STMICROELECTRONICS 74V2T66

74V2T66
DUAL BILATERAL SWITCH
■
■
■
■
■
■
■
HIGH SPEED:
tPD = 0.6ns (TYP.) at VCC = 5V
COMPATIBLE WITH TTL LEVEL
LOW POWER DISSIPATION:
ICC = 1µA(MAX.) at TA = 25°C
LOW "ON" RESISTANCE:
RON =10Ω (TYP.) AT VCC = 5V II/O = 1mA
SINE WAVE DISTORTION:
0.04% AT VCC = 5.0V, f = 1KHz
OPERATING VOLTAGE RANGE:
VCC (OPR) = 4.5V TO 5.5V
IMPROVED LATCH-UP IMMUNITY
DESCRIPTION
The 74V2T66 is an advanced high-speed CMOS
DUAL BILATERAL SWITCH fabricated in silicon
gate C2MOS technology. It achieves high speed
propagation delay and VERY LOW ON
resistances while maintaining true CMOS low
power consumption. This bilateral switch handles
rail to rail analog and digital signals that may vary
across the full power supply range (from GND to
VCC)
The C input is provided to control the switch and
it’s compatible with standard CMOS output; the
SOT23-8L
ORDER CODES
PACKAGE
T&R
SOT23-8L
74V2T66STR
switch is ON (port I/O is connected to Port O/I)
when the C input is held high and OFF (high
impedance state exists between the two ports)
when C is held low. It can be used in many
application as Battery Powered System, Test
Equipment. It’s available in the commercial and
extended temperature range in SOT23-8L
package. All inputs and output are equipped with
protection circuits against static discharge, giving
them ESD immunity and transient excess voltage.
PIN CONNECTION AND IEC LOGIC SYMBOLS
June 2003
1/9
74V2T66
INPUT EQUIVALENT CIRCUIT
PIN DESCRIPTION
PIN No
SYMBOL
NAME AND FUNCTION
1, 5
2, 6
1I/O, 2I/O
1O/I, 2O/I
7, 3
1C, 2C
4
GND
VCC
Independent Input/Output
Independent Output/Input
Enable Input (Active
HIGH)
Ground (0V)
8
Positive Supply Voltage
TRUTH TABLE
CONTROL
SWITCH FUNCTION
H
L
ON
OFF *
* : High Impedance State
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
VI
Parameter
Supply Voltage
DC Input Voltage
Value
Unit
-0.5 to +7.0
V
-0.5 to VCC + 0.5
-0.5 to +7.0
V
-0.5 to VCC + 0.5
± 20
V
mA
VIC
DC Control Input Voltage
VO
DC Output Voltage
IIK
DC Input Diode Current
IIK
DC Control Input Diode Current
- 20
mA
IOK
DC Output Diode Current
± 20
mA
IO
DC Output Current
± 50
mA
± 50
mA
-65 to +150
°C
300
°C
ICC or IGND DC VCC or Ground Current
Tstg
Storage Temperature
TL
Lead Temperature (10 sec)
V
Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is
not implied
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
VI
Parameter
Unit
4.5 to 5.5
V
Input Voltage
0 to VCC
V
VIC
Control Input Voltage
0 to 5.5
V
VO
Output Voltage
0 to VCC
V
Top
Operating Temperature
dt/dv
Input Rise and Fall Time (note 1) VCC = 5.0V
1) VIN from 0.8V to 2V on control pin
2/9
Value
Supply Voltage
-55 to 125
°C
0 to 20
ns/V
74V2T66
DC SPECIFICATIONS
Test Condition
Symbol
Parameter
Value
TA = 25°C
VCC
(V)
Min.
5.0(*)
2
RON
High Level Input
Voltage
Low Level Input
Voltage
ON Resistance
5.0(*)
VIC = VIH
VI/O = VCC to GND
II/O ≤ 1mA
RON
ON Resistance
5.0(*)
VIC = VIH
VI/O = VCC or GND
II/O ≤ 1mA
IOFF
Input/Output
Leakage Current
(SWITCH OFF)
5.5
VOS = VCC to GND
VIS = VCC to GND
VIC = VIL
IIZ
Switch Input
Leakage Current
(SWITCH ON,
OUTPUT OPEN)
Control Input
Leakage Current
Quiescent Supply
Current
5.5
VIH
VIL
IIN
ICC
Typ.
Max.
5.5
VI = VCC or GND
Min.
Min.
Max.
Unit
Max.
2
V
0.8
0.8
0.8
V
12
17
20
24
V
10
14
18
20
V
±0.1
±1
±1
µA
±0.1
±1
±5
µA
± 0.1
± 1.0
± 1.0
µA
1
10
20
µA
VOS = VCC to GND
VIC = VIH
VIC = 5.5V or GND
-55 to 125°C
2
5.0(*)
0 to
5.5
-40 to 85°C
(*) Voltage range is 5V ± 0.5V
AC ELECTRICAL CHARACTERISTICS (CL = 50pF, Input tr = tf = 3ns)
Test Condition
Symbol
Parameter
Value
TA = 25°C
VCC
(V)
Min.
-40 to 85°C
-55 to 125°C
Min.
Min.
Max.
Unit
Typ.
Max.
Max.
0.6
0.7
1.0
2.0
ns
tPD
Delay Time
5.0
tPLZ
tPHZ
Output Disable
Time
5.0(*)
RL = 500 Ω
6.0
7.5
9.0
10.0
ns
tPZL
tPZH
Output Enable
Time
5.0(*)
RL = 1 K Ω
2.5
4.0
5.0
7.0
ns
(*)
(*) Voltage range is 5.0V ± 0.5V
3/9
74V2T66
CAPACITIVE CHARACTERISTICS
Test Condition
Symbol
Value
TA = 25°C
Parameter
Min.
CIN
Input Capacitance
CI/O
Output
Capacitance
Power Dissipation
Capacitance
(note 1)
CPD
Typ.
Max.
4
10
-40 to 85°C
-55 to 125°C
Min.
Min.
Max.
10
Unit
Max.
10
pF
10
pF
3
pF
1) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without
load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. ICC(opr) = CPD x VCC x fIN + ICC/2(per switch)
ANALOG SWITCH CHARACTERISTICS (GND = 0V; TA = 25°C)
Test Condition
Symbol
fMAX
Parameter
VCC
(V)
VIN
(Vp-p)
Sine Wave
Distortion (THD)
Frequency
Response
(Switch ON)
5.0(*)
4
5.0(*)
Feedthrough
Attenuation
(Switch OFF)
5.0(*)
Crosstalk (Control 5.0(*)
Input to Signal
Output)
Crosstalk Between 5.0(*)
Switches
(*) Voltage range is 5.0V ± 0.5V
4/9
Value
Unit
Typ.
0.04
%
Adjust fIN voltage to obtain 0 dBm at VOS.
Increase fIN Frequency until dB meter reads -3dB
RL = 50Ω, CL = 10 pF
180
MHz
VIN is centered at VCC/2
Adjust fIN Voltage to obtained 0dBm at VIS
RL = 600Ω, CL = 50 pF, fIN = 1MHz sine wave
-60
dB
RL = 600Ω, CL = 50 pF, fIN = 1MHz square wave
tr=tf= 2.0ns
60
mV
-60
dB
fIN = 1 KHz RL = 10 KΩ, CL = 50 pF
RL = 600Ω, CL = 50 pF, fIN = 1MHz sine wave
74V2T66
SWITCHING CARACTERISTICS TEST CIRCUIT
FEEDTHROUGH ATTENUATION
BANDWIDTH ATTENUATION
MAXIMUM CONTROL FREQUENCY
CROSSTALK (control to output
5/9
74V2T66
CHANNEL RESISTANCE (RON)
6/9
ICC (Opr.)
74V2T66
SOT23-8L MECHANICAL DATA
mm.
mils
DIM.
MIN.
TYP
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.22
0.38
8.6
14.9
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0
e1
L
0.35
.65
25.6
1.95
76.7
0.55
13.7
21.6
7/9
74V2T66
Tape & Reel SOT23-xL MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MIN.
TYP.
180
13.0
13.2
MAX.
7.086
C
12.8
D
20.2
0.795
N
60
2.362
T
8/9
MAX.
0.504
0.512
14.4
0.519
0.567
Ao
3.13
3.23
3.33
0.123
0.127
0.131
Bo
3.07
3.17
3.27
0.120
0.124
0.128
Ko
1.27
1.37
1.47
0.050
0.054
0.0.58
Po
3.9
4.0
4.1
0.153
0.157
0.161
P
3.9
4.0
4.1
0.153
0.157
0.161
74V2T66
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com
9/9