HITACHI HA12220F

HA12220F
CD-ROM Drive Head Amplifier IC
ADE-207-230 (Z)
Target Specification
1st. Edition
April 1997
Functions
• RF amplifier (Built-in equalizer changing circuit)
• Focus error amplifier (fc = 60kHz Typ)
• Tracking error amplifier (Built-in cut-off frequency changing circuit fc = 30kHz, 60kHz, 100kHz,
200kHz Typ)
• FOK detection circuit (Built-in Vth changing circuit)
• Mirror detection circuit
• Defect detection circuit
• APC amplifier
• RFAGC amplifier
Features
• Built-in variable resistors (+14 to –16% 2% steps) for adjusting tracking error EF balance
• Built-in variable resistors (–8 to +8dB 4dB steps) for rough adjusting tracking gain
• Built-in variable resistors (–8 to +8dB 4dB steps) for rough adjusting focus gain
• Built-in focus offset insertion circuit (–0.7 to +0.7V in 0.1V steps)
• RF amplifier frequency characteristics 30MHz (–3dB) in case of peaking off
• High-speed access support (The mirror circuit internal time constant can be switched between normal,
4× and 8× modes.)
• Support for CD-RW playback
• Few external components
• Available to set the stand-by mode
• FP-28TB package
HA12220F
Block Diagram
HD49250
10µ
27
RF1
+
28
26
VCC
1µ
25
BYPS
24
GND
VCF
23
RFC
+
–
0.015µ
21
22
AGCF
AGC
Gain changing
BIAS
RF2
1
0.1µ
+
0.1µ
AGCO
DFH
DEFECT
DFT
20
HD49250
VCB
EQ
–
+
RF3
2
MIRH
19
RFS
–
+
RF4
3
0.033µ
FOK
+
–
FSA
MIRR
MIRR
18
HD49250
+
–
FE
Gain=12dB Typ
FA2
FVR2
+
–
GND
GND
–
+
FA
FOK
17
FVR
HD49250
Offset
+
–
TR1
4
TR1
TVR
+
–
+
–
TE
TLPF
BAL
+
–
TA
TVR2
IIL
+
–
TR2
5
TR2
XLT
16
HD49250
TVR
Gain=8dB Typ
DATA
15
MD
6
HD49250
–
+
BUF
Interface
+
–
APC
LD
7
TE
8
FE
9
HD49250 HD49250
Rev.1, Apr. 1997, page 2 of 20
CI
10
µ-COM
ADC
GND
CO
11
VC
12
+
µ-COM 100µ
DAC
CLK
XRST
13
14
µ-COM HD49250
HA12220F
Pin Description and Equivalent Circuit
Pin No.
Pin Name
1
RF2
Equivalent Circuit
Function
RF FE FSA amplifier input2
4k
28
12k
120k
160k
5p
1
12k
120k
160k
10p
2
12k
120k
160k
3
12k
120k
160k
600k
160k
160k
10p
2
RF3
RF FE FSA amplifier input3
3
RF4
RF FE FSA amplifier input4
28
RF1
RF FE FSA amplifier input1
4
TR1
TR1 amplifier input
4k
1.2p
80k
32k
40k
5
TR2
11.4k
TR2 amplifier input
4k
1.2p
80k
32k
40k
6
MD
7
LD
11.4k
APC amplifier input
4k
APC amplifier output
1k
150k
8
TE
Tracking error signal output
40k
9
FE
Focus error signal output
Rev.1, Apr. 1997, page 3 of 20
HA12220F
Pin Description and Equivalent Circuit (cont)
Pin No.
Pin Name
10
CI
11
CO
12
VC
Equivalent Circuit
Function
2.5k
10k
FSA amplifier output monitor
Setting FOK reference voltage
Reference voltage output
20k
13
XRST
14
CLK
Serial data synchronous clock
input
15
DATA
Serial data input
16
XLT
Serial data latch input
17
FOK
4k
VCC
Reset input
FOK detection signal output
20k
18
MIRR
VCC
Mirror detection signal output
10k
19
MIRH
Mirror envelope hold signal
output
100k
20
DFT
VCC
20k
Rev.1, Apr. 1997, page 4 of 20
Defect detection signal output
HA12220F
Pin Description and Equivalent Circuit (cont)
Pin No.
Pin Name
Equivalent Circuit
Function
21
DFH
Defect envelope hold signal
output
22
AGCO
AGC amplifier output
5k
23
AGCF
24
RFC
25
VCF
5k
100k
4k
Capacitor connection for AGC
2k
4k
Capacitor connection for AGC
VCC
40k
4k
Capacitor connection for
reference voltage ripple filter
40k
GND
26
VCC
BYPS
20k
27
VCC
—
Capacitor connection for ripple
filter
VCC
Rev.1, Apr. 1997, page 5 of 20
HA12220F
Operation
Control by Serial Data
The IC’s internal switches can be operated by sending control data from the HD49250.
The signal timing is shown in figure 1, and the control commands are listed in table 1 and 2.
Pin 15 DATA
0
T1
1
2
3
4
5
6
7
T2
Pin 14 CLK
T3
T4
Pin 16 XLT
Item
Symbol Min
Typ
Max
Unit
Clock frequency
fCLK
—
—
520
kHz
Clock pulse width
T1, T2
0.96
—
—
µs
Delay time
T3
1
—
—
µs
Latch pulse width
T4
2
—
—
µs
Figure 1 Timing Diagram for Serial Data Control
Signals from the HD49250 are input at pins 14 to 16. Pin13 is connected to the microcomputer.
A low input at the XRST pin resets the IC. Normally this pin should be kept high.
The serial data from the HD49250 switches the following settings.
1. Tracking error EF balance
2. Focus offset
3. Tracking gain, Focus gain
4. FOK Vth
5. Mirror circuit, defect circuit normal speed / 4× speed / 8× speed mode
6. Tracking error cut-off frequency
7. APC amplifier ON/OFF
8. RF equalizer
9. Stand-by mode (cleared by setting XRST on)
Rev.1, Apr. 1997, page 6 of 20
HA12220F
XLT
16
HD49250
IIL
DATA
15
HD49250
Interface
XRST
CLK
13
14
µ-COM HD49250
Figure 2 Serial Data Control
Rev.1, Apr. 1997, page 7 of 20
HA12220F
Table 1
Serial Data Control Command 1
DATA
D3
D7D6D5
D4
Focus error gain
CD-RW
0 0 0
CD-RW
*1
Focus error offset
0 0 1
D4
1
0
Variable resistor BAL for
tracking error EF balance
0 1 0
D4
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
D3
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
Note
D2
D1
Focus error gain
0
D3
0
0
0
1
1
D2
0
1
1
0
1
D1
0
1
0
1
0
Gain (dB)
0
–4
–8
+7.9
+4.3
D3
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
D2
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
D1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Offset (V)
+0.7
+0.6
+0.5
+0.4
+0.3
+0.2
+0.1
±0
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7
D2
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
BAL
336kΩ
344kΩ
352kΩ
360kΩ
368kΩ
376kΩ
384kΩ
392kΩ
400kΩ
408kΩ
416kΩ
424kΩ
432kΩ
440kΩ
448kΩ
456kΩ
D0
Ratio
–16%
–14%
–12%
–10%
–8%
–6%
–4%
–2%
±0%
+2%
+4%
+6%
+8%
+10%
+12%
+14%
0
0
Note: 1. Both tracking error and focus error gains are increased by 12dB. The RFAGC block gain is
also increased by 12dB.
Rev.1, Apr. 1997, page 8 of 20
HA12220F
Table 2
Serial Data Control Command 2
Tracking error gain
D7D6D5
D4
1 0 0
—
DATA
D3
1 0 1
Mirror
Defect
APC ON
1 1 0
FOK Vth
Stand-by
RFEQ
1 1 1
D1
Tracking error gain
D3
0
0
0
1
1
Tracking error filter
Note
D2
D2
0
1
1
0
1
D1
0
1
0
1
0
0
Gain (dB)
0
–4
–8
+7.9
+4.3
0
Mirror, Defect
*1
Mode
D3 D2
Normal
0 0
Tracking error
filter
4×
0 1
8×
1 1
D4 D1
1 1 30kHz
0 1 60kHz
1 0 100kHz
0 0 200kHz
FOK Vth
Vth
D4 D3
–12dB
1 1
–6dB
0 1
0dB
0 0
Prohibit
1 0
SC4
SC3
D0
Stand-by
ON
APC ON
SC2
SC1
0 Stand-by
mode is
cleared by
setting
XRST on.
0
*2
Note: 1. Switches the mirror circuit and the defect circuit internal time constants at the same time.
Don’t use D3 = “1”, D2 = “0” mode.
2. The switch name surrouded by circle means that the switch turns on when the
corresponding bit is “1”. This switch changes the value of the RF peaking capacitor.
In case of peaking off all switches must be set off.
Rev.1, Apr. 1997, page 9 of 20
HA12220F
RF Amplifiers
The output from PDIC is summed by RFS amplifier.
Figure 4 shows the equivalent circuit for the EQ block in figure 3. The peaking characteristics can be
changed with 4-bit data from the HD49250.
On resistance of SC1 to SC4 are 600Ω Typ.
28
1
2
3
RF1
12k
RF2
12k
RF3
12k
RF4
12k
EQ
–
+
to AGC
RFS
Figure 3 RFS Amplifier
SC3
4p
8p
16p
SC2
SC1
SC4
0.3p
1.58k
4k
4k
Figure 4 RFS Amplifier Equalizer Equivalent Circuit
The RFS amplifier output is input to the AGC amplifier internally in the IC.
Pin 24 is used to connect the capacitor that sets cut-off frequency of high-pass filter between the RFS
amplifier and the AGC amplifier. The cut-off frequency will typically be 80Hz with the external constants
shown in figure 5.
The RF signal is rectified by an internal resistor and an external capacitor connected to pin 23.
The pins 28, 1, 2, and 3 expect an input level of about 0.1Vpp. The AGC amplifier output (pin 22) will
have an amplitude of 1.2Vpp Typ.
When CD-RW mode is set by 1-bit data from the HD49250, the AGC amplifier gain is increased by 12dB.
This allows the IC to output a 1.2Vpp Typ amplitude even during CD-RW playback.
1µ
0.1µ
+
24
23
RFC
to HD49250
22
AGCF
AGC
Gain changing
AGCO
to DEFECT MIRR
from RFS
Figure 5 AGC Amplifier
Rev.1, Apr. 1997, page 10 of 20
HA12220F
FOK Detection Circuit
This detector is a comparator that generates the FOK signal. FOK is one of the signals that activate the
focus servo.
The FSA amplifier (fc = 53kHz Typ) summes the output from the PDIC. When this output signal becomes
lower than the reference voltage by Vth, pin 17 goes high. This Vth can be set by 2-bit data from the
HD49250.
Vth is set to 0.8V (0dB) after a reset.
Using µ-com ADC & DAC the voltage of pin 11 had better be set the same voltage as the voltage of pin 10
before focus searching in order to reduce the effect of DC offset voltage at FSA amplifier output.
BUF
–
+
5p
CO
600k
28
1
2
3
RF1
120k
RF2
120k
RF3
120k
RF4
120k
–
+
11
µ-COM DAC
FOK
+
FOK
17
–
FSA
CI
10
µ-COM ADC
Figure 6 FOK Detection
APC
This circuit is for the Psub laser diode. This circuit is turned on or off by 1-bit data from the HD49250.
MD
6
–
+
APC
1k
LD
7
Figure 7 APC
Rev.1, Apr. 1997, page 11 of 20
HA12220F
Focus Error Amplifiers
The FE amplifier adds and subtracts the output from the PDIC.
FVR2 is a variable resistor used to increase the gain by 12dB in CD-RW mode. This variable resistor is set
by 1-bit data from the HD49250.
FVR is a variable resistor that changes the focus error gain over the range –8 to +8dB in ±4dB steps. This
variable resistor is set by 3-bit data from the HD49250.
An offset of between –0.7 and 0.7V (in 0.1V steps) is inserted into the focus error signal. This is set by 4bit data from the HD49250. The FE output cut-off frequency (fc) is 60kHz Typ.
10p
28
1
2
3
RF1 160k
RF2 160k
RF3
160k
–
+
RF4 160k
160k
10p
+
–
FE
Gain=12dB Typ
FA2
+
–
FVR2
160k
160k
FVR
10p
Offset
FA
9
FE
Figure 8 Focus Error Amplifiers
Defect Detection Circuit
When a scratched disc is played, the EFM RF signal has the shape shown in figure 10 (a). The defect
detection circuit detects the drop-out area of this signal.
0.015µ
21
DFH
from AGC
DEFECT
DFT
MIRH
MIRR
MIRR
20
HD49250
19
0.033µ
18
HD49250
Figure 9 Mirror Detection, Defect Detection
(a) Pin 22
;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;
(b) Pin 20
Figure 10 Defect Detection Waveform
Rev.1, Apr. 1997, page 12 of 20
HA12220F
Mirror Detection Circuit (MIRR)
As the pick-up travels across tracks, the EFM RF signal varies as in figure 11 (a). The mirror detection
circuit detects the mirror region from this signal.
The external capacitor on pin 19 integrates the track-crossing frequency component.
The internal time constant of the mirror detection circuit can be set for normal, 4×, or 8× speed by 2-bit
data from the HD49250, to raise the trackable range of track-crossing frequencies. The defect circuit
internal time constant is also switched at the same time.
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;
(a) Pin 22
(b) Pin 18
Figure 11 Mirror Detection Waveform
Tracking Error Amplifiers
The sub-beam output of PDIC is passed through a resistor and input at pins 4 and 5. External resistances of
pins 4 and 5 should be set according to the pick-up so that the traverse signal at pin 8 is about 2Vpp Typ.
After a reset, the initial value of the feedback resistance BAL of TR1 amplifier is 400kΩ, the same as the
feedback resistance of TR2 amplifier.
BAL has a variable resistance value that is changed by 4-bit data from the HD49250. The variability range
here is from –16 to +14% in 2% steps. This resistance can be varied to adjust the EF balance of the
tracking error.
TE amplifier generates the tracking error signal.
TVR is a resistor that changes the tracking gain from –8 to +8dB in 4dB steps. This is set by 3-bit data
from the HD49250. TVR2 is a variable resistor used to increase the gain by 12dB in CD-RW mode. This
variable resistor is set by 1-bit data from the HD49250.
TLPF switches the tracking error cut-off frequency. The TE output cut-off frequency is set to either 30, 60,
100, or 200kHz (Typ) by 2-bit data from the HD49250.
TR1
4
+ TR1
–
TVR
BAL
TR2
5
1.2p
+ TR2
–
TVR
+
–
+
–
TE
TLPF
+
–
TA
TVR2
Gain=8dB Typ
400k
8
TE
1.2p
Figure 12 Tracking Error Amplifiers
Rev.1, Apr. 1997, page 13 of 20
HA12220F
Bias, Reference Voltage
Pin 26 is for a bypass capacitor to eliminate noise from the IC’s internal bias circuits.
Connect a capacitor to pin 25 to remove the ripple component from the reference voltage.
The IC’s internal reference voltage is connected internally.
10µ
0.1µ
+
27
26
VCC
25
BYPS
GND
VCF
40k
40k
BIAS
+
–
VCB
12
Figure 13 Bias, Reference Voltage
Rev.1, Apr. 1997, page 14 of 20
HA12220F
Absolute Maximum Rating (Ta=25°C)
Item
Symbol
Rating
Unit
Power supply voltage
VCC
6
V
Power dissipation
PT
400
mW
Operating temperature
Topr
–20 to +75
°C
Storage temperature
Tstg
–55 to +125
°C
Note: Recommended operating power supply voltage : 5V ± 0.5V
Rev.1, Apr. 1997, page 15 of 20
HA12220F
Electrical Characteristics (Ta = 25°C, VCC = 5V)
Item
Symbol
Min
Typ
Max
Unit
Test Conditions
Application
Terminal
Quiescent current 1
ICC1
—
20
32
mA
No signal
27
Quiescent current 2
ICC2
—
0.6
1.0
mA
Stand-by mode
VC
2.3
2.5
2.7
V
I12 ≤ ±4mA
Offset voltage *
VFE
–
100
0
100
mV
Max output voltage H 1
VFEH1
4.2
4.5
—
V
S2, S3, S51, S9a
V51 = 4V
Max output voltage L 1
VFEL1
—
0.5
0.8
V
S1, S28, S51, S9a
V51 = 4V
Max output voltage H 2
VFEH2
3.8
4.1
—
V
S2, S3, S51, S9b
V51 = 4V
Max output voltage L 2
VFEL2
—
0.9
1.2
V
S1, S28, S51, S9b
V51 = 4V
Voltage gain 1
GVFE1
16.0
18.0
20.0
dB
S2, S3, S50
V9/VIN50
Voltage gain 2
GVFE2
16.0
18.0
20.0
dB
S1, S28, S50
V9/VIN50
Offset voltage *1
VTE
–65
0
65
mV
Max output voltage H 1
VTEH1
4.2
4.5
—
V
S4, S51, S8a
V51 = 4V
Max output voltage L 1
VTEL1
—
0.5
0.8
V
S5, S51, S8a
V51 = 4V
Max output voltage H 2
VTEH2
3.8
4.1
—
V
S4, S51, S8b
V51 = 4V
Max output voltage L 2
VTEL2
—
0.9
1.2
V
S5, S51, S8b
V51 = 4V
Voltage gain 1
GVTE1
5.0
8.0
11.0
dB
S4, S50 V8/VIN50
Voltage gain 2
GVTE2
5.0
8.0
11.0
dB
S5, S50 V8/VIN50
FOK Vth
VFOK
110
160
210
mV
S28, S51
when V17 ≥ 4V
Min (V51 – V12) *2
“H” output voltage
VFKH
4.7
—
—
V
“L” output voltage
VFKL
—
—
0.4
V
Reference voltage
Focus error
amp.
Tracking
error amp.
FOK
Note:
1
9
8
1. All offset voltages are values referring to VC (pin 12) at reset.
2. V11 = setting the same voltage as the voltage of pin 10 at no signal.
Rev.1, Apr. 1997, page 16 of 20
12
17
HA12220F
Electrical Characteristics (Ta = 25°C, VCC = 5V) (cont)
Item
Application
Terminal
Symbol
Min
Typ
Max
Unit
Test Conditions
Max operation
frequency
FDH
2
—
—
kHz
S28, S1, S2, S3,
S50, S23
20
Min operation
frequency
FDL
—
—
1
kHz
“H” output voltage
VDFH
4.7
—
—
V
“L” output voltage
VDFL
—
—
0.4
V
Max operation
frequency
FMIR
200
—
—
kHz
S28, S1, S2, S3,
S50, S23 8× mode
18
“H” output voltage
VMIH
4.7
—
—
V
“L” output voltage
VMIL
—
—
0.4
V
“H” input voltage
VPH
4.0
—
—
V
“L” input voltage
VPL
—
—
1.0
V
APC
APC voltage
VAPC
0.09
0.16
0.23
V
RFAGC
Output voltage 1
VAGC1
0.8
1.2
1.6
Vp-p
S28, S50, f = 200kHz
0.4Vpp ± 6dB input
Output voltage 2
VAGC2
0.8
1.2
1.6
Vp-p
S1, S50, f = 200kHz
0.4Vpp ± 6dB input
Output voltage 3
VAGC3
0.8
1.2
1.6
Vp-p
S2, S50, f = 200kHz
0.4Vpp ± 6dB input
Output voltage 4
VAGC4
0.8
1.2
1.6
Vp-p
S3, S50, f = 200kHz
0.4Vpp ± 6dB input
Frequency
characteristics 1
FAGC1
—
30
—
MHz
S28, S50, S23
0.4Vpp input *3
Frequency
characteristics 2
FAGC2
—
30
—
MHz
S1, S50, S23
0.4Vpp input *3
Frequency
characteristics 3
FAGC3
—
30
—
MHz
S2, S50, S23
0.4Vpp input *3
Frequency
characteristics 4
FAGC4
—
30
—
MHz
S3, S50, S23
0.4Vpp input *3
Defect
Mirror
CLK DATA
XLT XRST
Note:
13, 14, 15,
16
6
22
3. Setting V23 at the value of the pin 23 voltage when S28 is on, VIN50 = 0.4Vpp, and a 200kHz
input. The frequency down –3dB from the output level for f = 200kHz.
Rev.1, Apr. 1997, page 17 of 20
HA12220F
Test Circuit
V23
10k
S23
S28
27
1µ
+
28
1µ
0.1µ
26
GND
25
0.015µ
S22
22
10k
21
S20
AGC
Gain changing
+
–
1
23
24
BIAS
S1
0.1µ
+
VCC
DEFECT
20
VCB
EQ
–
+
S2
2
0.033µ
19
RFS
–
+
S3
3
FOK
+
–
FSA
10k
S18
MIRR
18
S51
GND
–
+
+
–
FE
S50
FA2
FVR2
+
–
0.1µ
GND
V51
FA
S17
17
FVR
VIN50
Offset
S4
+
–
4
390k
TR1
TVR
+
–
+
–
TE
TLPF
BAL
+
–
TA
TVR2
IIL
S5
+
–
5
TR2
TVR
16
390k
560
6
–
+
BUF
APC
15
+
–
2SB
561C
7
8
9
S8a
S8b
S9a
S9b
20k
2k
20k
2k
10
GND
12
11
V11
+
13 14
10µ
Serial data generator
2k
Note: The symbol “●” of transfer switch shows OFF state.
Rev.1, Apr. 1997, page 18 of 20
10k
HA12220F
Package Dimensions
14
21
28
7
6
0.575
2.25 ± 0.1
0.10
M
1.40
1.7 Max
0.13
0.17 ± 0.05
0.15 ± 0.04
1
0.32 ± 0.08
0.30 ± 0.06
0.09
0.13 +– 0.05
9.0 ± 0.2
9.0 ± 0.2
7.0
20
15
0.65
Unit: mm
1.0
0.575
0˚– 8˚
0.95 ± 0.10
0.50 ± 0.10
Hitachi Code
JEDEC Code
EIAJ Code
Weight
FP-28TB
—
—
0.19 g
Rev.1, Apr. 1997, page 19 of 20
HA12220F
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.1, Apr. 1997, page 20 of 20