STMICROELECTRONICS M68AR512DN70ZB1T

M68AR512D
8 Mbit (512K x16) 1.8V Asynchronous SRAM
FEATURES SUMMARY
■ SUPPLY VOLTAGE: 1.65 to 1.95V
■
512K x 16 bits SRAM with OUTPUT ENABLE
■
EQUAL CYCLE and ACCESS TIMES: 70ns
■
SINGLE BYTE READ/WRITE
■
LOW STANDBY CURRENT
■
LOW VCC DATA RETENTION: 1.0V
■
TRI-STATE COMMON I/O
■
AUTOMATIC POWER DOWN
■
DUAL CHIP ENABLE for EASY DEPTH
EXPANSION
Figure 1. Packages
BGA
TFBGA48 (ZB)
6 x 7mm
BGA
TFBGA48 (ZB)
8 x 10mm
October 2002
1/19
M68AR512D
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MAXIMUM RATING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 6. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7. Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . 9
Figure 9. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms . . . . . . . . . . . . . . . . . . 9
Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10. Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 11. Chip Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. UB/LB Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13. E1 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. E2 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 9. Low VCC Data Retention Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
TFBGA48 6x7mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline . . . . . . . . . . . . . 15
TFBGA48 6x7mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . . . . . . . . . . 15
TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline . . . . . . . . . . . . 16
TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . . . . . . . . . 16
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/19
M68AR512D
SUMMARY DESCRIPTION
The M68AR512D is an 8 Mbit (8,388,608 bit)
CMOS SRAM, organized as 524,288 words by 16
bits. The device features fully static operation requiring no external clocks or timing strobes, with
equal address access and cycle times. It requires
a single 1.8V (±150mV) supply. This device has a
Chip Select pin (E2) for easy memory expansion;
when it is active (E2 high) the device has an auto-
matic power-down feature, reducing the power
consumption by over 99%.
The M68AR512D is available in TFBGA48
(6x7mm and 8x10mm, 6x8 active ball array, 0.75
mm ball pitch) package. See the Ordering Information Scheme (Table 12) for details.
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A18
Address Inputs
DQ0-DQ15
Data Input/Output
E1, E2
Chip Enable
G
Output Enable
W
Write Enable
W
UB
Upper Byte Enable Input
E1
LB
Lower Byte Enable Input
VCC
Supply Voltage
G
VSS
Ground
UB
NC
Not Connected
LB
DU
Don’t Use as Internally Connected
VCC
19
16
A0-A18
E2
DQ0-DQ15
M68AR512D
VSS
AI03953C
3/19
M68AR512D
Figure 3. TFBGA Connections (Top view through package)
1
2
3
4
5
6
A
LB
G
A0
A1
A2
E2
B
DQ8
UB
A3
A4
E1
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSS
DQ11
A17
A7
DQ3
VCC
E
VCC
DQ12
VSS
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
NC
A12
A13
W
DQ7
H
A18
A8
A9
A10
A11
DU
AI03960
4/19
M68AR512D
Figure 4. Block Diagram
A18
ROW
DECODER
MEMORY
ARRAY
A8
DQ15
(8)
I/O CIRCUITS
UB
COLUMN
DECODER
DQ0
E1
Ex
E2
(8)
LB
UB
LB
A0
A7
(8)
UB
W
(8)
LB
G
AI05452
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 2. Absolute Maximum Ratings
Symbol
Value
Unit
20
mA
Ambient Operating Temperature
–55 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
VCC
Supply Voltage
–0.5 to 2.5
V
–0.5 to VCC +0.5
V
1
W
IO (1)
TA
VIO (2)
PD
Parameter
Output Current
Input or Output Voltage
Power Dissipation
Note: 1. One output at a time, not to exceed 1 second duration.
2. Up to a maximum operating VCC of 1.95V only.
5/19
M68AR512D
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 3. Operating and AC Measurement Conditions
Parameter
M68AR512D
VCC Supply Voltage
1.65 to 1.95V
Range 1
0 to 70°C
Range 6
–40 to 85°C
Ambient Operating Temperature
Load Capacitance (CL)
30pF
Output Circuit Protection Resistance (R1)
15.3kΩ
Load Resistance (R2)
11.3kΩ
Input Rise and Fall Times
1ns/V
0 to VCC
Input Pulse Voltages
Input and Output Timing Ref. Voltages
VCC/2
Output Transition Timing Ref. Voltages
VRL = 0.3VCC; VRH = 0.7VCC
Figure 5. AC Measurement I/O Waveform
Figure 6. AC Measurement Load Circuit
VCC
I/O Timing Reference Voltage
R1
VCC
VCC/2
0V
DEVICE
UNDER
TEST
OUT
CL
Output Timing Reference Voltage
VCC
0V
R2
0.7VCC
0.3VCC
AI04831
CL includes probe and 1TTL capacitance
AI03853
6/19
M68AR512D
Table 4. Capacitance
CIN
COUT
Test
Condition
Parameter(1,2)
Symbol
Input Capacitance on all pins (except DQ)
Output Capacitance
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
8
pF
Max
Unit
Note: 1. Sampled only, not 100% tested.
2. At TA = 25°C, f = 1 MHz, VCC = 1.8V.
Table 5. DC Characteristics
Symbol
Parameter
Test Condition
Min
Typ
ICC1 (1,2)
Operating Supply Current
VCC = 1.95V, f = 1/t AVAV,
IOUT = 0mA
12
mA
ICC2 (3)
Operating Supply Current
VCC = 1.95V, f = 1MHz,
IOUT = 0mA
2
mA
ILI
Input Leakage Current
ILO (4)
ISB
(3)
Output Leakage Current
Standby Supply Current CMOS
0V ≤ VIN ≤ VCC
–1
1
µA
0V ≤ VOUT ≤ VCC
–1
1
µA
15
µA
VCC = 1.95V,
E1 ≥ VCC –0.2V or
E2 ≤ 0.2V or
UB=LB ≥ VCC –0.2V, f = 0
1
VIH
Input High Voltage
1.4
VCC + 0.4
V
VIL
Input Low Voltage
–0.5
0.4
V
VOH
Output High Voltage
IOH = –100µA
VOL
Output Low Voltage
IOL = 100µA
Note: 1.
2.
3.
4.
1.5
V
0.2
V
Average AC current, cycling at tAVAV minimum.
E1 = VIL, E2 = VIH, UB or/and LB = VIL, VIN = VIH or VIL.
E1 ≤ 0.2V or E2 ≥ VCC –0.2V, LB or/and UB ≤ 0.2V, VIN ≤ 0.2V or VIN ≥ VCC –0.2V.
Output disabled.
7/19
M68AR512D
OPERATION
The M68AR512D has a Chip Enable power down
feature which invokes an automatic standby mode
whenever Chip Enable is de-asserted (E1 = High)
or Chip Select is asserted (E2 = Low), or UB/LB
are de-asserted (UB/LB = High). An Output Enable (G) signal provides a high speed tri-state con-
trol, allowing fast read/write cycles to be achieved
with the common I/O data bus. Operational modes
are determined by device control inputs W, E1, LB
and UB as summarized in the Operating Modes table (see Table 6).
Table 6. Operating Modes
Operation
E1
E2
W
G
LB
UB
DQ0-DQ7
DQ8-DQ15
Power
Deselected/Power-down
VIH
X
X
X
X
X
Hi-Z
Hi-Z
Standby (ISB)
Deselected/Power-down
X
VIL
X
X
X
X
Hi-Z
Hi-Z
Standby (ISB)
Deselected/Power-down
X
X
X
X
VIH
VIH
Hi-Z
Hi-Z
Standby (ISB)
Lower Byte Read
VIL
VIH
VIH
VIL
VIL
VIH
Data Output
Hi-Z
Active (ICC)
Lower Byte Write
VIL
VIH
VIL
X
VIL
VIH
Data Input
Hi-Z
Active (ICC)
Output Disabled
VIL
VIH
X
VIH
X
X
Hi-Z
Hi-Z
Active (ICC)
Upper Byte Read
VIL
VIH
VIH
VIL
VIH
VIL
Hi-Z
Data Output
Active (ICC)
Upper Byte Write
VIL
VIH
VIL
X
VIH
VIL
Hi-Z
Data Input
Active (ICC)
Word Read
VIL
VIH
VIH
VIL
VIL
VIL
Data Output
Data Output
Active (ICC)
Word Write
VIL
VIH
VIL
X
VIL
VIL
Data Input
Data Input
Active (ICC)
Note: X = VIH or VIL.
Read Mode
The M68AR512D, when Chip Select (E2) is High,
is in the read mode whenever Write Enable (W) is
High with Output Enable (G) Low, and Chip Enable (E1) is asserted. This provides access to data
from eight or sixteen, depending on the status of
the signal UB and LB, of the 8,388,608 locations in
the static memory array, specified by the 19 address inputs. Valid data will be available at the
eight or sixteen output pins within tAVQV after the
last stable address, providing G is Low and E1 is
Low. If Chip Enable or Output Enable access
times are not met, data access will be measured
from the limiting parameter (tELQV, tGLQV or tBLQV)
rather than the address. Data out may be indeterminate at tELQX, tGLQX and tBLQX, but data lines
will always be valid at tAVQV.
Figure 7. Address Controlled, Read Mode AC Waveforms
tAVAV
A0-A18
VALID
tAVQV
DQ0-DQ7 and/or DQ8-DQ15
tAXQX
DATA VALID
AI03961
Note: E1 = Low, E2 = High, G = Low, W = High, UB = Low and/or LB = Low.
8/19
M68AR512D
Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms
tAVAV
VALID
A0-A18
tAVQV
tAXQX
tELQV
tEHQZ
E1
E2
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ15
VALID
tBLQV
tBHQZ
UB, LB
tBLQX
AI05994
Note: Write Enable (W) = High
Figure 9. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms
E1, UB, LB
E2
ICC
ISB
tPU
tPD
50%
AI05990
9/19
M68AR512D
Table 7. Read and Standby Mode AC Characteristics
M68AR512D
Symbol
Parameter
Unit
70
tAVAV
Read Cycle Time
Min
70
ns
tAVQV
Address Valid to Output Valid
Max
70
ns
Data hold from address change
Min
5
ns
tBHQZ (2, 3)
Upper/Lower Byte Enable High to Output Hi-Z
Max
25
ns
tBLQV
Upper/Lower Byte Enable Low to Output Valid
Max
70
ns
Upper/Lower Byte Enable Low to Output Transition
Min
5
ns
tEHQZ (2, 3)
Chip Enable High to Output Hi-Z
Max
25
ns
tELQV
Chip Enable Low to Output Valid
Max
70
ns
Chip Enable Low to Output Transition
Min
5
ns
tGHQZ (2, 3)
Output Enable High to Output Hi-Z
Max
25
ns
tGLQV
Output Enable Low to Output Valid
Max
35
ns
Output Enable Low to Output Transition
Min
5
ns
tPD (4)
Chip Enable High to Power Down
Max
0
ns
tPU (4)
Chip Enable Low to Power Up
Min
70
ns
tAXQX (1)
tBLQX (1)
tELQX (1)
tGLQX (1)
Note: 1. Test conditions assume transition timing reference level = 0.3VCCQ to 0.7VCCQ.
2. At any given temperature and voltage condition, tGHQZ is less than tGLQX, tBHQZ is less than tBLQX and tEHQZ is less than tELQX for
any given device.
3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
4. Tested initially and after any design or process changes that may affect these parameters.
10/19
M68AR512D
Write Mode
The M68AR512D, when Chip Select (E2) is High,
is in the Write Mode whenever the W and E1 are
Low. Either the Chip Enable Input (E1) or the Write
Enable input (W) must be de-asserted during Address transitions for subsequent write cycles.
When E1 or W is Low, and UB or LB is Low, write
cycle begins on the W or E1 falling edge. When E1
and W are Low, and UB = LB = High, write cycle
begins on the first falling edge of UB or LB. Therefore, address setup time is referenced to Write Enable, Chip Enables and UB/LB as tAVWL, tAVEL and
tAVBL respectively, and is determined by the latter
occurring falling edge.
The Write cycle can be terminated by the earlier
rising edge of E1, W, UB and LB.
If the Output is enabled (E1 = Low, E2 = High, G =
Low, LB or UB = Low), then W will return the outputs to high impedance within tWLQZ of its falling
edge. Care must be taken to avoid bus contention
in this type of operation. Data input must be valid
for tDVWH before the rising edge of Write Enable,
or for tDVEH before the rising edge of E1 or for tDVBH before the rising edge of UB/LB, whichever
occurs first, and remain valid for tWHDX, tEHDX and
tBHDX respectively.
Figure 10. Write Enable Controlled, Write AC Waveforms
tAVAV
VALID
A0-A18
tAVWH
tELWH
tAVEL
tWHAX
E1
E2
tWLWH
tAVWL
W
tWLQZ
tWHQX
tWHDX
DQ0-DQ15
DATA INPUT
tDVWH
tBLBH
UB, LB
AI05995
11/19
M68AR512D
Figure 11. Chip Enable Controlled, Write AC Waveforms
tAVAV
VALID
A0-A18
tAVEH
tELEH
tAVEL
tEHAX
E1
E2
tAVWL
tWLEH
W
tEHDX
DATA INPUT
DQ0-DQ15
tDVEH
tBLBH
UB, LB
AI05996
Figure 12. UB/LB Controlled, Write AC Waveforms
tAVAV
VALID
A0-A18
tAVBH
tBHAX
E1
E2
tWLBH
tAVWL
W
tWLQZ
DQ0-DQ15
tBHDX
DATA (1)
DATA INPUT
tDVBH
tAVBL
tBLBH
UB, LB
AI05997
Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.
12/19
M68AR512D
Table 8. Write Mode AC Characteristics
M68AR512D
Symbol
Parameter
Unit
70
tAVAV
Write Cycle Time
Min
70
ns
tAVBH
Address Valid to LB, UB High
Min
60
ns
tAVBL
Address Valid to LB, UB Low
Min
0
ns
tAVEH
Address Valid to Chip Enable High
Min
60
ns
tAVEL
Address valid to Chip Enable Low
Min
0
ns
tAVWH
Address Valid to Write Enable High
Min
60
ns
tAVWL
Address Valid to Write Enable Low
Min
0
ns
tBHAX
LB, UB High to Address Transition
Min
0
ns
tBHDX
LB, UB High to Input Transition
Min
0
ns
tBLBH
LB, UB Low to LB, UB High
Min
60
ns
tBLEH
LB, UB Low to Chip Enable High
Min
60
ns
tBLWH
LB, UB Low to Write Enable High
Min
60
ns
tDVBH
Input Valid to LB, UB High
Min
30
ns
tDVEH
Input Valid to Chip Enable High
Min
30
ns
tDVWH
Input Valid to Write Enable High
Min
30
ns
tEHAX
Chip Enable High to Address Transition
Min
0
ns
tEHDX
Chip enable High to Input Transition
Min
0
ns
tELBH
Chip Enable Low to LB, UB High
Min
60
ns
tELEH
Chip Enable Low to Chip Enable High
Min
60
ns
tELWH
Chip Enable Low to Write Enable High
Min
60
ns
tWHAX
Write Enable High to Address Transition
Min
0
ns
tWHDX
Write Enable High to Input Transition
Min
0
ns
Write Enable High to Output Transition
Min
5
ns
tWLBH
Write Enable Low to LB, UB High
Min
60
ns
tWLEH
Write Enable Low to Chip Enable High
Min
60
ns
Write Enable Low to Output Hi-Z
Max
20
ns
Write Enable Low to Write Enable High
Min
60
ns
tWHQX (1)
tWLQZ (1, 2)
tWLWH
Note: 1. At any given temperature and voltage condition, tWHQZ is less than tWLQX for any given device.
2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
13/19
M68AR512D
Figure 13. E1 Controlled, Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
1.95V
VCC
1.8V
VDR > 1.0V
tCDR
tR
E1 ≥ VDR – 0.2V
E1
AI05455
Figure 14. E2 Controlled, Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
1.95V
VCC
1.65V
VDR > 1.0V
tCDR
tR
E2
E2 ≤ 0.2V
AI05475
Table 9. Low VCC Data Retention Characteristics
Symbol
Parameter
Test Condition
ICCDR (1)
Supply Current (Data Retention)
VCC = 1.0V, E1 ≥ VCC –0.2V or
E2 ≤ 0.2V or
UB/LB ≥ VCC –0.2V, f = 0 (3)
tCDR (2)
Chip deselected to Data
Retention Time
tR (2)
VDR (1)
Operation Recovery Time
Supply Voltage (Data Retention)
E1 ≥ VCC –0.2V or
E2 ≤ 0.2V or
UB/LB ≥ VCC –0.2V,
f=0
Min
Typ
Max
Unit
0.1
8
µA
0
ns
tAVAV
ns
1.0
V
Note: 1. All other Inputs at VIH ≥ VCC –0.2V or VIL ≤ 0.2V.
2. Tested initially and after any design or process changes that may affect these parameters. tAVAV is Read cycle time.
3. No input may exceed VCC +0.3V.
14/19
M68AR512D
PACKAGE MECHANICAL
Figure 15. TFBGA48 6x7mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline
D
D1
FD
FE
SD
SE
E
E1
BALL "A1"
ddd
e
e
b
A
A2
A1
BGA-Z43
Note: Drawing is not to scale.
Table 10. TFBGA48 6x7mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.200
A1
0.250
Max
0.0472
0.400
0.0098
0.0157
A2
0.790
0.0311
b
0.400
0.350
0.450
0.0157
0.0138
0.0177
D
6.000
5.900
6.100
0.2362
0.2323
0.2402
D1
3.750
0.1476
ddd
0.100
6.900
7.100
0.0039
E
7.000
0.2756
0.2717
0.2795
E1
5.250
e
0.750
–
–
FD
1.125
0.0443
FE
0.875
0.0344
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
0.2067
–
–
0.0295
15/19
M68AR512D
Figure 16. TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline
D
D1
FD
FE
E
SD
SE
E1
ddd
BALL "A1"
A
e
A2
b
A1
BGA-Z28
Note: Drawing is not to scale.
Table 11. TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data
Symbol
millimeters
Typ
Min
A
Max
Typ
Min
1.200
A1
0.0102
0.900
b
Max
0.0472
0.260
A2
0.350
0.450
0.0354
0.0138
0.0177
D
8.000
7.900
8.100
0.3150
0.3110
0.3189
D1
3.750
–
–
0.1476
–
–
ddd
16/19
inches
0.100
0.0039
E
10.000
9.900
10.100
0.3937
0.3898
0.3976
E1
5.250
–
–
0.2067
–
–
e
0.750
–
–
0.0295
–
–
FD
2.125
–
–
0.0837
–
–
FE
2.375
–
–
0.0935
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
M68AR512D
PART NUMBERING
Table 12. Ordering Information Scheme
Example:
M68AR512
D
N
70 ZB
6
T
Device Type
M68
Mode
A = Asynchronous
Operating Voltage
R = 1.65 to 1.95V
Array Organization
512 = 8 Mbit (512K x16)
Option 1
D = 2 Chip Enable; Write and Standby from UB and LB
Option 2
L = L-Die
N = N-Die
Speed Class
70 = 70 ns
Package
ZB = TFBGA48, 6x7mm, 6x8 ball array 0.75 mm pitch (1)
ZB = TFBGA48, 8x10mm, 6x8 ball array 0.75 mm pitch (2)
Operative Temperature
1 = 0 to 70 °C
6 = –40 to 85 °C
Shipping
T = Tape & Reel Packing
Note: 1. TFBGA48, 6x7mm is available only for the M68AR512DN part.
2. TFBGA48, 8x10mm is available only for the M68AR512DL part.
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,
please contact the ST Sales Office nearest to you.
17/19
M68AR512D
REVISION HISTORY
Table 13. Document Revision History
Date
Version
August 2001
-01
First Issue
08-Oct-2001
-02
Document status moved to Preliminary Data
18-Mar-2002
-03
Document status moved to Data Sheet
Temperature range 1 (0 to 70°C) added
Tables 3, 5, 6, 7, 8 and 9 clarified
Figures 7, 8, 9, 10, 11 and 12 clarified
17-May-2002
-04
Document globally revised
02-Oct-2002
4.1
Revision numbering modified: a minor revision will be indicated by incrementing the
digit after the dot, and a major revision, by incrementing the digit before the dot
(revision version 04 equals 4.0).
Part number changed.
09-Oct-2002
4.2
Part number changed and new salestype added
TFBGA48 8x10mm package added (Figure 16, Table 11)
18/19
Revision Details
M68AR512D
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
© 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
19/19