STMICROELECTRONICS 74LVX574MTR

74LVX574
LOW VOLTAGE CMOS OCTAL D-TYPE FLIP-FLOP
(3-STATE NON INV.) WITH 5V TOLERANT INPUTS
■
■
■
■
■
■
■
■
■
■
■
HIGH SPEED:
fMAX = 125MHz (TYP.) at VCC = 3.3V
5V TOLERANT INPUTS
POWER-DOWN PROTECTION ON INPUTS
INPUT VOLTAGE LEVEL:
VIL = 0.8V, VIH = 2V at VCC = 3V
LOW POWER DISSIPATION:
ICC = 4 µA (MAX.) at TA=25°C
LOW NOISE:
VOLP = 0.3V (TYP.) at VCC =3.3V
SYMMETRICAL OUTPUT IMPEDANCE:
|IOH| = IOL = 4 mA (MIN) at VCC =3V
BALANCED PROPAGATION DELAYS:
tPLH ≅ tPHL
OPERATING VOLTAGE RANGE:
VCC(OPR) = 2V to 3.6V (1.2V Data Retention)
PIN AND FUNCTION COMPATIBLE WITH
74 SERIES 574
IMPROVED LATCH-UP IMMUNITY
DESCRIPTION
The 74LVX574 is a low voltage CMOS OCTAL
D-TYPE FLIP-FLOP with 3 STATE OUTPUT NON
INVERTING fabricated with sub-micron silicon
gate and double-layer metal wiring C2MOS
technology. It is ideal for low power, battery
operated and low noise 3.3V applications.
This 8 bit D-Type flip-flop is controlled by a clock
input (CK) and an output enable input (OE). On
the positive transition of the clock, the Q outputs
will be set to the logic state that were setup at the
SOP
TSSOP
Table 1: Order Codes
PACKAGE
T&R
SOP
TSSOP
74LVX574MTR
74LVX574TTR
D inputs. While the (OE) input is low, the 8 outputs
will be in a normal logic state (high or low logic
level) and while high level the outputs will be in a
high impedance state. The output control does not
affect the internal operation of flip flops; that is, the
old data can be retained or the new data can be
entered even while the outputs are off.
Power down protection is provided on all inputs
and 0 to 7V can be accepted on inputs with no
regard to the supply voltage.
This device can be used to interface 5V to 3V. It
combines high speed performance with the true
CMOS low power consumption.
All inputs and outputs are equipped with
protection circuits against static discharge, giving
them 2KV ESD immunity and transient excess
voltage.
Figure 1: Pin Connection And IEC Logic Symbols
August 2004
Rev. 3
1/13
74LVX574
Figure 2: Input Equivalent Circuit
Table 2: Pin Description
PIN N°
SYMBOL
1
OE
2, 3, 4, 5, 6,
7, 8, 9
12, 13, 14,
15, 16, 17,
18, 19
11
D0 to D7
3-State Output Enable
Input (Active LOW)
Data Inputs
Q0 to Q7
3-State Outputs
10
20
CK
GND
VCC
NAME AND FUNCTION
Clock Input (LOW-to-HIGH
Edge Triggered)
Ground (0V)
Positive Supply Voltage
Table 3: Truth Table
INPUTS
OE
CK
D
H
X
Q
X
Z
L
X
NO CHANGE
L
L
L
L
H
H
X : Don’t Care
Z : High Impedance
Figure 3: Logic Diagram
This logic diagram has not be used to estimate propagation delays
2/13
OUTPUT
74LVX574
Table 4: Absolute Maximum Ratings
Symbol
VCC
Parameter
Supply Voltage
VI
DC Input Voltage
VO
DC Output Voltage
IIK
DC Input Diode Current
IOK
DC Output Diode Current
IO
DC Output Current
Value
Unit
-0.5 to +7.0
V
-0.5 to +7.0
V
-0.5 to VCC + 0.5
- 20
V
mA
± 20
mA
ICC or IGND DC VCC or Ground Current
Storage Temperature
Tstg
± 25
mA
± 50
mA
-65 to +150
°C
300
°C
Lead Temperature (10 sec)
TL
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is
not implied
Table 5: Recommended Operating Conditions
Symbol
Value
Unit
Supply Voltage (note 1)
2 to 3.6
V
VI
Input Voltage
0 to 5.5
V
VO
Output Voltage
0 to VCC
V
Top
Operating Temperature
-55 to 125
°C
0 to 100
ns/V
VCC
dt/dv
Parameter
Input Rise and Fall Time (note 2) (VCC = 3V)
1) Truth Table guaranteed: 1.2V to 3.6V
2) VIN from 0.8V to 2.0V
Table 6: DC Specifications
Test Condition
Symbol
VIH
VIL
VOH
VOL
IOZ
II
ICC
Parameter
High Level Input
Voltage
Low Level Input
Voltage
High Level Output
Voltage
Low Level Output
Voltage
High Impedance
Output Leakage
Current
Input Leakage Current
Quiescent Supply
Current
Value
TA = 25°C
VCC
(V)
Min.
2.0
3.0
3.6
2.0
3.0
3.6
Typ.
Max.
1.5
2.0
2.4
-40 to 85°C
-55 to 125°C Unit
Min.
Min.
Max.
1.5
2.0
2.4
0.5
0.8
0.8
Max.
1.5
2.0
2.4
0.5
0.8
0.8
V
0.5
0.8
0.8
V
2.0
IO=-50 µA
1.9
2.0
1.9
1.9
3.0
IO=-50 µA
2.9
3.0
2.9
2.9
3.0
IO=-4 mA
2.58
2.0
IO=50 µA
0.0
3.0
IO=50 µA
0.0
0.1
0.1
0.1
3.0
IO=4 mA
0.36
0.44
0.55
3.6
VI = VIH or VIL
VO = VCC or GND
±0.25
± 2.5
± 2.5
µA
3.6
VI = 5V or GND
± 0.1
±1
±1
µA
3.6
VI = VCC or GND
4
40
40
µA
2.48
0.1
V
2.4
0.1
0.1
V
3/13
74LVX574
Table 7: Dynamic Switching Characteristics
Test Condition
Symbol
VOLP
VOLV
VIHD
VILD
Parameter
Dynamic Low
Voltage Quiet
Output (note 1, 2)
Dynamic High
Voltage Input
(note 1, 3)
Dynamic Low
Voltage Input
(note 1, 3)
Value
TA = 25°C
VCC
(V)
Min.
3.3
-0.8
CL = 50 pF
3.3
Typ.
Max.
0.3
0.8
-40 to 85°C
-55 to 125°C
Min.
Min.
Max.
Unit
Max.
-0.3
V
2.0
3.3
0.8
1) Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3.3V to threshold (VILD), 0V to threshold
(VIHD), f=1MHz.
Table 8: AC Electrical Characteristics (Input tr = tf = 3ns)
Test Condition
Symbol
tPLH
tPHL
tPZL
tPZH
Parameter
Propagation Delay
Time
CK to Q
Output Enable
Time
tPLZ
tPHZ
Output Disable
Time
tW
CK pulse Width,
HIGH
tS
Setup Time D to CK
HIGH or LOW
th
Hold Time D to CK
HIGH or LOW
fMAX
tOSLH
tOSHL
Maximum Clock
Frequency
Output to Output
Skew Time (note
1,2)
VCC
(V)
CL
(pF)
2.7
2.7
Value
TA = 25°C
Min.
-40 to 85°C
-55 to 125°C
Typ.
Max.
Min.
Max.
Min.
Max.
15
50
9.2
11.5
14.5
18.0
1.0
1.0
17.5
21.0
1.0
1.0
17.5
21.0
3.3(*)
15
8.5
13.2
1.0
15.5
1.0
15.5
3.3(*)
2.7
2.7
50
11.0
16.7
1.0
19.0
1.0
19.0
15
50
9.8
11.4
15.0
18.5
1.0
1.0
18.5
22.0
1.0
1.0
18.5
22.0
3.3(*)
15
8.2
12.8
1.0
15.0
1.0
15.0
3.3(*)
2.7
50
10.7
16.3
1.0
18.5
1.0
18.5
50
12.1
19.1
1.0
22.0
1.0
22.0
3.3(*)
2.7
50
11.0
15.0
1.0
17.0
1.0
17.0
50
6.5
7.5
7.5
3.3(*)
2.7
50
5.0
5.0
5.0
50
5.0
5.0
5.0
3.3(*)
2.7
50
3.5
3.5
3.5
50
1.5
1.5
1.5
(*)
50
1.5
1.5
1.5
3.3
2.7
2.7
15
50
60
45
115
60
50
40
48
40
3.3(*)
15
80
125
65
60
3.3(*)
2.7
50
50
75
45
40
50
0.5
1.0
1.5
1.5
3.3(*)
50
0.5
1.0
1.5
1.5
Unit
ns
ns
ns
ns
ns
ns
MHz
ns
1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW
2) Parameter guaranteed by design
(*) Voltage range is 3.3V ± 0.3V
4/13
74LVX574
Table 9: Capacitive Characteristics
Test Condition
Symbol
Parameter
CIN
Input Capacitance
COUT
Output
Capacitance
Power Dissipation
Capacitance
(note 1)
CPD
Value
TA = 25°C
VCC
(V)
-55 to 125°C
Min.
Min.
Max.
3.3
4
10
3.3
6
pF
27
pF
fIN = 10MHz
Max.
Unit
Typ.
3.3
Min.
-40 to 85°C
Max.
10
10
pF
1) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without
load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. ICC(opr) = CPD x VCC x fIN + ICC/8 (per circuit)
Figure 4: Test Circuit
TEST
SWITCH
tPLH, tPHL
Open
tPZL, tPLZ
VCC
tPZH, tPHZ
GND
CL =15/50pF or equivalent (includes jig and probe capacitance)
RL = R1 = 1KΩ or equivalent
RT = ZOUT of pulse generator (typically 50Ω)
5/13
74LVX574
Figure 5: Waveform - Propagation Delays Setup And Hold Times (f=1MHz; 50% duty cycle)
Figure 6: Waveform - Output Enable And Disable Times (f=1MHz; 50% duty cycle)
6/13
74LVX574
Figure 7: Waveform - CK Minimum Pulse Width (f=1MHz; 50% duty cycle)
7/13
74LVX574
SO-20 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
2.35
2.65
0.093
0.104
A1
0.1
0.30
0.004
0.012
B
0.33
0.51
0.013
0.020
C
0.23
0.32
0.009
0.013
D
12.60
13.00
0.496
0.512
E
7.4
7.6
0.291
0.299
e
1.27
0.050
H
10.00
10.65
0.394
0.419
h
0.25
0.75
0.010
0.030
L
0.4
1.27
0.016
0.050
k
0°
8°
0°
8°
ddd
0.100
0.004
0016022D
8/13
74LVX574
TSSOP20 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
MAX.
A
MIN.
TYP.
MAX.
1.2
A1
0.05
A2
0.8
b
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0079
D
6.4
6.5
6.6
0.252
0.256
0.260
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
1
e
0.65 BSC
K
0˚
L
0.45
A
0.0256 BSC
0.60
8˚
0˚
0.75
0.018
8˚
0.024
0.030
A2
A1
b
K
e
L
E
c
D
E1
PIN 1 IDENTIFICATION
1
0087225C
9/13
74LVX574
Tape & Reel SO-20 MECHANICAL DATA
mm.
inch
DIM.
MIN.
A
MAX.
MIN.
330
13.2
TYP.
MAX.
12.992
C
12.8
D
20.2
0.795
N
60
2.362
T
10/13
TYP
0.504
30.4
0.519
1.197
Ao
10.8
11
0.425
0.433
Bo
13.2
13.4
0.520
0.528
Ko
3.1
3.3
0.122
0.130
Po
3.9
4.1
0.153
0.161
P
11.9
12.1
0.468
0.476
74LVX574
Tape & Reel TSSOP20 MECHANICAL DATA
mm.
inch
DIM.
MIN.
A
TYP
MAX.
MIN.
330
MAX.
12.992
C
12.8
D
20.2
0.795
N
60
2.362
T
13.2
TYP.
0.504
22.4
0.519
0.882
Ao
6.8
7
0.268
0.276
Bo
6.9
7.1
0.272
0.280
Ko
1.7
1.9
0.067
0.075
Po
3.9
4.1
0.153
0.161
P
11.9
12.1
0.468
0.476
11/13
74LVX574
Table 10: Revision History
Date
Revision
27-Aug-2004
3
12/13
Description of Changes
Ordering Codes Revision - pag. 1.
74LVX574
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
13/13