STMICROELECTRONICS L6221N


L6221A L6221AD
L6221N
QUAD DARLINGTON SWITCH
.
..
..
.
FOUR NON INVERTING INPUTS WITH
ENABLE
OUTPUT VOLTAGE UP TO 50 V
OUTPUT CURRENT UP TO 1.8 A
VERY LOW SATURATION VOLTAGE
TTL COMPATIBLE INPUTS
INTEGRAL FAST RECIRCULATION DIODES
Powerdip 12 + 2 + 2
DESCRIPTION
The L6221 monolithic quad darlington switch is designedfor high current, high voltageswitching applications. Each of the four switches is controlled by a
logic input and all four are controlled by a common
enableinput.All inputsareTTL-compatiblefor direct
connection to logic circuits.
Eachswitch consists of an open-collectordarlington
transistor plus a fast diodefor switchingapplications
with inductive device loads. The emitters of the four
switches are commoned. Any number of inputsand
outputs of the same device may be paralleled.
Multiwatt 15
SO16+2+2
ORDERING NUMBERS:
L6221A (Powerdip)
L6221N (Multiwatt15)
L6221AD (SO16+2+2)
BLOCK DIAGRAM
July 1998
1/15
L6221A - L6221AD - L6221N
THERMAL DATA
Symbol
R th j-pins
R th j-case
Rth j-amb
Parameter
Thermal Resistance Junction-pins
Thermal Resistance Junction-case
Thermal Resistance Junction-ambient
SO20
Max.
Max.
Max.
Powerdip Multiwatt15
17
–
80
14
–
80
Unit
°C/W
°C/W
°C/W
–
3
35
PIN CONNECTIONS (top views)
L6221A (Powerdip)
L6221AD (SO16+2+2)
OUT4
1
20
IN4
CLAMPB
2
19
IN3
N.C.
3
18
N.C.
OUT3
4
17
ENABLE
GND
5
16
GND
GND
6
15
GND
OUT2
7
14
VS
N.C.
8
13
N.C.
CLAMPA
9
12
IN2
10
11
IN1
OUT1
D95IN231
L6221N (Multiwatt-15)
2/15
L6221A - L6221AD - L6221N
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
Vo
Output Voltage
50
V
Vs
Logic Supply Voltage
7
V
Input Voltage, Enable Voltage
Vs
IC
Continuous Collector Current (for each channel)
1.8
A
VIN, VEN
IC
Collector Peak Current (repetitive, duty cycle = 10 % ton = 5 ms)
2.5
A
IC
Collector Peak Current (non repetitive, t = 10 µs)
3.2
A
Top
Operating Temperature Range (junction)
– 40 to + 150
°C
Tstg
Storage Temperature Range
– 55 to + 150
°C
Isub
Output Substrate Current
350
mA
Ptot
Total Power Dissipation
4.3
20
3.5
1
2.3
1
W
W
W
W
W
W
at
at
at
at
at
at
Tpins
Tcase
Tcase
Tamb
Tamb
Tamb
=
=
=
=
=
=
90
90
90
70
70
70
°C
°C
°C
°C
°C
°C
(powerdip)
(multiwatt)
(SO20)
(powerdip)
(multiwatt)
(SO20)
TRUTH TABLE
Enable
Input
Power Out
H
H
L
H
L
X
ON
OFF
OFF
For each input : H = High level
L = Low level
PIN FUNCTIONS (see block diagram)
Name
Function
IN 1
Input to Driver 1
IN 2
Input to Driver 2
OUT 1
Output of Driver 1
OUT 2
Output of Driver 2
CLAMP A
Diode Clamp to Driver 1 and Driver 2
IN 3
Input to Driver 3
IN 4
Input to Driver 4
OUT 3
Output of Driver 3
OUT 4
Output of Driver 4
CLAMP B
ENABLE
VS
GND
Diode Clamp to Driver 3 and Driver 4
Enable Input to All Drivers
Logic Supply Voltage
Common Ground
3/15
L6221A - L6221AD - L6221N
ELECTRICAL CHARACTERISTICS
Refer to the test circuit to Fig. 1 to Fig. 9 (VS = 5V, Tamb = 25oC unless otherwise specified)
Symbol
Parameter
Test Conditions
Min . Typ . Max .
Logic Supply Voltage
Is
Logic Supply Current
All Outputs ON, IC = 0.7A
All Outputs OFF
Output Sustaining Voltage
VIN = VINL, VEN = VENH
IC = 100 mA
Output Leakage Current
VCE = 50V
VIN = VINL, VEN = VENH
Collector Emitter Saturation Voltage
(one input on ; all others inputs off.)
Vs = 4.5V
VIN = VINH, VEN = VENH
IC = 0.6A
IC = 1A
IC = 1.8A
1
1.2
1.6
0.8
V
VIN = VINL, VEN = VENL
– 100
µA
VCE(sus)
ICEX
VCE(sat)
4.5
Unit
VS
5.5
V
20
20
mA
mA
46
V
1
mA
V
VINL, VENL
Input Low Voltage
IINL, IENL
Input Low Current
VINL, VENH
Input High Voltage
IINH , IENH
Input High Current
VIN = VINH, VEN = VENH
± 10
µA
IR
Clamp Diode Leakage Current
VR = 50 V, VEN = VENH
VIN = VINL
100
µA
VF
Clamp Diode Forward Voltage
IF = 1A
IF = 1.8A
1.6
2.0
V
V
td (on)
Turn on Delay Time
Vp = 5V, RL = 10Ω
2
µs
td (off)
Turn off Delay Time
Vp = 5V, RL = 10Ω
5
µs
Logic Supply Current Variation
VIN = 5V, VEN = 5V
Iout = – 300 mA for Each Channel
120
mA
∆Is
4/15
2.0
V
L6221A - L6221AD - L6221N
TEST CIRCUITS
(X) = Referred to Multiwatt package
X = Referred to Powerdip package
Figure 1 : Logic supply current.
Set V IN = 4.5V,V EN = 0.8V,or V IN = 0.8V,V EN = 4.5V, for I S (all outputs off)
Set V IN = 2V, V EN = 2V, for I S (all outputs on)
Figure 2 : Output Sustaining Voltage.
Figure 3 : Output Leakage Current.
5/15
L6221A - L6221AD - L6221N
Figure 4 :
Collector-emitter Saturation
Voltage
Figure 5 :
Set
Set
Set
Set
Figure 6 : Clamp Diode Leakage Current.
6/15
Logic Input Characteristics
S1, S2 open, VIN, VEN = 0.8V for IIN L, IEN L
S1, S2 open, VIN, VEN = 2V for IIN H, IEN H
S1, S2 close, VIN, VEN = 0.8V for V IN L, VEN L
S1, S2 close, VIN, VEN = 2V for VIN H, VEN H
Figure 7 : Clamp Diode Forward Voltage.
L6221A - L6221AD - L6221N
Figure 8 : Switching Times Test Circuit.
Figure 9 : Switching TImes Waveforms.
Figure 10 : Allowed Peak Collector Current versus Duty Cycle for 1, 2, 3 or 4 Contemporary Working Outputs (L6221A)
Figure 11 : Allowed Peak Collector Current versus Duty Cycle for 1, 2, 3 or 4 Contemporary Working Outputs
(L6221N)
7/15
L6221A - L6221AD - L6221N
Figure 12 : Collector Saturation Voltage versus
Collector Current
Figure 13 : Free-wheeling Diode Forward Voltage
versus Diode Current
Figure 14 : Collector Saturation Voltage versus
Junction Temperature at IC = 1A
Figure 15 : Free-wheeling Diode Forward Voltage
versus Junction Temperature
at IF = 1A
Figure 16 : Saturation Voltage vs. Junc-
Figure 17 : Free-wheeling Diode Forward
8/15
L6221A - L6221AD - L6221N
APPLICATION INFORMATION
When inductive loads are driven by L6221A/N, a
zener diode in series with the integral free-wheeling
diodes increases the voltage across which energy
stored in the load is discharged and therefore
speeds the current decay (fig. 18).
For reliability it is suggestedthat the zener is chosen
so that Vp + Vz < 35 V.
The reasons for this are two fold :
1) The zener voltage changes in temperature and
current.
2) The instantaneouspowermust belimited to avoid
the reverse second breakdown.
Figure 18.
Figure 19 : Driver for Solenoids up to 3A.
Some care must be taken to ensure that the collectors are placed close togetherto avoid differentcurrent partitioning at turn-off.
We suggest to put in parallel channel 1 and 4 and
channel2 and 3 as shown in figure 19 for the similar
electrical characteristics of the logic section(turn-on
and turn-off delay time) and the power stages (collector saturation voltage, free-wheeling diode forward voltage).
9/15
L6221A - L6221AD - L6221N
Figure 20 : Saturation Voltage versus Collector
Current
Figure 22 : Peak Collector Current versus Duty
Cycle for 1 or 2 Paralleled Outputs
Driven (L6221N)
10/15
Figure 21 : Peak Collector Current versus Duty
Cycle for 1 or 2 Paralleled Outputs
Driven (L6221A)
L6221A - L6221AD - L6221N
MOUNTING INSTRUCTION
The Rth j-amb of the L6221A can be reduced by solderingthe GND pins to a suitablecopperarea of the
printed circuit board (Fig. 23) or to an external
heatsink (Fig. 24).
The diagram of figure 25 shows the maximum dissipable power Ptot and the Rth j-amb as a function of
the side ” α” of two equal square copper areas hav-
ing a thickness of 35µ (1.4 mils). During soldering
the pins temperature must not exceed 260 °C and
the soldering time must not be longer than 12 seconds.
The external heatsink or printed circuit copper area
must be connected to electrical ground.
Figure 23 : Example of P.C. Board Copper Area
Which is Used as Heatsink
Figure 24 : External Heatsink Mounting Example
Figure 25 : Maximum Dissipable Power and Junction to Ambient Thermal Resistance
versus Side ” α”
Figure 26 : Maximum Allowable Power Dissipation versus Ambient Temperature
11/15
L6221A - L6221AD - L6221N
POWERDIP 16 PACKAGE MECHANICAL DATA
mm
DIM.
MIN.
a1
0.51
B
0.85
b
b1
TYP.
MAX.
MIN.
TYP.
MAX.
0.020
1.40
0.033
0.50
0.38
0.055
0.020
0.50
D
0.015
0.020
20.0
0.787
E
8.80
0.346
e
2.54
0.100
e3
17.78
0.700
F
7.10
0.280
I
5.10
0.201
L
Z
12/15
inch
3.30
0.130
1.27
0.050
L6221A - L6221AD - L6221N
MULTIWATT 15 PACKAGE MECHANICAL DATA
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
5
0.197
B
2.65
0.104
C
1.6
D
0.063
1
0.039
E
0.49
0.55
0.019
0.022
F
0.66
0.75
0.026
0.030
G
1.02
1.27
1.52
0.040
0.050
0.060
G1
17.53
17.78
18.03
0.690
0.700
0.710
H1
19.6
0.772
H2
20.2
0.795
L
21.9
22.2
22.5
0.862
0.874
0.886
L1
21.7
22.1
22.5
0.854
0.870
0.886
L2
17.65
18.1
0.695
L3
17.25
17.5
17.75
0.679
0.689
L4
10.3
10.7
10.9
0.406
0.421
L7
2.65
2.9
0.104
0.713
0.699
0.429
0.114
M
4.25
4.55
4.85
0.167
0.179
0.191
M1
4.63
5.08
5.53
0.182
0.200
0.218
S
1.9
2.6
0.075
0.102
S1
1.9
2.6
0.075
0.102
Dia1
3.65
3.85
0.144
0.152
13/15
L6221A - L6221AD - L6221N
SO20 PACKAGE MECHANICAL DATA
mm
DIM.
MIN.
inch
TYP.
MAX.
MIN.
TYP.
MAX.
A
2.35
2.65
0.093
0.104
A1
0.1
0.3
0.004
0.012
B
0.33
0.51
0.013
0.020
C
0.23
0.32
0.009
0.013
D
12.6
13
0.496
0.512
E
7.4
7.6
0.291
0.299
e
1.27
0.050
H
10
10.65
0.394
0.419
h
0.25
0.75
0.010
0.030
L
0.4
1.27
0.016
0.050
K
0 (min.)8 (max.)
L
h x 45°
A
B
e
A1
K
H
D
20
11
E
1
10
SO20MEC
14/15
C
L6221A - L6221AD - L6221N
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
15/15