SAMSUNG S5F429PX03

1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
INTRODUCTION
14Pin Cer - DIP
The S5F429PX03 is an interline transfer CCD area image
sensor developed for PAL 1/4 inch optical format video
cameras, surveillance cameras, object detectors and image
pattern recognizers. High sensitivity is achieved through the
adoption of Ye, Cy, Mg and G complementary color mosaic
filters, on-chip micro lenses and HAD (Hole Accumulated
Diode) photosensors. This chip features a field integration
read out system and an electronic shutter with variable charge
storage time.
FEATURES
ORDERING INFORMATION
•
High Sensitivity
•
Optical Size 1/4 inch Format
•
No Adjust Substrate Bias
•
Ye, Cy, Mg, G On-chip Complementary Color Mosaic
Filter
•
Low Dark Current
•
Horizontal Register 3.3 to 5.0V Drive
•
14pin Ceramic DIP Package
•
Field Integration Read Out System
•
No DC Bias on Reset Gate
Device
S5F429PX03-LDB0
Package
Operating
14Pin Cer - DIP -10 °C − +60 °C
STRUCTURE
•
537(H) × 597(V)
Number of Total Pixels:
•
Number of Effective Pixels:
500(H) × 582(V)
•
Chip Size:
4.80mm(H) × 4.04mm(V)
•
Unit Pixel Size:
7.30 µm(H) × 4.70 µm(V)
•
Optical Blacks & Dummies:
Refer to Figure Below
Vertical 1 Line (Even Field Only)
16 7
500
30
1
582
V-CCD
Effective
Imaging
Area
Dummy Pixels
Optical Black Pixels
Effective Pixels
14
OUTPUT
H-CCD
1
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
BLOCK DIAGRAM
(Top View)
6
GND
7
VOUT
5
NC
G
Cy
Ye
Ye
Mg
Ye
Mg
Cy
Mg
Cy
Cy
G
Cy
G
2
1
ΦV3
Mg
Ye
G
Ye
Ye
Mg
Ye
ΦV4
Vertical Shift Register CCD
Cy
G
3
ΦV2
Vertical Shift Register CCD
Cy
Ye
Vertical Shift Register CCD
Mg.
Vertical Shift Register CCD
Cy
4
ΦV1
G
Horizontal Shift Register CCD
8
VDD
9
GND
10
ΦSUB
11
VL
12
ΦRG
13
ΦH1
14
ΦH2
Figure 1. Block Diagram
PIN DESCRIPTION
Table 1. Pin Description
2
Pin
Symbol
1
ΦV4
2
Description
Pin
Symbol
Description
Vertical register transfer clock
8
VDD
Output stage drain bias
ΦV3
Vertical register transfer clock
9
GND
GND
3
ΦV2
Vertical register transfer clock
10
ΦSUB
Substrate clock
4
ΦV1
Vertical register transfer clock
11
VL
5
NC
No connection
12
ΦRG
Reset gate clock
6
GND
Ground
13
ΦH1
Horizontal register transfer clock
7
VOUT
Signal output
14
ΦH2
Horizontal register transfer clock
Protection transistor bias
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
ABSOLUTE MAXIMUM RATINGS (NOTE)
Table 2. Absolute Maximum Ratings
Characteristics
Substrate voltage
Vertical clock input voltage
Horizontal clock input voltage
Symbols
Min.
Max.
Unit
SUB - GND
-0.3
40
V
VDD, VOUT - SUB
-40
10
V
ΦV1, ΦV3, - GND
-0.3
30
V
ΦV2, ΦV4 - GND
-0.3
17
V
ΦV1, ΦV3, - VL
-0.3
30
V
ΦV2, ΦV4 - VL
-0.3
17
V
ΦV1, ΦV2, ΦV3, ΦV4 - SUB
-40
10
V
ΦH1, ΦH2 - VL
-0.3
7
V
ΦH1, ΦH2 - SUB
-40
7
V
Voltage difference between vertical and
ΦV1, ΦV2, ΦV3, ΦV4
15
V
horizontal clock input pins
ΦH1, ΦH2
17
V
ΦH1, ΦH2 - ΦV4
-17
17
V
ΦRG - GND
-0.3
17
V
ΦRG - SUB
-40
17
V
Protection circuit bias voltage
VL - SUB
-40
10
V
Operating temperature
TOP
-10
60
°C
Storage temperature
TSTG
-30
80
°C
Output clock input voltage
NOTE: The device can be destroyed, if the applied voltage or temperature is higher than the absolute maximum rating voltage
or temperature.
3
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
DC CHARACTERISTICS
Table 3. DC Characteristics
Item
Symbol
Min.
Typ.
Max.
Unit
VDD
14.55
15.0
15.45
V
Output stage drain bias
Protection circuit bias voltage
VL
Output stage drain current
IDD
The lowest vertical clock level
5
mA
CLOCK VOLTAGE CONDITIONS
Table 4. Clock Voltage Conditions
Item
Read-out clock voltage
Vertical transfer clock voltage
Horizontal transfer clock voltage
Charge reset clock voltage
Substrate clock voltage
4
Symbol
Min.
Typ.
Max.
Unit
Remark
VVH1, VVH3
14.55
15.0
15.45
V
High level
VVM1 ~ V VM4
-0.2
0.0
0.2
V
Middle
VVL1 ~ V VL4
-8.0
-7.5
-7.0
V
Low
VHH1, VHH2
3.0
5.0
5.25
V
High
VHL1, VHL2
-0.05
0.0
0.05
V
Low
VRGH
4.75
5.0
5.25
V
High
VRGL
-0.2
0.0
0.2
V
Low
VΦSUB
21.5
22.5
23.5
V
Shutter
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
DRIVE CLOCK WAVEFORM CONDITIONS
Read Out Clock Waveform
100%
90%
VVH 1, VVH3
10%
0%
tr
twh
0V
tf
Vertical Transfer Clock Waveform
¥Õ V 1
¥Õ V 3
V VH
V VH
V V HL
VVHL
VVHH
V VH H
V VHH
VVHH
VVH1
V VH L
VVHL
V VH3
V VL H
V VL 1
V VL 3
V VL
¥Õ V 2
V VH H
V VL H
V VL L
V VHH
V VL L
V VL
¥Õ V 4
V VH
V V HH
V VH
V VH H
V VHL
V VH2
V VHL
V VHL
V VL 2
V VL L
V VL 4
= ( V V H 1 + V V H 2)/ 2
V V L = (V V L 3 + V V L 4)/ 2
V ¥Õ V = V V H n - V V L n
V VHL
V VL H
V VL H
V VL
V VH
V VH 4
(n =1~4)
V VH H
V VL L
V VL
= V V H + 0. 3V
V V H L = V V H - 0. 3 V
V V L H = V V L + 0. 3V
V V L L = V V L - 0. 3 V
5
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
Horizontal Transfer Clock Waveform Diagram
tr
twh
tf
90%
V¥ÕH
twl
10%
VH L
Reset Gate Clock Waveform Diagram
tr
twh
tf
VR GH
twl
V¥ÕRG
Point A
RG waveform
VRGL + 0.5V
VRGLH
VRGLL
VRGL
¥ÕH1 waveform
10%
VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform in the period from Point A
in the diagram about to RG rise
VRGL = (VRGLH + VRGLL)/2, VFRG = VRGH - VRGL
Substrate Clock Waveform
100%
90%
V¥ÕSU B
10%
VSU B
6
0%
tr
twh
tf
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
CLOCK EQUIVALENT CIRCUIT CONSTANT
Table 5. Clock Equivalent Circuit Constant
twh
Item
Vertical clock
tr
tf
Unit
Min.
Read-out clock
twl
Symbol
ΦVH
2.3
Typ. Max.
Min.
Typ.
2.5
Max.
Min.
Typ.
Max.
Min.
0.1
Typ.
Max.
µs
0.1
ΦV1, ΦV2
ΦV3, ΦV4
5
250
ns
ΦH1
41
46
41
46
6.5
9.5
6.5
9.5
ns
ΦH2
41
46
41
46
6.5
9.5
6.5
9.5
ns
Reset clock
ΦRG
11
14
76
80
6.0
Substrate clock
ΦSUB
1.5
2.0
Horizontal clock
5.0
0.5
ns
0.5
µs
7
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
EQUIVALENT CIRCUIT PARAMETERS
Table 6. Equivalent Circuit Parameters
Item
Symbol
Typ.
Unit
C ΦV1, CΦV3
680
pF
C ΦV2, CΦV4
820
pF
CΦV12, CΦV34
180
pF
CΦV23, CΦV41
180
pF
CΦV13
60
pF
CΦV24
60
pF
CΦH1, CΦH2
30
pF
Capacitance between horizontal transfer clocks
CΦH12
30
pF
Capacitance between substrate clock and GND
CΦSUB
180
pF
RΦV1 ~ RΦV4
40
Ω
Vertical transfer clock ground resistor
RΦVGND
15
Ω
Horizontal transfer clock serial resistor
RΦH1, RΦH2
10
Ω
RΦRG
100
Ω
Capacitance between vertical transfer clock and GND
Capacitance between vertical transfer clocks
Capacitance between horizontal transfer clock and GND
Vertical transfer clock serial resistor
Reset gate clock serial resistor
¥ÕV1
¥ÕV2
R ¥ÕV1
R ¥ÕV2
C ¥ÕV12
C ¥ÕV1
C ¥ÕV2
R ¥ÕH1
C ¥ÕH12
¥ÕH1
C ¥ÕV41
C ¥ÕV24
C ¥ÕV13
C ¥ÕV23
R ¥ÕVGND
C ¥ÕV4
C ¥ÕV34
R ¥ÕV4
¥ÕV4
8
C ¥ÕV3
R ¥ÕV3
¥ÕV3
C ¥ÕH1
R ¥ÕH2
¥ÕH2
C ¥ÕH2
Remark
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
OPERATING CHARACTERISTICS
Device Temperature = 25 °C
Table 7. Operating Characteristics
Item
Symbol
Min.
Typ.
S
40
45
YSAT
800
Sensitivity
Saturation signal
Smear
SM
Blooming margin
BM
Max.
0.007
0.01
1,000
Unit
Remark
mV/lux
1
mV
2
%
3
times
4
Uniformity
U
20
%
5
Dark signal (NOTE)
D
2
mV
6
∆D
2
mV
7
Image lag
YLAG
0.5
%
8
Flicker Y
FY
2
%
9
Flicker red, blue
FCR, FCB
5
%
10
Color uniformity
DSR, DSB
10
%
11
LCW, LCR, LCG, LCB
3
%
12
Dark shading (NOTE)
Line stripe W, R, G, B
NOTE: Test Temperature = 60 °C
TESTING SYSTEM
A
CCD Signal
Output
(3dB down at 4MHz)
Y Illuminance
Signal
Output
LPF1
CCD
C. D. S
AMP
S/H
LPF2
S/H
C Chroma
Signal
Output
(3dB down at 1MHz)
Figure 2. Testing System
9
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
TEST CONDITION
1. Use a light source with color temperature of 3,200K hallogen lamp and CM-500S for IR cut filter.
The light source is adjusted in accordance with the average value of Y signals indicated in each item.
COLOR FILTER ARRAY
The color filter array of this image sensor is shown in the right figure. this complementary mosaic CFA is used with
the operation of field integration mode, where all of the photosensors are read out during each video field. The
signals from two vertically-adjacent photosensor lines, such as line couple A1 or A2 for field A are summed when
the signal charges are transferred into the vertical transfer CCD column. The read out line pairing is shifted down
by one line for field B.
The sensor output signals through the horizontal register (H-CCD) at line A1 are [G+Cy], [MG+Ye], [G+CY],
[Mg+Ye]. These signals are processed in order to compose Y and C signals. By adding the two adjacent signals at
line A1, Y signal is formed as follows
Y = 1
--- [ ( G + Cy ) + ( Mg + Ye ) ] = 1
--- ( 2B + 3G + 2R )
2
2
C signal is composed by subtracting the two adjacent signals at line A1
Cy
Ye
Cy
Ye
G
Mg
G
Mg
Cy
Ye
Cy
Ye
Mg
G
Mg
G
A1
B
A2
H - CCD
Figure 3. Color Filter Array
10
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
R – Y = [ ( Mg + Ye ) – ( G + Cy ) ] = ( 2R – G )
Next, the signals through H-CCD at line A2 are [Mg+Cy], [G+Ye], [Mg+Cy], [G+Ye]. Simmilary, Y and C signals are
composed at line A2 as follows
1
1
Y = --- [ ( G + Ye ) + ( Mg + Cy ) ] = --- ( 2B + 3G + 2R )
2
2
– ( B – Y ) = [ ( G + Ye ) – ( Mg + Cy ) ] = – ( 2B – G )
Accordingly, Y signal is balanced in relation to scanning lines, and C signal takes the form of R-Y and -(B-Y) on
alternate lines.
It is same for B field.
TEST METHODS
1. Measure the light intensities (L) when the averaged illuminance output value (Y) is the standard illuminance
output value, 150mV (YA) and when half of 150mV (1/2 YA).
YA – 1
---Y A
2 S = ---------------------------LY – L 1
A
---Y A
2
2. Adjust the light intensity to 15 times of the value with which Y is YA, then measure the averaged illuminance
output value (Y = YSAT).
3. Adjust the light intensity to 500 times of the value with which Y is YA, then remove the read-out clock and drain
the signal in photosensors by the electronic shutter operation in all the respective horizontal blanking times with
the other clocks unchanged. Measure the maximum illuminance output value (YSM).
Y SM
1
1
SM = ----------× ---------- × ------- × 100 ( % )
Y A 500 10
4. Adjust the light intensity to 1,000 times of the value with which Y is YA, then inspect whether there is blooming
phenomenon or not.
11
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
5. Measure the maximum and minimum illuminance output value (YMAX, YMIN) when the light intensity is adjusted
to make Y to be YA.
Y MAX – Y MIN
U = ----------------------------------- × 100 ( % )
YA
6. Measure YD with the horizontal idling time transfer level as reference, when the device ambient temperature is
60 °C and all of the light sources are shielded.
7. Follow test method 6, measure the maximum (DMAX) and minimum illuminance output (DMIN).
∆D = D MAX – D MIN
8. Adjust the light intensity of Y signal output value by strobe light to 150mV (YA), calculate by below formula with
measuring the image lag signal which is qenerated by below timing diagram.
Y LAG = ( Y lag ⁄ 150 ) × 100 ( % )
FLD
SG1
Light
Strobe
Timing
Output
12
Y Signal
Output 150mV
YLag
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
9. Adjust the light intensity of Y signal average value to 150mV (YA), calculate by below formula with measuring
the signal differences (∆Yf [mV]) between fields.
F Y = ( ∆Y f ⁄ Y A ) × 100 ( % )
10. Adjust the light intensity to make Y = YA using red (R) and blue (B) optical filters respectively, measure the
differences (∆CR, ∆CB) between the chroma signal values in even and odd fields and the averaged chroma
signal values (CR, CB).
∆C
F C = ---------i × 100 ( % )
i
Ci
, where i = R, B
11. Adjust the light intensity to make Y = YA using red (R) and blue (B) optical filters respectively, measure the
minimum (CR,MIN and CB,MIN) and maximum (C R,MAX and C B,MAX) chroma signal values.
C i, MAX – C i, MIN
DS i = ------------------------------------------× 100 ( % )
Yi
, where i = R, B
12. Adjust the light intensity to make Y = 150mV(YL) using white (no filter, W), red (R), green (G) and blue (B)
optical filters respectively, measure the illuminance signal difference values (∆YLW, ∆YLR, ∆YLG, ∆YLB)
between illuminance signal lines of the same field.
∆Y L
L c = ------------i × 100 ( % )
i
YL
, where i = W, R, G, B
13
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
SPECTRAL RESPONSE CHARACTERISTICS
Excluding Light Source Characteristics
1
0.9
Yellow
Spectral
Response
Spectral
Response
NORMALIZED
RESPONSE(nsec)
0.8
Cyan
0.7
Magenta
Green
0.6
0.5
0.4
0.3
0.2
0.1
0
400
450
500
550
600
WAVE
LENGTH(nm)
Wave
Length (nm)
Figure 4. Spectral Response Characteristics
14
650
700
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
APPLICATION CIRCUITS
-7.5V
CCD Out
1M
10µ/16V
+ -
3.9K
100
152
2SK1070
104
MA110
10µ/16V
- +
VDD 8
6
GND
GND 9
5
NC
4
ΦV1
3
ΦV2
2
ΦV3
ΦH1 13
1
ΦV4
ΦH2 14
S5F429PX03
1µ/35V
100K
7 VOUT
+ -
103
ΦSUB 10
VL 11
ΦRG 12
10
20
19
18
17
16
15
14
13
12
11
8
9
10
S5C7221X01
1
2
3
4
5
6
7
10µ/16V
+ -
XSUB XV2 XV1 XSG1 XV3 XSG2 XV4
ΦH2 ΦH1
RG
15V
Figure 5. Application Circuits
15
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
READ-OUT CLOCK TIMING CHART
Unit: [µs]
HD
V1
2.5
Odd
Field V2
V3
V4
38.5
1.2
1.5
2.5 2.0
0.3
V1
V2
Even
Field
V3
V4
Figure 6. Read-out Clock Timing Chart
16
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
CLOCK TIMING CHART (VERTICAL SYNC.)
FLD
VD
BLK
340
335
330
325
320
315
310
25
20
15
10
625
1
2
3
4
5
620
HD
SG1
SG2
V1
V2
V3
V4
CCD
OUT
582
581
246
135
246
135
582
581
2468
135 7
2468
1357
CLP1
Figure 7. Clock Timing Chart (Vertical Sync.)
17
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
CLOCK TIMING CHART (HORIZONTAL SYNC.)
5
3
2
1
7
5
3
2
1
16
15
10
5
3
2
1
30
25
20
15
10
5
3
2
1
500
495
Figure 8. Clock Timing Chart (Horizontal Sync.)
18
SUB
CLP1
V4
V3
V2
V1
XSHD
XSHP
RS
H2
H1
BLK
HD
490
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
S5F429PX03
PACKAGE DIMENSIONS
(Unit = mm)
Glass
7583
Ceramicframe
0.38
Ceramic Base
Al 2O 3 90%Min. (black)
Al 2O 3 90%Min. (black)
Lead Frame
Alloy 42
( Inner AI
Outer Sn )
(L/F CL)
4-R 0.50
4-R 0.30
Y
#14
0.25
#8
10.00¡¾0.12
9.46¡¾0.12
5.40¡¾0.10
10.16¡¾0.30
7.40¡¾0.10
X
X
(L/F CL)
2.50
10.00¡¾0.12
R0.70
0.90¡¾0.08
1.00¡¾0.08
#1
Y
0.35¡¾0.08
#7
0.80¡¾0.15
4-R0.50
6.00¡¾0.10
2.600
10.00¡¾0.12
NOTES:
0.46¡¾0.10
Glass
(7583)
1. Max. Leakage by Hellium Detector
:10-8atm. cc/sec at 10 -5 mmHg
2. Resistance Between Leads
:Above 10 100HM at 25¡É, 60% R>H
3. Insulation Resistance
:Electrical leakage shall not exceed 5
4. Ceamic Material
:Min. 90% al20 3 (black)
nano AMP at 100V D.C
1.27¡¾0.25
5. Lead Frame
4.13
- Coplanarity
:0.25 Max. (after L/F attach)
- Planarity
:0.076/mm, -0.102/mm
- Al clad
. Thickness
1.27¡¾0.05
0.30¡¾0.10
1.27 x 6 = 7.62¡¾0.10
9.60¡¾0.12
:5um to 10um (f or stamp)
. Thickness
:2.5um to 12.7um (for etch)
. Coverage
:Min. 0.762mm from lead tip
- Sn thickness
:4um to 20um
6. Flatness
- DIE attach pad
:Max. 0.051mm
- LID seal area
:Max. 0.051mm
7. Other
:In according to semi standards.
Figure 9. Package Dimensions
19
S5F429PX03
1/4 INCH CCD IMAGE SENSOR FOR PAL CAMERA
HANDLING INSTRUCTIONS
•
Static Charge Prevention
CCD image sensors can be easily damaged by static discharge. Before handling, be sure to take the following
protective measures.
— Use non chargeable gloves, clothes or material. Also use conductive shoes.
— When handling directly, use an earth band.
— Install a conductive mat on the floor or working table to prevent generation of static electricity.
— Ionized air is recommended for discharging when handling CCD image sensor.
— For the shipment of mounted substrates, use boxes treated for the prevention of static charges.
•
Soldering
— Make sure the package temperature does not exceed 80 °C.
— Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a grounded 30W
soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
— To dismount an imaging device, do not use a solder suction equipment. When using an electronic
disoldering tool, use a thermal controller of the zero cross on/off type and connect to ground.
•
Dust and Dirt Protection
— Operate in the clean environments (around class 1000 will be appropriate).
— Do not either touch glass plates by hand or have object come in contact with glass surface. Should dirt
stick to a glass surface blow it off with an air blow (for dirt stuck through static electricity ionized air is
recommended).
— Clean with a cotton bud and ethyl alcohol if the glass surface is grease stained. Be careful not to scratch
the glass.
— Keep in case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving
to a room with great temperature differences.
— When a protective tape is applied before shipping, just before use remove the tape applied electrostatic
protection. Do not reuse the tape.
•
Do not expose to strong light (sun rays) for long period, color filter are discolored.
•
Exposure to high temperature or humidity will affect the characteristics. accordingly avoid storage or
usage in such conditions.
•
CCD image sensors are precise optical equipment that should not be subject to mechanical shocks.
20