECT CIRCUIT The RFO signal bottom, after being inverted, is held with two time constants of long and short. The short time-constant bottom hold is done for a disc mirror defect more than 0.1msec, the long time-constant bottom hold is done with the mirror level prior to the defect. By differentiating this with a capacitor coupling and shifting the level, both signals are compared to generate the mirror defect detection signal. DCC1 DCC2 4 3 75K RFO 73 37.5K - BOTTOM + HOLD 28K 75K - BOTTOM VC+0.6254V HOLD DFCT 40 43K SSTOP/DFCT + 1 DCB Figure 7. Defect Circuit 21 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR APC (AUTO POWER CONTROL) CIRCUIT The laser diode has large negative temperature characteristic in its optical output when driven with a constant current on laser diode. Therefore, the output on processing monitor photo diode, must be a controlled current for getting regular output power, thus the APC (Auto Power Control) circuit is composed. PN (From MICOM command) 150K + PD 68 43.5K + 0.75K 69 - 150K LD 300K 150K 5.5K 1.25V LDON (From MICOM command) Figure 8. APC Circuit AGC STABILITY CIRCUIT The AGC block is the function used to maintain the constant level of RF peak to peak voltage. After the operation of RF envelop detection and comparing with reference voltage, RFO level is kept stable in 1Vp-p, and input to EFM Slice. IRF 74 VCA EQUALIZE 77 EQC 75 EQO Figure 9. AGC Block 22 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 POST FILTER The adjustment of audio output gain and the integration of possible de-emphasis output are executed by this circuit. This block has amps of 2 channel for gain and filter setting and mute pin for audio signal muting. CH2I VCC + GC2I 25K 11 CH2O 9 GC2O + + + GC1I 25K CH1I 14 GC1O + 12 CH1O - 18 MUTEI Figure 10. Post Filter Circuit CENTER VOLTAGE GENERATION CIRCUIT The center voltage is generated by voltage divide using resistor. VCC 30K 70 VR + 30K Figure 11. Center Voltage Generation Circuit 23 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR SERVO BLOCK FOCUS SERVO BLOCK When defect is "H" (the defect signal is detected), the focus servo loop is muting in case of focus phase compensation. At this time, the focus error signal is output through the low pass filter formed by connecting a capacitor (0.1µF) and a built-in 470KΩ resistor to the FDFCT pin (pin 60). Accordingly, the focus error output is held at the error value just before defect error during defect occurring. The peak frequency of focus loop phase compensation is at about 1.2KHz when the resistor connected to FSET pin (pin 6) is 510KΩ, and it is inversely proportional to the resistor connected to the FSET pin. While the focus search is operating, the FS4 switch is on and then the focus error signal is isolated, accordingly the focus search signal is output by FEO pin (pin 48). When the FS2 switch is on (focus on), the focus servo loop is on and the focus error signal from FE2 pin (pin 58) is output through the focus servo loop. 3.6K 60K VC - FZCI - 47 + 20K 57 48K X4 92K Focus Phase Compensation 470K FDFCT FSCMPO + + FE2 - X3 X2 X1 - 59 + 40K FS4B FS2B 130K FE- 46 DFCTI 10K 470K FGD 27 40K 50K PS 3.6K FS3 26 FS1 46K 580K + FS3 25 2 5 FLB FSET Figure 12. Focus Servo Block 24 FEO FRCH 4 3 X1 0 0 X2 0 1 X3 1 0 X4 1 1 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 TRACKING SERVO BLOCK During detection of defect, the tracking error signal is output through the tracking servo loop after passing the low pass filter formed by connecting a capacitor (0.1µF) and a built-in 470KΩ resistor to the TDFCT pin (pin57) in case of tracking phase compensation. The value of tracking gain up/down can be controlled by TGU and TG2 pin. The peak frequency of tracking loop phase compensation, the dynamic range and offset of OP AMP can be adjusted by changing the value of resistor connected to FSET pin same as focus loop. In case of unstable status of actuator after jumping, the ON/OFF of tracking loop is controlled by TM7 switch of break circuit. After 10-track jumping, servo circuit gets out of the liner range and actuator's tracking becomes occasionally unstable. Hence unnecessary jumping with many tracking error should be prevented. TM4 TE2 52 470K 680K 56 TDFCT 48 680K TG1 TE- TM3 TG1 DFCTI 10K 66PF TM1 110K TGU 60 20K TG2 TRACKING PHASE COMPENSATION 10K 90K 49 TEO + 82K TM7 61 TG2 470K 5 FSET Figure 13. Tracking Servo Block 25 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR SLED SERVO BLOCK The moving of pick-up is controlled by tracking servo output through a low pass filter. The sled kick voltage is output for track jump operation. SLO 42 TM6 TM7 4 0 0 1 1 X1 X2 X3 X4 SL- - PS 43 SL+ 41 + 3 0 1 0 1 TM2 Figure 14. Sled Servo Block SPINDLE SERVO BLOCK The 20KΩ resistor and 0.33uF capacitor form the 200Hz low pass filter, and the carrier component of spindle servo error signals is eliminated. In CLV-S mode, SMEF becomes "L" and pin 25 low pass filter fc lowers, strengthening the filter further. The characteristics of high frequency phase compensation in focus tracking servo and the characteristics of cut off frequency in CLV low pass filter are tested by FSET pin. SMON 23 22K 22K 220K 15K 220K SMDP 22 20K - + 220K 24 Double speed 5 SMEF FSET Figure 15. Spindle Servo Block 26 45 SPDLO 50K 220K 15K + 100K - 44 SPDL- RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 DIGITAL BLOCK DESCRIPTION Digital block is transferred serial data by MICOM and 8-bit serial data is converted to parallel data by serial to parallel register. This data is decoded by latch signal. The status output of focus servo, tracking servo and sled servo system,etc. It is determined by each data. The auto-sequence function process 2 — 4 MICOM command by one auto-sequence command. MDATA D0 D1 D2 D4 D3 D5 D6 D7 tsu twck twck tsn MCK MLT td twl Figure 16. CPU Serial Interface Timing Chart Item Symbol Min Typ Max Unit − − 1 MHz Clock Frequency fck Clock Pulse Width fwck 500 − − ns Hold Time tsu 500 − − ns Setup Time tn 500 − − ns Delay Time td 500 − − ns Latch Pulse Width twl 1000 − − ns 27 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR MICOM COMMAND SET Item Hexa Address Data ISTAT Out D7 D6 D5 D4 D3 D2 D1 D0 Focus Control $0X 0 0 0 0 FS4 Focus On FS3 Gain Down FS2 Search On FS1 Search Up FZC Tracking Control $1X 0 0 0 1 Anti Shock Brake On TG2 Gain Set TG1 Gain Set A.S Tracking Mode $2X 0 0 1 0 Select $3X 0 0 1 1 PS4 Focus Search+2 PS3 Focus Search+2 Auto Sequence $4X 0 1 0 0 AS3 AS2 AS1 AS0 R Blind/ A overflow M Break 0.18ms 0.09ms 0.045ms 0.022ms $5X 0 1 0 1 0.36ms 0.18ms 0.09ms 0.045ms Kick $6X 11.6ms 5.80ms 0.09ms 0.045ms 64 32 16 8 128 64 32 16 S E T 0 1 1 0 2N jump move (M) Auto Adj. Speed Tracking Mode Sled Mode TZC PS2 PS1 Sled Kick+2 Sled Kick+1 STOP /BUSY Hi-Z $7X 0 1 1 1 $8XX 1 0 0 0 Offset, Balance, Gain, APC Control − $FX 1 1 1 1 $F0: Normal Speed $F3: Double Speed − Focus Control ($0X) This command consists of 8 bits data and expressed by two hexa $0X. D7 D6 D5 D4 D3 D2 D1 D0 ISTAT 0 0 0 0 FS4 FS3 FS2 FS1 FZC FS4, FS3, FS2, FS1: internal switch for focus control • Focus Search Operation (FS2,FS1) $02: FS2 switch become off and the value of servo output pin is as below. (10µA-5µA)*50k*(feedback Resistor/50k) $03: If FS1 switch is 1, the current supply is cut off and the discharge is performed. The waveform is as below and the time constant is determined by internal resistor 50K and external Cap. 28 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 0V Figure 17. Waveform at Pin 3 When FS1 Is Switched from 0 to 1 The waveform of servo output pin according to FS1 and FS2 switches is as below. $00 02 03 02 03 02 03 00 Figure 18. Focus Search Waveform at Pin 48 by $02 and $03 FS4 is switch for on/off control of focus servo loop $00: Focus servo off $08: Focus servo on Tracking Control ($1X) This command is used for tracking loop gain control, break circuit and anti-shock on/off control. D7 D6 D5 D4 D3 D2 D1 D0 ISTAT 0 0 0 1 Anti shock on/off Break circuit on/off TG2 TG1 Anti shock TG2 and TG1 are internal switch for tracking gain set. Tracking mode ($2X) This command is used for tracking and sled servo on/off and jump for searching track. D7 D6 D5 D4 0 0 1 0 D3 D2 Tracking control D1 D0 Sled control ISTAT TZC 29 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR <Tracking control & Sled control> D3 D2 0 0 0 Tracking mode D1 D0 Sled mode Tracking servo off 0 0 Sled servo off 1 servo on 0 1 servo on 1 0 Forward jump 1 0 Forward kick 1 1 Reverse jump 1 1 Reverse kick Peak value set ($3X) This command is used for the peak value setting of focus search and sled kick. D0, D1: Sled kick D2, D3: Focus search peak value Auto Sequencer command ($4X) This command is used for reducing control time and replacing several command by one auto- sequence command. • Auto sequencer mode is performed from the first falling edge of WDCK clock after the falling of the latch pulse. • Auto sequencer does not carry out tracking gain up, brake, anti-shock and focus gain down. • MICOM checks ISTAT pin (/BUSY) and sends to $40 command to reset preceding auto sequencer status Hexa AS3 AS2 AS1 AS0 Remark Cancel $40 0 0 0 0 Reset Auto focus $47 0 1 1 1 − 1 Track jump $48 $49 1 1 0 0 0 0 0 1 Forward Reverse 10 Track jump $4A $4B 1 1 0 0 1 1 0 1 Forward Reverse 2N track jump $4C $4D 1 1 1 1 0 0 0 1 Forward Reverse M track move $4E $4F 1 1 1 1 1 1 0 1 Forward Reverse RAM Set ($5X — $7X) The value of RAM set is somewhat different to the actual count and the initial value is like below Item Blind Initial value $55 overflow, Brake Actual Count Value Set value +4 — 5 WDCK clock Set value +3 WDCK clock Kick $67 Set value +5 WDCK clock 2N, M Track jump $7E Set value +3 WDCK clock 30 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 AUTO ADJUSTMENT COMMAND This command is used for auto control of offset, balance, gain adjustment and reference voltage setting. This command is also in control of on/off and sub type of laser diode and test or set mode. TRACKING BALANCE ($800 — $81F) Item Tracking balance Hexa Data (5bits) Initial value ISTAT (pin31) TRCNT (pin30) $800 — $81F D4 — D0 $81F BAL TRCNT Hexa Data 5bits) Initial value ISTAT (pin31) TRCNT (pin30) $820 — $83F D4 — D0 $820 GAIN TGL TRACKING GAIN ($820 — $83F) Item Tracking gain TRACKING BALANCE & GAIN WINDOW LEVEL SETTING Item window level setting Hexa D3 D2 D1 D0 Initial value $84X gain balance 0 0 $840 NOTE: The tracking balance and gain window level is set by D2,D3 data and the value has two kinds of window levels set TRACKING BALANCE WINDOW LEVEL D2 Data Tracking balance window level 0 1 −10 to +15 mV −20 to +20 mV TRACKING GAIN WINDOW LEVEL D3 Data Tracking gain window level 0 1 250 to 400 mV 150 to 300 mV FOCUS LOOP OFFSET ADJUSTMENT START COMMAND ($841, $842) This command is used for adjusting focus error bias and removing focus servo offset. It is executed during laser diode off. Hexa command meaning $841 Focus error bias adjustment start command $842 Focus servo offset cancel adjustment start command 31 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR APC CIRCUIT OPERATION AND INTERRUPTION ON/OFF SETTING CONDITION ($85X) This command is used for setting of laser diode on/off, sub type (P_sub or N_sub) of laser diode and interruption countermeasure circuit on/off. Item APC & Interruption on/off condition Hexa D3 D2 $85X LD on/off 0: On 1: Off Sub-type 0: N_sub 1: P_sub D1 D0 Initial value Interruption ON/OFF and time setting $858 Time setting for Interruption countermeasure circuit on/off D1 D0 Meaning 0 0 Countermeasure circuit on for all mirror signal 0 1 Countermeasure circuit on up to 20KHz mirror signal 1 0 Countermeasure circuit off 1 1 Countermeasure circuit on up to 10KHz mirror signal FOCUS SERVO OFFSET RESET COMMAND AND SET MODE COMMAND (86X) This command is used for set and release before focus servo loop offset adjustment and mode change. Item Set mode & Focus servo offset reset command Hexa D3 D2 D1 D0 $86X 0: offset release 1: offset reset option(Pin41 output) 0: Defect 1: SSTOP 1 1 NOTES: 1. The set mode command is sent by MICOM right after tracking gain is tuned. 2. The ISTAT pin is outputted the internal status of $00 ~ $7X command. DIRECT COMMAND (DIRC) AND FOCUS BIAS RESET COMMAND ($87X) This command is used for direct 1 track jump on/off setting and focus bias adjustment set and release Item DIRC & focus bias reset 32 Hexa D3 D2 D1 D0 $87X 0: DIRC On 1:DIRC Off 0: reset 1: reset release X X RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 THE EXAMPLE OF ADJUSTMENT FREE ALGORITHM FOCUS ERROR BIAS & SERVO OFFSET CANCEL ADJUSTMENT Focus_RF_Offset Adjustment [Command:841] Increment Count no 5bit Counter 17mV/Bit Tuning range: + 260mV ISTAT Check L--> H Time Max 100msec yes Finish [RF CNT value Latch] Focus_Servo_Offset Adjustment [Command:842] Increment Count 4bit Counter 40mV/Bit tuning range : + 280mV no ISTAT Check L--> H Time Max 100msec yes Finish [Servo value Latch] Figure 19. Focus Error Bias & Servo Offset Cancel Adjustment Flow Chart 33 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR TRACKING BALANCE ADJUSTMENT Balance adjustment Range window setting + 20mv, + 15mv setting ISTAT Check L--> H YES MICOM Balance 5Bit adjustment $800 ~ $81F Command Up NO ISTAT Check L--> H $844 YES NO Finish [RF CNT value Latch Figure 20. Tracking Balance Adjustment Flow Chart TRACKING GAIN ADJUSTMENT Gain adjustment range setting Command ISTAT Check L--> H NO $848 5-bit Gain Adjustment $820 ~ $83F Command YES Gain adjustment finish TOC READ Figure 21. Tracking Gain Adjustment Flow Chart 34 RF AMP & SERVO SIGNAL PROCESSOR S1L9223B02 APPLICATION CIRCUIT 35 S1L9223B02 RF AMP & SERVO SIGNAL PROCESSOR PACKATE DIMESTION 14.00 + 0.20 0-7 12.00 + 0.10 + 0.073 12.00 + 0.10 0.08 MAX 80-TQFP-1212 0.45 - 0.75 14.00 + 0.20 0.127 - 0.037 #80 #1 0.50 + 0.07 0.20 - 0.03 0.05MIN (1.25) 1.00 ± 0.05 1.20 MAX 36