74LVQ374 OCTAL D-TYPE FLIP-FLOP WITH 3 STATE OUTPUTS NON INVERTING ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ HIGH SPEED: fMAX = 180 MHz (TYP.) at VCC = 3.3V COMPATIBLE WITH TTL OUTPUTS LOW POWER DISSIPATION: ICC = 4µA (MAX.) at TA=25°C LOW NOISE: VOLP = 0.4V (TYP.) at VCC = 3.3V 75Ω TRANSMISSION LINE DRIVING CAPABILITY SYMMETRICAL OUTPUT IMPEDANCE: |IOH| = IOL = 12 mA (MIN) at VCC = 3.0V PCI BUS LEVELS GUARANTEED AT 24 mA BALANCED PROPAGATION DELAYS: tPLH ≅ tPHL OPERATING VOLTAGE RANGE: VCC(OPR) = 2V to 3.6V (1.2V Data Retention) PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 374 IMPROVED LATCH-UP IMMUNITY DESCRIPTION 74LVQ374 is a low voltage CMOS OCTAL D-TYPE FLIP-FLOP with 3 STATE OUTPUTS NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring C2MOS technology. It is ideal for low power and low noise 3.3V applications. These 8 bit D-Type Flip-Flops are controlled by a clock input (CK) and an output enable input (OE). On the positive transition of the clock, the Q SOP TSSOP Table 1: Order Codes PACKAGE T&R SOP TSSOP 74LVQ374MTR 74LVQ374TTR outputs will be set to the logic that were setup at the D inputs. While the (OE) input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state. The output control does not affect the internal operation of flip-flops; that is, the old data can be retained or the new data can be entered even while the outputs are off. All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage. Figure 1: Pin Connection And IEC Logic Symbols July 2004 Rev. 5 1/13 74LVQ374 Figure 2: Input And Output Equivalent Circuit Table 2: Pin Description PIN N° SYMBOL NAME AND FUNCTION 1 OE 2, 5, 6, 9, 12, 15, 16,19 3, 4, 7, 8, 13, 14, 17, 18 11 Q0 to Q7 3-State Output Enable (Active LOW) 3-State Outputs D0 to D7 Data Inputs CLOCK 10 20 GND VCC Clock Input (LOW-to-HIGH Edge Triggered) Ground (0V) Positive Supply Voltage Table 3: Truth Table INPUTS OE CK D H X Q X Z L X NO CHANGE L L L L H H X : Don’t Care Z : High Impedance Figure 3: Logic Diagram 2/13 OUTPUT 74LVQ374 Table 4: Absolute Maximum Ratings Symbol VCC Parameter Supply Voltage Value Unit -0.5 to +7 V VI DC Input Voltage -0.5 to VCC + 0.5 V VO DC Output Voltage -0.5 to VCC + 0.5 ± 20 V mA ± 20 mA IIK DC Input Diode Current IOK DC Output Diode Current IO DC Output Current ICC or IGND DC VCC or Ground Current Storage Temperature Tstg TL Lead Temperature (10 sec) ± 50 mA ± 400 mA -65 to +150 °C 300 °C Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Table 5: Recommended Operating Conditions Symbol VCC Parameter Supply Voltage (note 1) VI Input Voltage VO Output Voltage Top Operating Temperature dt/dv Input Rise and Fall Time VCC = 3.0V (note 2) Value Unit 2 to 6 V 0 to VCC V 0 to VCC V -55 to 125 °C 0 to 10 ns/V 1) Truth Table guaranteed: 1.2V to 3.6V 2) VIN from 0.8V to 2V 3/13 74LVQ374 Table 6: DC Specifications Test Condition Symbol VIH VIL VOH Parameter High Level Input Voltage Low Level Input Voltage High Level Output Voltage TA = 25°C VCC (V) Min. Typ. Max. 2.0 3.0 to 3.6 3.0 Value Low Level Output Voltage 3.0 -55 to 125°C Min. Min. 0.8 IO=-50 µA 2.9 IO=-12 mA 2.58 2.99 2.9 2.9 2.48 2.2 IO=50 µA 0.002 0.1 IO=12 mA 0 0.36 Ioz ICC IOLD IOHD Input Leakage Current High Impedance Output Leakage Current Quiescent Supply Current Dynamic Output Current (note 1, 2) V 0.8 2.48 Unit Max. 2.0 0.8 IO=24 mA II Max. 2.0 IO=-24 mA VOL -40 to 85°C V V 2.2 0.1 0.1 0.44 0.44 0.55 0.55 V 3.6 VI = VCC or GND ± 0.1 ±1 ±1 µA 3.6 VI = VIH or VIL VO = VCC or GND ±0.25 ±2.5 ±5.0 µA 3.6 VI = VCC or GND 4 40 40 µA 3.6 VOLD = 0.8 V max 36 25 mA VOHD = 2 V min -25 -25 mA 1) Maximum test duration 2ms, one output loaded at time 2) Incident wave switching is guaranteed on transmission lines with impedances as low as 75Ω Table 7: Dynamic Switching Characteristics Test Condition Symbol VOLP VOLV VIHD VILD Parameter Dynamic Low Voltage Quiet Output (note 1, 2) Dynamic High Voltage Input (note 1, 3) Dynamic Low Voltage Input (note 1, 3) Value TA = 25°C VCC (V) Min. 3.3 -0.8 3.3 Typ. Max. 0.5 0.8 -40 to 85°C -55 to 125°C Min. Min. Max. Unit Max. V -0.6 2 V CL = 50 pF 3.3 0.8 V 1) Worst case package. 2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND. 3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V Inputs under test switching: 3.3V to threshold (VILD), 0V to threshold (VIHD), f=1MHz. 4/13 74LVQ374 Table 8: AC Electrical Characteristics (CL = 50 pF, RL = 500 Ω, Input tr = tf = 3ns) Test Condition Symbol Parameter tPLH tPHL Propagation Delay Time CK to Q tPLZ tPHZ Output Disable Time tPZL tPZH Output Enable Time tW Clock Pulse Width HIGH tsL tsH Setup Time D to CK, HIGH or LOW thL thH Hold Time CK to D, HIGH or LOW fMAX tOSLH tOSHL Maximum Clock Frequency Output To Output Skew Time (note1, 2) Value TA = 25°C VCC (V) Min. Typ. Max. -40 to 85°C -55 to 125°C Min. Min. Max. Max. 2.7 7.7 12.0 14.0 16.0 3.3(*) 2.7 6.3 9.0 10.5 12.0 8.8 13.0 15.0 17.0 3.3(*) 7.2 10.0 11.5 13.0 2.7 9.2 13.0 15.0 17.0 3.3(*) 7.2 10.0 11.5 13.0 2.7 4.0 1.5 4.0 4.0 (*) 3.0 1.1 3.0 3.0 3.0 0.0 3.0 3.0 (*) 3.3 2.7 2.0 0.0 2.0 2.0 1.0 0.0 1.0 1.0 3.3(*) 2.7 1.5 0.0 1.5 1.5 100 150 80 60 120 180 100 80 3.3 2.7 3.3(*) 2.7 0.5 0.5 (*) 3.3 1.0 1.0 1.0 1.0 Unit ns ns ns ns ns ns MHz 1.0 1.0 ns 1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (tOSLH = |tPLHm - tPLHn|, tOSHL = |tPHLm - tPHLn|) 2) Parameter guaranteed by design (*) Voltage range is 3.3V ± 0.3V Table 9: Capacitive Characteristics Test Condition Symbol Parameter CIN Input Capacitance COUT Output Capacitance Power Dissipation Capacitance (note 1) CPD Value TA = 25°C VCC (V) Min. Typ. Max. -40 to 85°C -55 to 125°C Min. Min. Max. Unit Max. 3.3 4 pF 3.3 7 pF 15 pF 3.3 fIN = 10MHz 1) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. ICC(opr) = CPD x VCC x fIN + ICC/8 (per Flip Flop) 5/13 74LVQ374 Figure 4: Test Circuit TEST SWITCH tPLH, tPHL Open tPZL, tPLZ 2VCC tPZH, tPHZ Open CL = 50pF or equivalent (includes jig and probe capacitance) RL = R1 = 500Ω or equivalent RT = ZOUT of pulse generator (typically 50Ω) Figure 5: Waveform - Propagation Delays, Setup And Hold Times (f=1MHz; 50% duty cycle) 6/13 74LVQ374 Figure 6: Waveform - Output Enable And Disable Times (f=1MHz; 50% duty cycle) Figure 7: Waveform - Pulse Width (f=1MHz; 50% duty cycle) 7/13 74LVQ374 SO-20 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 2.35 2.65 0.093 0.104 A1 0.1 0.30 0.004 0.012 B 0.33 0.51 0.013 0.020 C 0.23 0.32 0.009 0.013 D 12.60 13.00 0.496 0.512 E 7.4 7.6 0.291 0.299 e 1.27 0.050 H 10.00 10.65 0.394 0.419 h 0.25 0.75 0.010 0.030 L 0.4 1.27 0.016 0.050 k 0° 8° 0° 8° ddd 0.100 0.004 0016022D 8/13 74LVQ374 TSSOP20 MECHANICAL DATA mm. inch DIM. MIN. TYP MAX. A MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0079 D 6.4 6.5 6.6 0.252 0.256 0.260 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.0256 BSC 0.60 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b K e L E c D E1 PIN 1 IDENTIFICATION 1 0087225C 9/13 74LVQ374 Tape & Reel SO-20 MECHANICAL DATA mm. inch DIM. MIN. A MAX. MIN. 330 13.2 TYP. MAX. 12.992 C 12.8 D 20.2 0.795 N 60 2.362 T 10/13 TYP 0.504 30.4 0.519 1.197 Ao 10.8 11 0.425 0.433 Bo 13.2 13.4 0.520 0.528 Ko 3.1 3.3 0.122 0.130 Po 3.9 4.1 0.153 0.161 P 11.9 12.1 0.468 0.476 74LVQ374 Tape & Reel TSSOP20 MECHANICAL DATA mm. inch DIM. MIN. A TYP MAX. MIN. 330 MAX. 12.992 C 12.8 D 20.2 0.795 N 60 2.362 T 13.2 TYP. 0.504 22.4 0.519 0.882 Ao 6.8 7 0.268 0.276 Bo 6.9 7.1 0.272 0.280 Ko 1.7 1.9 0.067 0.075 Po 3.9 4.1 0.153 0.161 P 11.9 12.1 0.468 0.476 11/13 74LVQ374 Table 10: Revision History Date Revision 29-Jul-2004 5 12/13 Description of Changes Ordering Codes Revision - pag. 1. 74LVQ374 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2004 STMicroelectronics - All Rights Reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 13/13