FAIRCHILD FAN8038C

www.fairchildsemi.com
FAN8038C
4-Channel Motor Drive IC
Features
Description
•
•
•
•
•
•
•
•
•
FAN8038C is monolithic IC for portable CD player, and
suitable for a 4-CH motor driver which drives focus acutator,
tracking actuator, sled motor and spindle motor of portable
CD player system. And it also provides DC-DC converter,
reset, recharge, and short circuit protection.
4-CH H-Bridge driver
Built-in DC-DC converter controller
Built-in Power-on reset (POR) circuit
Built-in battery charging circuit
Built-in battery voltage monitoring circuit
Built-in thermal shutdown (TSD) circuit
Built-in general OP-Amplifier
Low power consumption
Built-in power controller circuit
44-QFP-1010B
Typical application
•
•
•
•
Portable Compact Disk Player (CDP)
Portable Mini Disk Player (MD)
Disc-Man
Other Potable Compact Disk Media
Ordering Information
Device
Package
FAN8038C 44-QFP-1010B
Operating Temp.
-35°C ~ +85°C
Rev. 1.0.0
©2005 Fairchild Semiconductor Corporation
FAN8038C
Pin Assignments
FIL
SGND
EMPSET
44
43
42
42
40
START
CLKIN
PWM
DVCC
EMP
RST
39
38
37
36
35
34
OVP
1
33
CHGSET
BATT
2
32
DO1(-)
RSTOUT
3
31
DO1(+)
DEDSET
4
30
DO2(-)
BDSW
5
29
DO2(+)
ERRO
6
28
PGND
ERRI
7
27
DO3(+)
SCP
8
26
DO3(-)
COSC
9
25
DO4(+)
10
24
DO4(-)
11
23
BRAKE
NC
OPIN(-)
FAN8038C
12
SVCC1
2
ADPVCC STOP
13
14
OPOUT OPIN(+)
15
16
17
18
19
20
21
22
SVCC2
VREF
DI3
DI4
MUTE34
DI2
MUTE2
DI1
FAN8038C
Pin Definitions
Pin Number
Pin Name
I/O
1
OVP
I
Pin Function Description
Battery voltage motor
2
BATT
-
Battery power supply input
3
RSTOUT
O
Power-on reset output
4
DEDSET
I
Dead time setting capacitor
5
BDSW
O
Transistor drive for voltage step-up
6
ERRO
O
Error amplifier output
7
ERRI
I
Error amplifier Input
8
SCP
I
Short circuit protection time setting capacitor
9
COSC
O
Triangular waveform output
10
N.C
-
No connection
11
OPIN(-)
I
OP-amplifier negative input
12
SVCC1
-
Control circuit power supply
13
OPOUT
O
OP-amplifier output
14
OPIN(+)
I
OP-amplifier positiveinput
15
SVCC2
-
Pre-driver power supply
16
VREF
I
Reference voltage input
17
DI3
I
Channel 3 control signal Input
18
DI4
I
Channel 4 control signal Input
19
MUTE34
I
Channel 3 and 4 mute signal input
20
DI2
I
Channel 2 control signal Input
21
MUTE2
I
Channel 2 mute signal inpu
22
DI1
I
Channel 1 control signal Input
23
BRAKE
I
Channel 1 brake signal input
24
DO4(-)
O
Channel 4 negative output
25
DO4(+)
O
Channel 4 positive output
26
DO3(-)
O
Channel 3 negative output
27
DO3(+)
O
Channel 3 positive output
28
PGND
-
Power block power Ground
29
DO2(+)
O
Channel 2 positive output
30
DO2(-)
O
Channel 2 negative output
31
DO1(+)
O
Channel 1 positive output
32
DO1(-)
O
Channel 1 negative output
33
CHGSET
I
Charge current setting resistance
34
RST
O
Power-on reset inverting output
35
EMP
O
Battery voltage detection output (Empty detection)
36
DVCC
-
H-Bridge block power supply
37
PWM
O
PWM transistor drive output
38
CLKIN
I
External clock input
39
START
I
DC-DC converter start control input
40
STOP
I
DC-DC converter off control input
41
ADPVCC
-
Charging circuit power supply
42
EMPSET
43
SGND
-
Signal ground
44
FIL
I
PWM phase compensation
Empty dection level switch
3
FAN8038C
Internal Block Diagram
44
43
1
42
41
40
39
38
36
37
35
34
OVP
33
POWER-OFF
START
Empty
Detector
Maximum
Detection
2
Power Supply
20uA
10uA
OFF
VSYS1
3
32
Predriver
V
/
I
31
4
V
/
I
5
30
Predriver
65K
29
1.25V
R1
6
28
Error
Amp
R2
7
Predriver
27
Predriver
V
/
I
8
25
26
1.25V
9
Triangular
Waveform
10
Thermal
Shutdown
CLOCK
V
/
I
24
VSYS1
Brake1
11
Control Circuit
Power Supply
12
4
13
14
Mute2
Mute34
15
16
17
18
19
23
20
21
22
FAN8038C
Absolute Maximum Ratings (Ta = 25°C)
Parameter
Symbol
Value
Unit
Maximum supply voltage
VCC
13.2
V
Maximum output current
IO
500
mA
Power dissipation
PD
1.0
W
Operating temperature
TOPR
-35 ~ +85
°C
Stroage temperature
TSTG
-55 ~ +150
°C
Recommended Operating Conditions (Ta = 25°C)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Charging circuit power supply voltage
ADPVCC
3.0
4.5
8.0
V
BATT
1.5
2.4
8.0
V
Control circuit power supply voltage
SVCC1
2.7
3.2
5.5
V
Pre-driver power supply voltage
SVCC2
2.7
3.2
5.5
V
H-Bridge power supply voltage
DVCC
-
PWM
BATT
V
Ta
-10
25
70
°C
Power supply voltage
Operating Temperature
5
FAN8038C
Electrical characteristics
(Ta=25°C, BATT=2.4V, SVCC1=SVCC2=3.2V, VREF=1.6V, ADPVCC=0V, fCLKIN=88.2KHz, unless otherwise
specified)
Parameter
Symbol
Conditions
Min.
Typ.
Max.
Unit
BATT=10.5V,
SVCC1=SVCC2=VREF=0V
-
-
5
µA
COMMON SECTION
BATT Stand-by Current
IST
BATT Supply Current (No Load)
IBATT
DVCC=0.45V, MUTE34=3.2V
-
2.5
3.5
mA
SVCC Supply Current (No Load)
ISVCC1
DVCC=0.45V, MUTE34=3.2V,
ERRI=0V
-
3.0
3.5
mA
SVCC2 Supply Current (No Load)
ISVCC2
DVCC=0.45V, MUTE34=3.2V
-
3.5
5.0
mA
IADPVCC
ADPVCC=4.5V, ROUT=OPEN
-
0.2
1.0
mA
GVC134
-
12
14
16
dB
21.5
23.5
24.5
dB
ADPVCC Supply Current
(No Load)
H-BRIDGE DRIVER PART
Voltage Gain CH1, 3, 4
Voltage Gain CH2
GVC2
Gain Error By Polarity
∆GVC
-
-2
0
2
dB
Input pin Resistance CH1, 3, 4
RDI134
IN=1.7 and 1.8V
9
11
13
KΩ
Input pin Resistance CH2
RDI2
IN=1.7 and 1.8V
6
7.5
9
KΩ
Maximum Output Voltage
VOUT
RL=8Ω, DVCC=BATT=4V,
IN=0 ~ 3.2V
1.9
2.1
-
V
Saturation Voltage (Lower)
VSAT1
IO= -300mA, IN=0 and 3.2V
-
240
400
mV
Saturation Voltage (Upper)
VSAT2
IO=300mA, IN=0 and 3.2V
-
240
400
mV
-8
0
8
mV
Input offset Voltage
Output Offset Voltage CH1, 3, 4
Output Offset Voltage CH2
DEAD Zone
-
VOO134
VREF=IN=1.6V
-70
0
70
mV
VOO2
VREF=IN=1.6V
-130
0
130
mV
-20
0
20
mV
VDB
-
Brake1 On Voltage
VM1ON
DI1=1.8V
2.0
-
-
V
Brake1 Off Voltage
VM1OFF
DI1=1.8V
-
-
0.8
V
MUTE2 On Voltage
VM2ON
DI2=1.8V
2.0
-
-
V
MUTE2 Off Voltage
VM2OFF
DI2=1.8V
-
-
0.8
V
MUTE34 On Voltage
VM34ON
DI3=DI4=1.8V
-
-
0.8
V
MUTE34 Off Voltage
VM34OFF
DI3=DI4=1.8V
2.0
-
-
V
VREF On Voltage
VREFON
IN1=IN2=IN3=IN4=1.8V
1.2
-
-
V
VREF Off Voltage
VREFOFF
IN1=IN2=IN3=IN4=1.8V
-
-
0.8
V
Brake Current
4
7
10
mA
BRAKE1 Brake Current
*Granteed Design Value
6
VIO
IBRAKE
FAN8038C
Electrical Characteristics
(Ta=25°C, BATT=2.4V, SVCC1=SVCC2=3.2V, VREF=1.6V, ADPVCC=0V, fCLKIN=88.2KHz, unless otherwise
specified)
Parameter
Symbol
Conditions
Min.
Typ.
Max.
Unit
10
13
17
mA
0.35
0.45
0.55
V
-
0
5
µA
1/60
1/50
1/40
1/KΩ
3.05
3.20
3.35
V
PWM POWER SUPPLY DRIVING
PWM Sink Current
IPWM
DI1=2.1V
*DVCC Level Shift Voltage
VSHIF
DI1=1.8V, DVCC-OUT1F
DVCC Leak Current
*PWM Amp Transfer Gain
IDLK
GPWM
DVCC=9V, SVCC1,2=BATT=0V
DI1=1.8V, DVCC=1.2V ~ 1.4V
DC-DC CONVERTER
ERROR AMP
SVCC1 Pin Threshold Voltage
VS1TH
ERRO Pin Output Voltage H
VEOH
ERRI=0.7V, IO = -100µA
1.4
1.6
-
V
ERRO Pin Output Voltage L
VEOL
ERRI=1.3V, IO = 100µA
-
-
0.3
V
SCP Pin Voltage
VSCP
ERRI=1.3V
-
0
0.1
V
SCP Pin Current 1
ISCP1
ERRI=0.7V
6
10
16
µA
SCP Pin Current 2
ISCP2
ERRI=1.3V, OFF=0V
12
20
32
µA
SCP Pin Current 3
ISCP3
ERRI=1.3V, BATT=9.5V
12
20
32
µA
*SCP Pin Impedance
RSCP
-
175
220
265
KΩ
ERRI=0.7V, COSC=470PF
1.10
1.20
1.30
V
OVP Voltage
9.5
10
10.5
V
-
SHORT CIRCUIT PROTECTION
SCP Pin Threshold Voltage
Over Voltage Protection Detect
VSCPTH
VOVP
TRANSISTOR DRIVING
BDSW Pin Output Voltage 1H
VSW1H
BATT=COSC=1.5V
=SVCC2=0V, 10mA
0.78
0.98
1.13
V
BDSW Pin Output Voltage 2H
VSW2H
COSC=0V, IO = -10mA,
ERRI=0.7V
SCP=0V
1.0
1.5
-
V
BDSW Pin Output Voltage 2L
VSW2L
CT=2V, IO=1-mA
-
0.3
0.45
V
BDSW Pin Oscillating Reequency1
fSW1
COSC=470pF, =SVCC2=0V
65
80
95
KHz
SW Pin Oscillating Reequency 2
fSW2
COSC=470pF, CLKIN=0V
60
70
82
KHz
BDSW Pin Oscillating Reequency 3
fSW3
COSC=470pF
-
88.2
-
KHz
*BDSW Pin Minimum Pulse Width
TSWMIN
COSC=470pF,
ERRO=0.5 → 0.7V
0.01
-
0.6
µs
Pulse Duty Start
DSW1
COSC=470PF,
SVSS1,SVCC2=0V
40
50
60
%
MAX. Pulse Duty at Self-Running
DSW2
COSC=470pF, ERR0=0.8V,
CLKIN=0V
50
60
70
%
MAX. Pulse Duty at CLKIN
Synchronization
DSW3
ERR0=0.8V, COSC=470pF
45
55
65
%
*Granteed Design Value
7
FAN8038C
Electrical Characteristics
(Ta=25°C, BATT=2.4V, SVCC1=SVCC2=3.2V, VREF=1.6V, ADPVCC=0V, fCLKIN=88.2KHz, unless otherwise
specified)
Parameter
Symbol
Conditions
Min.
Typ.
Max.
Unit
*DEDSET Pin Impedance
RDEDSET
-
52
65
78
KΩ
DEDSET Pin Output Voltage
VDEDSET
-
0.78
0.88
0.98
V
ERRI=1.3V
2.0
-
-
V
OFF=0V
75
95
115
µA
DEAD TIME
INTERFACE
STOP Pin Threshold Voltage
STOP Pin Bias Current
VSTOPTH
ISTOP
START Pin On Threshold Voltage
VSTATH1
SVCC1,SVCC2=0V,
COSC=2V
1.3
-
-
V
START Pin Off Threshold Voltage
VSTATH2
SVCC1,SVCC2=0V,
COSC=2V
-
-
2.1
V
13
16
19
µA
-
2.0
-
-
V
-
-
-
0.8
V
-
-
10
µA
START Pin Bias Current
CLKIN Pin Threshold Voltage H
CLKIN Pin Threshold Voltage L
CLKIN Pin Bias Current
ISTART
START=0V
VCLKINTH
H
VCLKINTH
L
ICLKIN
CLKIN=3.2V
VSSV
SVCC1,SVCC2=0V → 3.2V
START=0V
2.3
2.5
2.7
V
START=0V
130
200
300
mV
START CURCUIT
Starter Switching Voltage
Starter Switching Hysteresis Width
Discharge Release Voltage
VSSHS
VDIS
-
1.63
1.83
2.03
V
*SVCC1 RESET Threshold Voltage
Ratio
RRSTOTH
-
85
90
95
%
RESET Detection Hysteresis Width
VRSTHS
-
25
50
100
mV
RSTOUT Pin Output Voltage
VRSTO
-
-
0.5
V
RSTOUT Pin Pull Up Resistance
RRSTO
72
90
108
KΩ
RST Pin Output Voltage 1
VRST1
IO= -1mA,
SVCC1,SVCC2=2.8V
2.0
-
2.4
V
RST Pin Output Voltage 2
VRST2
IO= -1mA,
SVCC1,SVCC2=0V
2.0
-
2.4
V
*RST Pin Pull Up Resistance
RRST
77
95
113
KΩ
RESET CIRCUIT
*Granteed Design Value
8
IO=1mA,
SVCC1,SVCC2=2.8V
-
-
FAN8038C
Electrical Characteristics
(Ta=25°C, BATT=2.4V, SVCC1=SVCC2=3.2V, VREF=1.6V, ADPVCC=0V, fCLKIN=88.2KHz, unless otherwise
specified)
Parameter
Symbol
Conditions
Min.
Typ.
Max.
Unit
OP-AMP
Input Bias Current
IBIAS
IN(+)=1.6V
-
-
300
nA
Input Offset Voltage
VOFOP
IN(+)=1.6V
-5.5
0
5.5
mV
High Level Output Voltage
VOHOP
RL=OPEN
2.8
-
-
V
Low Level Output Voltage
VOLOP
RL=OPEN
-
-
0.2
V
VSOURCE
50Ω GND
-
-6.5
-3.0
mA
Output Drive Current (Sink)
VSINK
50Ω SVCC
0.4
0.7
-
mA
*Open Loop Voltage Gain
GVO
VIN= -75dB, F=1kHz
-
70
-
dB
-
-
0.5
-
V/µs
Output Drive Current (Source)
*Slew Rate
SR
BATTERY CHARGING CURCUIT
CHGSET Pin Bias Voltage
VCHGSET
ADPVCC=4.5V,
CHGSET=1.8kΩ
0.71
0.81
0.91
V
*CHGSET Pin Output Resistance
RCHGSET
ADPVCC=4.5V
0.75
0.95
1.20
KΩ
EMPSET Pin Leak Current 1
IEMPSET
ADPVCC=4.5V,
CHGSET=OPEN
-
-
1.0
µA
EMPSET Pin Leak Current 2
IEMPSET
ADPVCC = 0.6V,
CHGSET = 1.8kΩ
-
-
1.0
µA
EMPSET Pin Saturation Voltage
VEMPSET
ADPVCC = 4.5V, IO = 300mA,
CHGSET = 0Ω
-
0.45
1.0
V
EMPTY DETECTION
EMP Detection Voltge 1
VEMPT1
VEMPSET = 0V
2.1
2.2
2.3
V
EMP Detection Voltge 2
VEMPT2
IEMPSET = -2µA
1.7
1.8
1.9
V
EMP Detection Hysteresis Voltage 1
VEMHS1
VEMPSET = 0V
25
50
100
mV
EMP Detection Hysteresis Voltage 2
VEMHS2
IEMPSET = -2µA
25
50
100
mV
IO = 1mA, OVP = 1V
-
-
0.5
V
OVP = 2.4V
-
-
1.0
µA
17
23
27
KΩ
-
-
1.0
V
EMP Pin Output Voltage
EMP Pin Output Leak Current
*OVP Pin Input Resistance
OVP Pin Leak Current
VEMP
IEMPLK
ROVP
IOVPLK
VEMPSET = 0V
SVCC1 = SVCC2 = 0V,
OVP = 4.5V
EMP_SET Pin Detection Voltage
VEMPSET
VEMPSET = BATT-EMPSET,
OVP = 2V
1.5
-
-
V
EMP_SET Pin Detection Current
IEMPSET
EMPSET
-2
-
-
µA
*Granteed Design Value
9
FAN8038C
Application Information
1. BAKE AND MUTE FUNCTION
• Of the four channel drivers, channel 1 has a brake function, and the other channels have a mute function.
• When the BRAKE (pin23) is set to high level, both channel 1 outputs go low level. (Brake mode).
• When the MUTE2 (pin21) is set to high level, the channel 2 output is muted.
• When the MUTE34 (pin19) is set to high level, the channel 3 and 4 outputs are muted.
•
2. REFERENCE VOLTAGE(VREF) DROP MUTE
• When the voltage applied to VREF (pin16) is 1.0V or less (typical), the H-bridge driver outputs are set to high impedance.
3. THERMAL SHUTDOWN (TSD)
• If the chip temperature reaches 150°C (typical), the H-bridge driver output current is cut-off and the thermal shut down
circuit has a hysteresis temperature of 25°C.
4. H-BRIDGE DRIVER (4-CHANNELS)
• The driver input resistance is 11KΩ(typical) for channels 1, 3 , and 4, and 7.5KΩ for channel 2. Set the gain according to
the following formula.
•
Channel
Gain
Unit
CH1
CH3
CH4
Gv = 20 log
55 K
11K + REXT
dB
CH2
Gv = 20 log
110 K
7.5 K + REXT
dB
where, REXT is externally connected input resistance.
5. SWITCHING REGULATED POWER SUPPLY DRIVE
• The power supply of H-bridge driver consists of DVCC(pin36) for output stage power supply and VSYS2 (pin15) for
predriver power supply.
37
VBAT
15
36
PWM
44
9
Maximum
Detector
Predriver
Triangular
Waveform
Figure 1. Switching Regulated Power Supply
10
25
27
29
31
24
26
30
32
28
FAN8038C
6. DC-DC CONVERTER CONTROL CIRCUIT
6-1. Set to output voltage
• The DC-DC converter output voltage, SVCC1, is set by internal resistors R3 and R4 and the voltage, SVCC1, is defined as
follows.
SVCC1 = (1 +
R3
)1.267 = 2.5[V ]
R4
• This voltage, SVCC1, can be varied with the addition of an external resistors R1 and R2 as shown Figure.2 and the voltage
is defined as follows.
R2 ⋅ R4 
 R1 ⋅ R 3
+


SVCC 1 =  R1 + R 3 R 2 + R 4  × 1.267[V ]

R2 ⋅ R4



R2 + R4


• Where, R1 and R2 are exteranl resistors, and R3 and R4 are internal resistors.
2
10uA
VBAT
8
CSCP
6
1.25V
Short Circuit Protection
7
12
SVCC1
R3
R1
R2
R4
Error Amp
1.267V
65 KΩ
R 3 = 30 K Ω
R 4 = 30 .5 K Ω
5
PWM
Comp
Triangular
Waveform
9
COSC
SVCC1
4
CDEDSET
1.267V
34
3
Figure 2. Schematic of DC-DC Converter
6-2. Power-on Reset function
• If the output voltage of DC-DC conver, SVCC1,is over than 90%, the RSTOUT(pin3) goes from low level to high level, and
RST (pin34) goes to high level to low level. The reset voltage has 50mV of hysteresis to prevent output chattering.
6-3. Delayed Short Circuit Protection
• When the error amplifier output (pin6) become high level state during the abnormal conditions such as over load or short
ciruit, the exteral capacitor, CSCP, is charged, and when the SCP (pin8) voltage reaches 1.25V(typ.), the PWM comparator
output, BDSW(pin5), is shwitch-off.
11
FAN8038C
• The time until switching-off is set by the capacitor, CSCP, and the equation is as follows:
t SCP =
CSCP × VSCP
[sec]
iSCP
where, VSCP = 1.25[V ], iSCP = 10[uA]
6-4. Soft Start Function
• The soft start function operates when a capacitor is connected between DEDSET(pin4) and GND. Also, the maximum duty
cab be varied by connecting a resistor to pin4.
t SOFT = C DEDSET × R
Where, R = 65[ KΩ]
7. POWER OFF FUNCTION
• When low level is applied to STOP (pin40), SCP (pin8) is charged, and when the voltage reaches 1.25V (typical), the PWM
comparator output, BDSW(pin5), is shwitch-off.
• The time until switching-off is set by the capacitor, CSCP, and the equation is as follows:
tOFF =
CSCP × VTH
[sec]
iOFF
Where, VTH = 1.25[V ], iOFF = 20[uA]
•
8. BATTERY CHARGER AND MONITORING FUNCTION
8-1. Set to Battey Charging Current
• The power supply for the charging circuit is ADPVCC (pin41), and battery charger circuit is separated from any other
block. The resistance between CHGSET (pin33) and GND sets the charging current, iCHG.
• This current, iCHG, is drawn from EMPSET (pin42).
• The thermal shutdown circuit is provided, and when the chip temperature rise up to about 150°C the charging current, iCHG,
is cut-off and it has the temperature hysteresis of about 30°C.
8-2. Over Voltage Protection
• When the voltage applied to the OVP (pin1) reaches 9.7V, SCP (pin8) is charged, and when the voltage reaches 1.25V
(typical), the PWM comparator output, BDSW(pin5), is shwitch-off.
• The time until switching-off is set by the capacitor, CSCP, and the equation is as follows:
•
tOVP =
CSCP × VTH
[sec]
iOVP
Where, VTH = 1.25[V ], iOVP = 20[uA]
•
8-3. Empty Detecting Circuit
• when the voltage applied to the OVP (pin1) falls below the detector voltage, EMP (pin35) goes from high level to low level
(open collector output). The detector voltage has 50mV of hysteresis to prevent output chattering.
• EMPSEL (pin42) to switch the detection voltage as shown below.
•
EMPSET
Detect Voltage
Hysteresis
Mode
12
LOW
2.2V
50mV
Battery Mode
HIGH-Z
1.8V
50mV
Adapter Mode
FAN8038C
Typical Performance Characteristics
Temp vs V ovp
Temp vs V S1TH
3.20
10.50
3.18
3.15
10.25
V S1TH
3.13
[V ]
3.10
V ovp10.00
[V ]
3.08
3.05
9.75
-35 -20 -5 10 25 40 55 70 85
9.50
-35 -20 -5
Temp[℃]
IST
[mA]
25
40
55
70
85
Temp[℃]
BATT vs IBATT
BATT vs IST
0.1
10
4
0.05
3
0
IBATT
2
[mA]
-0.05
1
-0.1
0
1.5
2.5
3.5
4.5
5.5
6.5
1.5
7.5
2.5
3.5
5.5
6.5
7.5
Temp vs ISINK
Temp vs V EMPSET
1
1.8
0.9
1.6
0.8
V EMPSET
1.4
[V ]
ISINK
0.7
[mA]
0.6
1.2
1
-35 -20 -5
4.5
BATT[V ]
BATT[V ]
0.5
10
25
40
Temp[℃]
55
70
85
0.4
-35 -20
-5
10
25
40
55
70
85
Temp[℃]
13
FAN8038C
Application Circuits
Adaptor
Battery
Battery
STOP
START
Clock
43
44
42
40
41
39
37
38
36
35
34
OVP
1
33
POWER-OFF
START
Empty
Detector
Maximum
Detection
Power Supply
2
20uA
10uA
OFF
VSYS1
3
32
Predriver
V
/
I
Predriver
RESET
30
31
4
65K
5
V
/
I
1.25V
29
R1
28
6
Error
Amp
R2
7
27
Predriver
V
/
I
8
26
1.25V
10
CLOCK
Triangular
Waveform
V
/
I
25
Predriver
9
24
Thermal
Shutdown
VSYS1
Brake1
23
11
Control Circuit
Power Supply
12
13
14
Mute2
Mute34
15
16
17
VREF
DI3
18
DI4
19
20
MUTE34 DI2
21
22
MUTE1 DI1 BRAKE
Servo Pre Amp & Controller
14
FAN8038C
Package Dimension
15
FAN8038C
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
CORPORATION. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
11/18/04 0.0m 001
Stock#DSxxxxxxxx
 2005 Fairchild Semiconductor Corporation