FAIRCHILD 74LVQ374_01

74LVQ374
OCTAL D-TYPE FLIP-FLOP
WITH 3 STATE OUTPUTS NON INVERTING
■
■
■
■
■
■
■
■
■
■
■
HIGH SPEED:
fMAX = 180 MHz (TYP.) at VCC = 3.3V
COMPATIBLE WITH TTL OUTPUTS
LOW POWER DISSIPATION:
ICC = 4µA (MAX.) at TA=25°C
LOW NOISE:
VOLP = 0.4V (TYP.) at VCC = 3.3V
75Ω TRANSMISSION LINE DRIVING
CAPABILITY
SYMMETRICAL OUTPUT IMPEDANCE:
|IOH| = IOL = 12 mA (MIN) at VCC = 3.0V
PCI BUS LEVELS GUARANTEED AT 24 mA
BALANCED PROPAGATION DELAYS:
tPLH ≅ tPHL
OPERATING VOLTAGE RANGE:
VCC(OPR) = 2V to 3.6V (1.2V Data Retention)
PIN AND FUNCTION COMPATIBLE WITH
74 SERIES 374
IMPROVED LATCH-UP IMMUNITY
DESCRIPTION
74LVQ374 is a low voltage CMOS OCTAL
D-TYPE FLIP-FLOP with 3 STATE OUTPUTS
NON INVERTING fabricated with sub-micron
silicon gate and double-layer metal wiring C2MOS
technology. It is ideal for low power and low noise
3.3V applications.
These 8 bit D-Type Flip-Flops are controlled by a
clock input (CK) and an output enable input (OE).
On the positive transition of the clock, the Q
SOP
TSSOP
Table 1: Order Codes
PACKAGE
T&R
SOP
TSSOP
74LVQ374MTR
74LVQ374TTR
outputs will be set to the logic that were setup at
the D inputs.
While the (OE) input is low, the 8 outputs will be in
a normal logic state (high or low logic level) and
while high level the outputs will be in a high
impedance state.
The output control does not affect the internal
operation of flip-flops; that is, the old data can be
retained or the new data can be entered even
while the outputs are off.
All inputs and outputs are equipped with
protection circuits against static discharge, giving
them 2KV ESD immunity and transient excess
voltage.
Figure 1: Pin Connection And IEC Logic Symbols
July 2004
Rev. 5
1/13
74LVQ374
Figure 2: Input And Output Equivalent Circuit
Table 2: Pin Description
PIN N°
SYMBOL
NAME AND FUNCTION
1
OE
2, 5, 6, 9, 12,
15, 16,19
3, 4, 7, 8, 13,
14, 17, 18
11
Q0 to Q7
3-State Output Enable
(Active LOW)
3-State Outputs
D0 to D7
Data Inputs
CLOCK
10
20
GND
VCC
Clock Input (LOW-to-HIGH
Edge Triggered)
Ground (0V)
Positive Supply Voltage
Table 3: Truth Table
INPUTS
OE
CK
D
H
X
Q
X
Z
L
X
NO CHANGE
L
L
L
L
H
H
X : Don’t Care
Z : High Impedance
Figure 3: Logic Diagram
2/13
OUTPUT
74LVQ374
Table 4: Absolute Maximum Ratings
Symbol
VCC
Parameter
Supply Voltage
Value
Unit
-0.5 to +7
V
VI
DC Input Voltage
-0.5 to VCC + 0.5
V
VO
DC Output Voltage
-0.5 to VCC + 0.5
± 20
V
mA
± 20
mA
IIK
DC Input Diode Current
IOK
DC Output Diode Current
IO
DC Output Current
ICC or IGND DC VCC or Ground Current
Storage Temperature
Tstg
TL
Lead Temperature (10 sec)
± 50
mA
± 400
mA
-65 to +150
°C
300
°C
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is
not implied.
Table 5: Recommended Operating Conditions
Symbol
VCC
Parameter
Supply Voltage (note 1)
VI
Input Voltage
VO
Output Voltage
Top
Operating Temperature
dt/dv
Input Rise and Fall Time VCC = 3.0V (note 2)
Value
Unit
2 to 6
V
0 to VCC
V
0 to VCC
V
-55 to 125
°C
0 to 10
ns/V
1) Truth Table guaranteed: 1.2V to 3.6V
2) VIN from 0.8V to 2V
3/13
74LVQ374
Table 6: DC Specifications
Test Condition
Symbol
VIH
VIL
VOH
Parameter
High Level Input
Voltage
Low Level Input
Voltage
High Level Output
Voltage
TA = 25°C
VCC
(V)
Min.
Typ.
Max.
2.0
3.0 to
3.6
3.0
Value
Low Level Output
Voltage
3.0
-55 to 125°C
Min.
Min.
0.8
IO=-50 µA
2.9
IO=-12 mA
2.58
2.99
2.9
2.9
2.48
2.2
IO=50 µA
0.002
0.1
IO=12 mA
0
0.36
Ioz
ICC
IOLD
IOHD
Input Leakage
Current
High Impedance
Output Leakage
Current
Quiescent Supply
Current
Dynamic Output
Current (note 1, 2)
V
0.8
2.48
Unit
Max.
2.0
0.8
IO=24 mA
II
Max.
2.0
IO=-24 mA
VOL
-40 to 85°C
V
V
2.2
0.1
0.1
0.44
0.44
0.55
0.55
V
3.6
VI = VCC or GND
± 0.1
±1
±1
µA
3.6
VI = VIH or VIL
VO = VCC or GND
±0.25
±2.5
±5.0
µA
3.6
VI = VCC or GND
4
40
40
µA
3.6
VOLD = 0.8 V max
36
25
mA
VOHD = 2 V min
-25
-25
mA
1) Maximum test duration 2ms, one output loaded at time
2) Incident wave switching is guaranteed on transmission lines with impedances as low as 75Ω
Table 7: Dynamic Switching Characteristics
Test Condition
Symbol
VOLP
VOLV
VIHD
VILD
Parameter
Dynamic Low
Voltage Quiet
Output (note 1, 2)
Dynamic High
Voltage Input (note
1, 3)
Dynamic Low
Voltage Input (note
1, 3)
Value
TA = 25°C
VCC
(V)
Min.
3.3
-0.8
3.3
Typ.
Max.
0.5
0.8
-40 to 85°C
-55 to 125°C
Min.
Min.
Max.
Unit
Max.
V
-0.6
2
V
CL = 50 pF
3.3
0.8
V
1) Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V Inputs under test switching: 3.3V to threshold (VILD), 0V to threshold
(VIHD), f=1MHz.
4/13
74LVQ374
Table 8: AC Electrical Characteristics (CL = 50 pF, RL = 500 Ω, Input tr = tf = 3ns)
Test Condition
Symbol
Parameter
tPLH
tPHL
Propagation Delay
Time CK to Q
tPLZ
tPHZ
Output Disable
Time
tPZL
tPZH
Output Enable
Time
tW
Clock Pulse Width
HIGH
tsL
tsH
Setup Time D to
CK, HIGH or LOW
thL
thH
Hold Time CK to D,
HIGH or LOW
fMAX
tOSLH
tOSHL
Maximum Clock
Frequency
Output To Output
Skew Time
(note1, 2)
Value
TA = 25°C
VCC
(V)
Min.
Typ.
Max.
-40 to 85°C
-55 to 125°C
Min.
Min.
Max.
Max.
2.7
7.7
12.0
14.0
16.0
3.3(*)
2.7
6.3
9.0
10.5
12.0
8.8
13.0
15.0
17.0
3.3(*)
7.2
10.0
11.5
13.0
2.7
9.2
13.0
15.0
17.0
3.3(*)
7.2
10.0
11.5
13.0
2.7
4.0
1.5
4.0
4.0
(*)
3.0
1.1
3.0
3.0
3.0
0.0
3.0
3.0
(*)
3.3
2.7
2.0
0.0
2.0
2.0
1.0
0.0
1.0
1.0
3.3(*)
2.7
1.5
0.0
1.5
1.5
100
150
80
60
120
180
100
80
3.3
2.7
3.3(*)
2.7
0.5
0.5
(*)
3.3
1.0
1.0
1.0
1.0
Unit
ns
ns
ns
ns
ns
ns
MHz
1.0
1.0
ns
1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (tOSLH = |tPLHm - tPLHn|, tOSHL = |tPHLm - tPHLn|)
2) Parameter guaranteed by design
(*) Voltage range is 3.3V ± 0.3V
Table 9: Capacitive Characteristics
Test Condition
Symbol
Parameter
CIN
Input Capacitance
COUT
Output
Capacitance
Power Dissipation
Capacitance (note
1)
CPD
Value
TA = 25°C
VCC
(V)
Min.
Typ.
Max.
-40 to 85°C
-55 to 125°C
Min.
Min.
Max.
Unit
Max.
3.3
4
pF
3.3
7
pF
15
pF
3.3
fIN = 10MHz
1) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without
load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. ICC(opr) = CPD x VCC x fIN + ICC/8 (per Flip
Flop)
5/13
74LVQ374
Figure 4: Test Circuit
TEST
SWITCH
tPLH, tPHL
Open
tPZL, tPLZ
2VCC
tPZH, tPHZ
Open
CL = 50pF or equivalent (includes jig and probe capacitance)
RL = R1 = 500Ω or equivalent
RT = ZOUT of pulse generator (typically 50Ω)
Figure 5: Waveform - Propagation Delays, Setup And Hold Times (f=1MHz; 50% duty cycle)
6/13
74LVQ374
Figure 6: Waveform - Output Enable And Disable Times (f=1MHz; 50% duty cycle)
Figure 7: Waveform - Pulse Width (f=1MHz; 50% duty cycle)
7/13
74LVQ374
SO-20 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
2.35
2.65
0.093
0.104
A1
0.1
0.30
0.004
0.012
B
0.33
0.51
0.013
0.020
C
0.23
0.32
0.009
0.013
D
12.60
13.00
0.496
0.512
E
7.4
7.6
0.291
0.299
e
1.27
0.050
H
10.00
10.65
0.394
0.419
h
0.25
0.75
0.010
0.030
L
0.4
1.27
0.016
0.050
k
0°
8°
0°
8°
ddd
0.100
0.004
0016022D
8/13
74LVQ374
TSSOP20 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
MAX.
A
MIN.
TYP.
MAX.
1.2
A1
0.05
A2
0.8
b
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0079
D
6.4
6.5
6.6
0.252
0.256
0.260
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
1
e
0.65 BSC
K
0˚
L
0.45
A
0.0256 BSC
0.60
8˚
0˚
0.75
0.018
8˚
0.024
0.030
A2
A1
b
K
e
L
E
c
D
E1
PIN 1 IDENTIFICATION
1
0087225C
9/13
74LVQ374
Tape & Reel SO-20 MECHANICAL DATA
mm.
inch
DIM.
MIN.
A
MAX.
MIN.
330
13.2
TYP.
MAX.
12.992
C
12.8
D
20.2
0.795
N
60
2.362
T
10/13
TYP
0.504
30.4
0.519
1.197
Ao
10.8
11
0.425
0.433
Bo
13.2
13.4
0.520
0.528
Ko
3.1
3.3
0.122
0.130
Po
3.9
4.1
0.153
0.161
P
11.9
12.1
0.468
0.476
74LVQ374
Tape & Reel TSSOP20 MECHANICAL DATA
mm.
inch
DIM.
MIN.
A
TYP
MAX.
MIN.
330
MAX.
12.992
C
12.8
D
20.2
0.795
N
60
2.362
T
13.2
TYP.
0.504
22.4
0.519
0.882
Ao
6.8
7
0.268
0.276
Bo
6.9
7.1
0.272
0.280
Ko
1.7
1.9
0.067
0.075
Po
3.9
4.1
0.153
0.161
P
11.9
12.1
0.468
0.476
11/13
74LVQ374
Table 10: Revision History
Date
Revision
29-Jul-2004
5
12/13
Description of Changes
Ordering Codes Revision - pag. 1.
74LVQ374
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
13/13