M69AW024B 16 Mbit (1M x16) 3V Asynchronous PSRAM FEATURES SUMMARY ■ ■ ■ ■ ■ ■ SUPPLY VOLTAGE: 2.7 to 3.3V ACCESS TIME: 60ns, 70ns LOW STANDBY CURRENT: 70µA DEEP POWER DOWN CURRENT: 10µA LOW VCC DATA RETENTION: 2.3V COMPATIBLE WITH STANDARD LPSRAM Figure 1. Package BGA TFBGA48 (ZB) 6x8 mm September 2004 1/29 M69AW024B TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Address Inputs (A0-A19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Inputs/Outputs (DQ8-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Enable (E1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip Enable (E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Upper Byte Enable (UB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lower Byte Enable (LB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... .....6 .....6 .....6 .....6 .....6 .....6 .....6 .....6 .....6 .....6 .....6 .....7 .....8 OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Deep Power-down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 4. Figure 5. Figure 6. Table 5. Table 6. Table 7. Figure 7. Figure 8. Figure 9. 2/29 Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Read and Standby Modes AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output Enable Controlled, Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chip Enable Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Address Access After G Control, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . 16 M69AW024B Figure 10.Address Access After E1 Control, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . 16 Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11.E1 Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 12.W Controlled, Single Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 13.W Controlled, Continuous Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 14.E1 Controlled, Read/Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 15.E1 Controlled, Read/Write AC Waveforms 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 16.G Controlled Read, W Controlled Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 17.G Controlled Read, W Controlled Write AC Waveforms 2 . . . . . . . . . . . . . . . . . . . . . . . 22 Table 9. Power Down and Power-Up AC Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 18.Standby Mode Entry AC Waveforms, After Read or Write . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 19.Power-down AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 20.Power-up Mode AC Waveforms - 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 21.Power-up Mode AC Waveforms - 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 22.Power-up Mode AC Waveforms - 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 10. Low VCC Data Retention Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 23.Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 24.TFBGA48 6x8mm - 6x8 Ball Array, 0.75mm Pitch, Package Outline, Bottom View . . . . 26 Table 11. TFBGA48 6x8mm - 6x8 Ball Array, 0.75mm Pitch, Package Mechanical Data. . . . . . . . 26 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3/29 M69AW024B SUMMARY DESCRIPTION The M69AW024B is a 16 Mbit (16,777,216 bit) CMOS memory, organized as 1,048,576 words by 16 bits, and is supplied by a single 2.7V to 3.3V supply voltage range. M69AW024B is a member of STMicroelectronics PSRAM memory family, based on the one-transistor per-cell architecture. These devices are manufactured using dynamic random access memory cells, to minimize the cell size, and maximize the amount of memory that can be implemented in a given area. However, through the use of internal control logic, the device is fully static in its operation, requiring no external clocks or timing strobes, and has a standard Asynchronous SRAM Interface. The internal control logic of the M69AW024B handles the periodic refresh cycle, automatically, and without user involvement. Write cycles can be performed on a single byte by using Upper Byte Enable (UB) and Lower Byte Enable (LB). The device can be put into standby mode using Chip Enable (E1) or in deep power down mode by using Chip Enable (E2). Power-Down mode achieves a very low current consumption by halting all the internal activities. Since the refresh circuitry is halted, the duration of the power-down should be less than the maximum period for refresh, if the user has not finished with the data contents of the memory. Figure 2. Logic Diagram Table 1. Signal Names A0-A19 Address Input DQ0-DQ15 Data Input/Output E1, E2 Chip Enable, Power Down G Output Enable W Write Enable W UB Upper Byte Enable E1 LB Lower Byte Enable VCC Supply Voltage VSS Ground NC Not Connected (no internal connection) VCC 20 16 A0-A19 E2 DQ0-DQ15 M69AW024B G UB LB VSS 4/29 AI07406 M69AW024B Figure 3. TFBGA Connections (Top view through package) 1 2 3 4 5 6 A LB G A0 A1 A2 E2 B DQ8 UB A3 A4 E1 DQ0 C DQ9 DQ10 A5 A6 DQ1 DQ2 D VSS DQ11 A17 A7 DQ3 VCC E VCC DQ12 NC A16 DQ4 VSS F DQ14 DQ13 A14 A15 DQ5 DQ6 G DQ15 A19 A12 A13 W DQ7 H A18 A8 A9 A10 A11 NC AI07409 5/29 M69AW024B SIGNAL DESCRIPTIONS See Figure 2., Logic Diagram, and Table 1., Signal Names, for a brief overview of the signals connected to this device. Address Inputs (A0-A19). The Address Inputs select the cells in the memory array to access during Read and Write operations. Data Inputs/Outputs (DQ8-DQ15). The Upper Byte Data Inputs/Outputs carry the data to or from the upper part of the selected address during a Write or Read operation, when Upper Byte Enable (UB) is driven Low. Data Inputs/Outputs (DQ0-DQ7). The Lower Byte Data Inputs/Outputs carry the data to or from the lower part of the selected address during a Write or Read operation, when Lower Byte Enable (LB) is driven Low. Chip Enable (E1). When asserted (Low), the Chip Enable, E1, activates the memory state machine, address buffers and decoders, allowing Read and Write operations to be performed. When de-asserted (High), all other pins are ignored, and the device is put, automatically, in low-power Standby mode. 6/29 Chip Enable (E2). The Chip Enable, E2, puts the device in Deep Power-down mode when it is driven Low. This is the lowest power mode. Output Enable (G). The Output Enable, G, provides a high speed tri-state control, allowing fast read/write cycles to be achieved with the common I/O data bus. Write Enable (W). The Write Enable, W, controls the Bus Write operation of the memory. Upper Byte Enable (UB). The Upper Byte Enable, UB, gates the data on the Upper Byte Data Inputs/Outputs (DQ8-DQ15) to or from the upper part of the selected address during a Write or Read operation. Lower Byte Enable (LB). The Lower Byte Enable, LB, gates the data on the Lower Byte Data Inputs/Outputs (DQ0-DQ7) to or from the lower part of the selected address during a Write or Read operation. VCC Supply Voltage. The VCC Supply Voltage supplies the power for all operations (Read or Write) and for driving the refresh logic, even when the device is not being accessed. VSS Ground. The VSS Ground is the reference for all voltage measurements. M69AW024B Figure 4. Block Diagram ARBITRATION LOGIC INTERNAL CLOCK GENERATOR E2 W VCC DYNAMIC MEMORY ARRAY INPUT/OUTPUT BUFFER E1 G ROW DECODER ADDRESS REFRESH CONTROLLER CONTROL LOGIC DQ0-DQ7 DQ8-DQ15 COLUMN DECODER LB UB VCC VSS POWER CONTROLLER ADDRESS AI07410 7/29 M69AW024B Table 2. Operating Modes Operation E2 E1 W G LB UB A0-A19 DQ0-DQ7 DQ8DQ15 ICC Data Retention Standby (Deselect) VIH VIH X (1) X (1) X (1) X (1) X (1) Hi-Z Hi-Z ISB Yes Output Disabled (2) VIH VIL VIH VIH X (1) X (1) Note (4) Hi-Z Hi-Z ICC Yes Output Disabled (No Read) VIH VIL VIH VIL VIH VIH Valid Hi-Z Hi-Z ICC Yes Word Read(5) VIH VIL VIH VIL Word Read VIH VIL VIH VIL VIL Upper Byte Write VIH VIL VIL VIH Lower Byte Write VIH VIL VIL Word Write VIH VIL Power-down (3) VIL X (1) Note: 1. 2. 3. 4. 5. 6. 8/29 Valid Output Valid ICC Yes VIL Valid Output Valid ICC Yes VIH VIL Valid Invalid Input Valid ICC Yes VIH VIL VIH Valid Input Valid Invalid ICC Yes VIL VIH VIL VIL Valid Input Valid Input Valid ICC Yes X (1) X (1) X (1) X (1) X (1) Hi-Z Hi-Z IPD No VIL(6) X = VIH or VIL. Output Disable mode should not be kept longer than 1µs. Power-down mode can be entered from Stand-by state, and all DQ pins are in Hi-Z state. Can be either VIL or VIH but must be valid before Read or Write. Byte Read is not supported. Either or both LB and UB must be Low, VIL, for Read operations. M69AW024B OPERATION Operational modes are determined by device control inputs W, E1, E2, LB and UB as summarized in the Operating Modes table (see Table 2.). Power On Sequence Because the internal control logic of the M69AW024B needs to be initialized, the following power-on procedure must be followed before the memory is used: – Apply power and wait for VCC to stabilize – Wait 400µs while driving both Chip Enable signals (E1 and E2) High – Activate the memory by driving Chip Enable (E1) Low. Read Mode The device is in Read mode when: – Write Enable (W) is High and – Output Enable (G) Low and – the two Chip Enable signals are asserted (E1 is Low, and E2 is High). The time taken to enter Read mode (tELQV, tGLQV or tBLQV) depends on which of the above signals was the last to reach the appropriate level. Data out (DQ15-DQ0) may be indeterminate during tELQX, tGLQX and tBLQX, but data will always be valid during tAVQV. Write Mode The device is in Write mode when – Write Enable (W) is Low and – Chip Enable (E1) is Low and – the two Chip Enable signals are asserted (E1 is Low, and E2 is High) – one of Upper Byte Enable (UB) or Lower Byte Enable (LB) is Low, while the other is High. The Write cycle begins just after the event (the falling edge) that causes the last of these conditions to become true (tAVWL or tAVEL or tAVBL). The Write cycle is terminated by the earlier of a rising edge on Write Enable (W) or Chip Enable (E1). If the device is in Write mode (Chip Enable (E1) is Low, Output Enable (G) is Low, Upper Byte Enable (UB) or Lower Byte Enable (LB) is Low), then Write Enable (W) will return the outputs to high impedance within tWLQZ of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data input must be valid for tDVWH before the rising edge of Write Enable (W), or for tDVEH before the rising edge of Chip Enable (E1), whichever occurs first, and remain valid for tWHDX, tEHDX Standby Mode The device is in Standby mode when: – Chip Enable (E1) is High and – Chip Enable (E2) is High. The input/output buffers and the decoding/control logic are switched off, but the dynamic array continues to be refreshed. In this mode, the memory current consumption, ISB, is reduced, and the data remains valid. Deep Power-down Mode The device is in Deep Power-down mode when: – Chip Enable (E2 is Low). 9/29 M69AW024B MAXIMUM RATING Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Table 3. Absolute Maximum Ratings Symbol 10/29 Parameter Min Max Unit IO Output Current –50 50 mA TA Ambient Operating Temperature –30 85 °C TSTG Storage Temperature –55 125 °C VCC Core Supply Voltage –0.5 3.6 V VIO Input or Output Voltage –0.5 3.6 V M69AW024B DC AND AC PARAMETERS This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 4., Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 4. Operating and AC Measurement Conditions M69AW024B Parameter –60, –70 Unit Min Max VCC Supply Voltage1 2.7 3.3 V Ambient Operating Temperature –30 85 °C Load Capacitance (CL) 50 pF Output Circuit Protection Resistance (R1) 50 Ω Input Rise and Fall Times 4 ns 0 to VCC V Input and Output Timing Ref. Voltages VCC/2 V Output Transition Timing Ref. Voltages VRL = 0.3VCC; VRH = 0.7VCC V Input Pulse Voltages Input Transition Time2 (tτ ) between VIL and VIH 5 ns Note: 1. All voltages are referenced to VSS. 2. The Input Transition Time used in AC measurements is 5ns. For other input transition times, see Table 9. Figure 5. AC Measurement Load Circuit Figure 6. AC Measurement I/O Waveform VCC/2 I/O Timing Reference Voltage R1 VCC DEVICE UNDER TEST VCC/2 OUT 0V CL Output Timing Reference Voltage VCC 0V 0.7VCC 0.3VCC AI07753 CL includes JIG capacitance AI07222c 11/29 M69AW024B Table 5. Capacitance Symbol CIN Test Condition Parameter Max Unit VIN = 0V 5 pF VOUT = 0V 8 pF Input Capacitance on all pins (except DQ) COUT (1) Output Capacitance Min Note: 1. Outputs deselected. Table 6. DC Characteristics Symbol ICC1 (1) Parameter Operating Supply Current ILI Input Leakage Current ILO IPD ISB Max Unit tRC/tWC = Min 20 mA tRC/tWC = 1µs 3.0 mA –1 1 µA Output Leakage Current 0V ≤VOUT ≤VCC –1 1 µA Deep Power Down Current VCC = 3.3V, VIN = VIH or VIL, E2 ≤0.2V 10 µA 3.1V ≤VCC ≤3.3V, VIN = VIH or VIL, E1 = VIH and E2 = VIH, IOUT = 0mA 1.5 mA 2.7V ≤VCC ≤3.1V, VIN = VIH or VIL, E1 = VIH and E2 = VIH, IOUT = 0mA 1 mA 3.1V ≤VCC ≤3.3V, VIN ≤0.2V or ≥ VCC –0.2V, E1 ≥ VCC –0.2V and E2 ≥ VCC –0.2V), IOUT = 0mA 100 µA 2.7V ≤VCC ≤3.1V, VIN ≤0.2V or ≥ VCC –0.2V, E1 ≥ VCC –0.2V and E2 ≥ VCC –0.2V), IOUT = 0mA 70 µA Standby Supply Current CMOS Input High Voltage VIL (3) Input Low Voltage VOL VCC = 3.3V, VIN = VIH or VIL, E1 = VIL, E2 = VIH, IOUT = 0mA Min 0V ≤VIN ≤VCC VIH (2) VOH Test Condition Output High Voltage Output Low Voltage 3.1V ≤VCC ≤3.3V 2.6 VCC + 0.3 V 2.7V ≤VCC ≤3.1V 2.2 VCC + 0.3 V 3.1V ≤VCC ≤3.3V –0.3 0.6 V 2.7V ≤VCC ≤3.1V –0.3 0.5 V 3.1V ≤VCC ≤3.3V, IOH = –0.5mA 2.5 V 2.7V ≤VCC ≤3.1V, IOH = –0.5mA 2.2 V VCC = 3V, IOL = 1mA Note: 1. Average AC current, Outputs open, cycling at tAVAX (min). 2. Maximum DC voltage on input and I/O pins is VCC + 0.3V. During voltage transitions, input may positive overshoot to VCC + 1.0V for a period of up to 5ns. 3. Minimum DC voltage on input or I/O pins is –0.3V. During voltage transitions, input may positive overshoot to VSS + 1.0V for a period of up to 5ns. 12/29 0.4 V M69AW024B Table 7. Read and Standby Modes AC Characteristics M69AW024B Symbol Alt. Parameter –60 Min –70 Max Min Unit Max tAVAX tRC Read Cycle Time 80 90 ns tAVEH tRC Address Valid to Chip Enable High (Read Cycle Time) 80 90 ns tAVEL(5) tASC Address Set-up Time to Chip Enable Low –5 –5 ns tAVGH tRC Address Valid to Output Enable High (Read Cycle Time) 80 90 ns tAVGL1(3,6) tASO Address Valid to Output Enable Low 25 30 ns 5 5 ns tAVGL2(7) tASO(ABS) Address Valid to Output Enable Low (absolute) tAVQV(1,4) tAA Address Access Time 60 70 ns tAXAV(4,8) tAX Address Invalid Time 5 5 ns tAXQX(1) tOH Output Hold Time after Address Transition 5 5 ns tBLEL(5) tBSC LB, UB Set-up Time to Chip Enable Low –5 –5 ns tBLGL tBSO LB, UB Set-up Time to Output Enable Low 0 0 ns tEHAX tCHAH Chip Enable High to Address Hold Time –5 –5 ns tEHBH tCHBH Chip Enable High to LB, UB High –5 –5 ns tEHEL tCP Chip Enable High Pulse Width 10 12 ns tEHQX(1) tOH Output Hold Time after Chip Enable Low 5 5 ns tEHQZ(2) tCHZ Chip Enable High to Output Hi-Z tELAX(4) tCLAH Chip Enable Low to Address Hold Time 80 90 ns tELEH tRC Chip Enable Low to Chip Enable High (Read Cycle Time) 80 90 ns tELGH tRC Chip Enable Low to Output Enable High (Read Cycle Time) 80 90 ns tELGL(3,6,9,10) tCLOL Chip Enable Low to Output Enable Low Delay Time 25 tELQV(1,3) tCE Chip Enable Access Time tELQX(2) tCLZ Chip Enable Low to Output Lo-Z 5 5 ns tGHAX tOHAH Output Enable High to Address Hold Time –5 –5 ns tGHBH tOHBH Output Enable High to LB, UB High –5 –5 ns tGHGL1(6,9,10) tOP Output Enable High Pulse Width 25 tGHGL2(7) tOP(ABS) Output Enable High Pulse Width (absolute) 10 10 ns tGHQX(1) tOH Output Hold Time after Output Enable Low 5 5 ns tGHQZ(2) tOHZ Output Enable High to Output Hi-Z tGLAX(4,9) tOLAH Output Enable Low to Address Hold Time 45 50 ns tGLEH(9) tOLCH Output Enable Low to Chip Enable High Delay Time 45 50 ns 20 1000 25 30 60 1000 30 20 ns 1000 ns 70 ns 1000 25 ns ns 13/29 M69AW024B M69AW024B Symbol Alt. Parameter –60 Min tGLQV(1) tOE Output Enable Access Time tGLQX(2) tOLZ Output Enable Low to Output Lo-Z –70 Max Min 35 0 Unit Max 40 0 ns ns Note: 1. CL = 50pF with 1 TTL and R1=50Ω. 2. CL = 5pF 3. tELQV is applicable if G is brought to Low before E1 goes Low and if actual value of either tAVGL1 or tELGL, or both, is shorter than the specified value. 4. Only applicable to A0, A1 and A2 when both and G and E1 are kept Low for Address access. 5. Applicable if G is brought to Low before E1 goes Low. 6. tAVGL1, tELGL(Min) and tGHGL1(Min) are reference values when the access time is determined by tGLQV. If the actual value of each parameter is lower than the specified minimum values, tGLQV is increased by the difference between the actual value and the specified minimum value. 7. tAVGL2 and tGHGL2 correspond to absolute minimum values during G controlled access. 8. tAXAV is applicable when two or more addresses from A0 to A2 are switched from the previous state. 9. If the actual value of tELGL or tGHGL1 is lower than the specified minimum value, tGLAX and tGLEH will be equal to tAVAX(Min) − tELGL (Actual) and tAVAX (Min) −tGHGL1 (Actual), respectively. 10. The maximum value is applicable if E1 is kept Low. 14/29 M69AW024B Figure 7. Output Enable Controlled, Read Mode AC Waveforms A0-A19 ADDRESS VALID ADDRESS VALID tGHAX tELGH tGHAX tAVGH tAVGL2 tELQV E1 tGLQV tELGL tAVGL1 tGLEH tGLQV tGHGL1 G tBLGL tGHBH tBLGL tGHBH LB, UB tGHQZ tGLQX DQ0-DQ15 tGHQZ tGHQX tGLQX tGHQX VALID VALID AI07743 Note: 1. E2 = High and W = High. 2. Either or both LB and UB must be Low when both E1 and G are Low. Figure 8. Chip Enable Controlled, Read Mode AC Waveforms A0-A19 ADDRESS VALID tELEH tELEH tAVEL ADDRESS VALID tEHAX tELQV tAVEL tEHAX tELQV E1 tEHEL G tBLEL tEHBH tBLEL tEHBH LB, UB tEHQZ tELQX DQ0-DQ15 tEHQX VALID tEHQZ tELQX tEHQX VALID AI07744 Note: 1. E2 = High and W = High. 2. Either or both LB and UB must be Low when both E1 and G are Low. 15/29 M69AW024B Figure 9. Address Access After G Control, Read Mode AC Waveforms A3-A19 ADDRESS VALID ADDRESS VALID (no change) A0-A2 ADDRESS VALID ADDRESS VALID tAVAX tAVGL1 tAVGH tGLAX tGHAX tAXAV tAVQV tGHQZ E1 tGLQV G tBLGL tGHBH LB, UB tGLQX tGHQX tAXQX DQ0-DQ15 DATA VALID DATA VALID AI07745 Note: 1. E2 = High and W = High. 2. Either or both LB and UB must be Low when both E1 and G are Low. Figure 10. Address Access After E1 Control, Read Mode AC Waveforms A3-A19 A0-A2 ADDRESS VALID ADDRESS VALID tAVEH tAVEL tELAX tAXAV tEHAX tAVQV E1 tELQV tEHQZ G tBLEL tEHBH LB, UB tELQX DQ0-DQ15 tAXQX DATA VALID tEHQX DATA VALID AI07746 Note: 1. E2 = High and W = High. 2. Either or both LB and UB must be Low when both E1 and G are Low. 16/29 M69AW024B Table 8. Write Mode AC Characteristics M69AW024B Symbol Alt. Parameter –60 Min Max –70 Min Unit Max tAVEL(2) tAS Address Set-up Time to Chip Enable Low 0 0 ns tAVWL tAS Address Set-up Time to Write Enable Low 0 0 ns Address Invalid to Output Enable Low 25 Address Invalid to Output Enable Low (absolute) 12 15 ns tAXGL1 (3,4) tOEH 1000 35 1000 ns tAXGL2(5) tOEH(ABS) tBLEL tBS LB, UB Set-up Time to Chip Enable Low –5 –5 ns tBLWL tBS LB, UB Set-up Time to Write Enable Low –5 –5 ns tDVEH tDS Data Set-up Time to Chip Enable High 15 20 ns tDVWH tDS Data Set-up Time to Write Enable High 15 20 ns tEHBH tBH LB, UB Hold Time from Chip Enable High –5 –5 ns tEHDX tDH Input Data Hold Time from Chip Enable High 0 0 ns tEHEL1(9,10) tWRC Chip Enable High Pulse Width to Chip Enable Low 20 20 ns tEHEL2(10) tCP Chip Enable High Pulse Width to Chip Enable Low 10 12 ns tEHWH tWH Write Enable Low Hold Time 0 0 ns tEHWL tWH Write Enable High Hold Time 0 0 ns tELAX(2) tAH Address Hold Time from Chip Enable Low 35 40 ns tELEH1(1,8) tCW Chip Enable Write Pulse Width 45 50 ns tELEH2(1,9,10) tWRC Chip Enable Write Recovery Time 20 20 ns tELEL tWC Chip Enable Write Cycle Time 80 90 ns tELWL tCS Chip Enable Write Set-up Time 0 tGHAX(7) tOHAH Address Hold Time from Output Enable High –5 –5 ns tGHBH tBH LB, UB Hold Time from Output Enable High –5 –5 ns tGHEL(6) tOHCL Output Enable High to Chip Enable Low Set-up Time –5 –5 ns tGHWL(3) tOES Output Enable Set-up Time 0 1000 0 1000 ns tWHAV(1,3,9,10) tWR Write Enable High to Address Valid 20 1000 20 1000 ns tWHBH tBH LB, UB Hold Time from Write Enable High –5 –5 ns tWHDX tDH Input Data Hold Time from Write Enable High 0 0 ns tWHEH tCH Chip Enable Write Hold Time 0 tWHEL tWS Write Enable High Set-up Time 0 tWHWL(1,3,9,10) tWR Write Enable Write Recovery Time to Write Enable Low 20 tWLAV tWC Write Enable Low to Address Valid Write Cycle Time 80 90 ns tWLAX(2) tAH Address Hold Time from Write Enable Low 35 40 ns 1000 1000 0 0 1000 1000 0 1000 20 ns ns ns 1000 ns 17/29 M69AW024B M69AW024B Symbol Alt. Parameter –60 Min Max –70 Min Unit Max tWLEL tWS Write Enable Low Set-up Time 0 0 ns tWLWH(1,8) tWP Write Enable Write Pulse Width 45 50 ns tWLWL tWC Write Enable Write Cycle Time 80 90 ns Note: 1. The minimum value must be equal to or greater than the sum of actual tELEH (or tWLWH). 2. The new write address is valid from either E1 High or W High. 3. tAXGL1 is specified from end of tAVAX (Min) and is a reference value when access time is determined by tAXGL1. If actual value is lower than specified minimum value, tAXGL1 is increased by the difference between the actual value and the specified minimum value. 4. tAXGL1 maximum is applicable if E1 is kept Low and both W and G are kept High. 5. tAXGL2 is the absolute minimum value if the Write cycle terminates with W and E1 Low. 6. tGHEL (Min) must be kept if the Read cycle is not performed prior to the Write cycle. In case G is disabled after a time tGHEL(Min), W must go Low tELEH2 (Min) after E1 goes Low. In other words, the Read cycle is initiated if tGHEL (Min) is not kept. 7. Applicable if E1 stays Low after the Read cycle. 8. tELEH or tWLWH is applicable if the Write operation is initiated by E1 or W, respectively. 9. If the write operation is terminated by W followed by E1 High, the sum of actual tELWL and tWLWH and the sum of actual tAVWL and tWLWH must be equal or greater than 60ns. 10. tEHEL1 or tWHWL is applicable if the Write operation is terminated by E1 or W, respectively. If E1 goes High before tWHWL (Min), then tEHEL1 (Min) must apply. 11. tEHEL1 and tEHEL2 is applicable if write operation is terminated by E1 and W, respectively. In case E1 is brought to High before satisfaction of tEHEL2 (min), the tEHEL1 (min) is also applied. 12. For other timings please refer to Table 7., Read and Standby Modes AC Characteristics. 18/29 M69AW024B Figure 11. E1 Controlled, Write AC Waveforms tELEL A0-A19 ADDRESS VALID ADDRESS VALID tELAX tAVEL tAVEL E1 tEHEL1 tELEH1 tWLEL tEHWH tWLEL tEHBH tBLEL W tBLEL UB, LB tGHEL G tDVEH DQ0-DQ15 tEHDX VALID DATA INPUT AI07411C Note: 1. E2 must be High during the Write cycle. Figure 12. W Controlled, Single Write AC Waveforms tWLWL ADDRESS VALID A0-A19 tGHAX ADDRESS VALID ADDRESS VALID tAVWL tAVWL tWHEH tWLAX E1 tGHEL tELWL tEHEL2 tWLWH tWHWL W tBLWL tGHBH tWHBH UB, LB tGHWL G tGHQZ DQ0-DQ15 tDVWH tWHDX VALID DATA INPUT AI07412C Note: 1. E2 must be High during the Write cycle. 19/29 M69AW024B Figure 13. W Controlled, Continuous Write AC Waveforms tWLWL ADDRESS VALID A0-A19 ADDRESS VALID tGHAX ADDRESS VALID tAVWL tAVWL tWLAX E1 tGHEL tELWL tWLWH tWHWL W tWHBH tBLWL tGHBH tBLWL UB, LB tGHWL G tGHQZ tDVWH DQ0-DQ15 tWHDX VALID DATA INPUT AI07413C Note: 1. E2 must be High during the Write cycle. Figure 14. E1 Controlled, Read/Write AC Waveforms tELEL ADDRESS VALID A0-A19 tEHAX ADDRESS VALID ADDRESS VALID tAVEL tAVEL tELAX E1 tEHEL1 tELEH1 tEHEL1 tWHEL tEHWH tEHWL tWLEL ELGL W tEHBH tBLEL tEHBH tBLGL UB, LB tGHEL G tEHQZ tEHQX DQ0-DQ15 READ DATA OUTPUT tGLQX tDVEH tEHDX WRITE DATA INPUT AI07414C Note: 1. Write address is valid from the falling edge of either E1 or W, whichever occurs later. 20/29 M69AW024B Figure 15. E1 Controlled, Read/Write AC Waveforms 2 tELEH A0-A19 READ ADDRESS tAVEL WRITE ADDRESS tEHAX tAVEL tEHEL1 E1 tEHEL1(min) tEHWH tELQV tEHEL1 tWHEL tEHWL tWLEL tEHBH tBLEL W tEHBH tBLEL UB, LB tGHEL tELGL G tEHQZ tEHDX DQ0-DQ15 tEHQX tELQX WRITE DATA INPUT READ DATA OUTPUT AI07415C Figure 16. G Controlled Read, W Controlled Write AC Waveforms tWLAV ADDRESS VALID A0-A19 tGHAX WRITE ADDRESS READ ADDRESS tAVWL tAVGL1 tWLAX E1 Low tWLWH tWHAV W tGHBH tBLWL tWHBH tBLGL UB, LB tGHWL G tGHQZ tGHQX DQ0-DQ15 READ DATA OUTPUT tDVWH tWHDX tGLQX WRITE DATA INPUT AI07416C Note: 1. E1 can be tied to Low for W and G controlled operation. When E1 is tied to Low, output is exclusively controlled by G. 21/29 M69AW024B Figure 17. G Controlled Read, W Controlled Write AC Waveforms 2 tAVGH A0-A19 E1 READ ADDRESS WRITE ADDRESS tAVGL1 tGHAX tAVWL tBLGL tGHBH tBLWL Low tWHAV W tWHBH UB, LB tGHWL G tGLQV tWHDX DQ0-DQ15 WRITE DATA INPUT tGLQX tGHQZ tGHQX READ DATA OUTPUT AI07417C Note: 1. E1 can be tied to Low for W and G controlled operation. When E1 is tied to Low, output is exclusively controlled by G. 22/29 M69AW024B Table 9. Power Down and Power-Up AC Parameters M69AW024B Symbol Alt. Parameter –60 Min –70 Max Min Unit Max tCLEL tCSP E2 Low Setup Time for Power Down Entry 10 10 ns tELCH tC2LP E2 Low Hold Time after Power Down Entry 80 90 ns tCHEL tCHH E1 High Hold Time following E2 High after PowerDown Exit (Sleep Mode only) 350 350 µs tEHEL tCHHP E1 High Hold Time following E2 High after PowerDown Exit (not in Sleep Mode) 400 400 µs tEHCH1 tCHS E1 High Setup Time following E2 High after PowerDown Exit 10 10 ns tEHCH2 tC2LH Power-up Time 1 50 50 µs tC2HL Power-up Time 2 50 50 µs tEHGH tCHOX E1 High to G Invalid Time for Standby Entry 10 10 ns tEHWH tCHWX E1 High to W Invalid Time for Standby Entry 10 10 ns tT tT Input Transition Time 1 tCHCL12 tCHCL22 25 1 25 ns Note: 1. Some data may be written to any address location if tEHWH is less than the minimum required time. 2. The device has to enter and exit Power Down mode after tCHCL. 3. The Input Transition Time used in AC measurements is 5ns. Figure 18. Standby Mode Entry AC Waveforms, After Read or Write E1 E1 tEHWH tEHGH G G W W Active (Read) Standby Active (Write) Standby AI07741 Note: Both tEHGH and tEHWH define the earliest entry timing for Stand-by mode. If either of timing is not satisfied, it takes the tAVAX(min) period from either the last address transition of A0, A1 and A2, or E1 rising edge. 23/29 M69AW024B Figure 19. Power-down AC Waveforms E1 tEHCH1 E2 tCHEL tELCH tCLEL DQ Hi-Z Power Down Entry Power Down Exit Power Down Mode AI07739 Note: This Power Down mode can be also be used in “Power-up Mode AC Waveforms - 2”. Figure 20. Power-up Mode AC Waveforms - 1 E1 tEHCH1 tEHCH2 tCHEL E2 VCC VCC min 0V AI07740 Note: tVHCH starts from V CC reaching VCC(min). Figure 21. Power-up Mode AC Waveforms - 2 E1 tEHCH1 tCHCL2 tCLEL tELCH tCHEL E2 tCHCL1 VCC VCC min 0V AI07742 Note: tVHCL starts from VCC reaching VCC(min). E1 must be taken High prior to, or together with, the rising edge on E2. 24/29 M69AW024B Figure 22. Power-up Mode AC Waveforms - 3 E1 tEHEL E2 VCC VCC min 0V AI08054C Note: Both E1 and E2 must go High as VCC reaches VCC(min). If not, the timings provided in Power-Up Mode AC Waveforms 1 (Figure 20.) or Power-Up Mode AC Waveforms 2 (Figure 21.) should be used to ensure proper operation. Table 10. Low VCC Data Retention Characteristics Symbol Parameter Test Condition1 Min Max Unit 2.3 3.5 V 70 µA VDR (2) Supply Voltage (Data Retention) E1 = E2 ≥ VCC –0.2V, or E1 = VIH and E2 = VIH ICCDR Supply Current (Data Retention) VCC = VDR, VIN ≤0.2V or ≥ VCC –0.2V, E1 = ≥ VCC –0.2V and E2 ≥ VCC –0.2V, IOUT = 0mA tCDR (2,3) tR (3) ∆V/∆t (3) Chip deselected to Data Retention Time VCC = 2.7V 0 ns Operation Recovery Time VCC = 2.7V 100 ns 0.2 V/µs VCC Voltage Transition Time Note: 1. TA = –30 to 85°C 2. All other Inputs at VIH ≥ VCC –0.2V or VIL ≤0.2V. 3. See Figure 23. for measurement points. Figure 23. Low VCC Data Retention AC Waveforms VCC 3.5V 2.7V tCDR DATA RETENTION MODE ∆V/∆t tR ∆V/∆t E2 2.3V 0.4V E1 E1 and E2 ≥ VDD – 0.2V or VIH(min) Data Bus must be Hi-Z VSS AI07408 25/29 M69AW024B PACKAGE MECHANICAL Figure 24. TFBGA48 6x8mm - 6x8 Ball Array, 0.75mm Pitch, Package Outline, Bottom View D D1 FD FE SD SE BALL "A1" E E1 ddd e e b A A2 A1 BGA-Z26 Note: Drawing is not to scale. Table 11. TFBGA48 6x8mm - 6x8 Ball Array, 0.75mm Pitch, Package Mechanical Data millimeters inches Symbol Typ Min A Typ Min 1.200 A1 0.0102 0.900 b Max 0.0472 0.260 A2 0.350 0.450 0.0354 0.0138 0.0177 D 6.000 5.900 6.100 0.2362 0.2323 0.2402 D1 3.750 – – 0.1476 – – ddd 26/29 Max 0.100 0.0039 E 8.000 7.900 8.100 0.3150 0.3110 0.3189 E1 5.250 – – 0.2067 – – e 0.750 – – 0.0295 – – FD 1.125 – – 0.0443 – – FE 1.375 – – 0.0541 – – SD 0.375 – – 0.0148 – – SE 0.375 – – 0.0148 – – M69AW024B PART NUMBERING Table 12. Ordering Information Scheme Example: M69AW024 B L 70 ZB 8 T Device Type M69 = 1T/1C Memory Cell Architecture Mode A = Asynchronous Operating Voltage W = 2.7 to 3.3V Array Organization 024 = 16 Mbit (1M x16) Option 1 B = 2 Chip Enable; No Write and Standby from UB and LB Option 2 L = Low Leakage Speed Class 60 = 60ns 70 = 70ns Package ZB = TFBGA48 6x8mm - 6x8 ball array, 0.75mm pitch Temperature Range 8 = –30 to 85°C Shipping Method T = Tape & Reel Packing The notation used for the device number is as shown in Table 12. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest STMicroelectronics Sales Office. 27/29 M69AW024B REVISION HISTORY Table 13. Document Revision History Date Rev. 01-Jun-2002 1.0 First Issue 04-Feb-2003 2.0 Document completely revised 14-Mar-2003 2.1 AC Testing Load Circuit revised; 60ns access time device added 29-Apr-2003 2.2 Timing parameter names changed in tables and illustrations 25-Jul-2003 2.3 Chip enable signals E1 and E2 must change together during Power-on sequence 07-May-2004 3.0 Datasheet title updated. Table 2., Operating Modes updated for read operations. 29-Sep-2004 4.0 Minor modification in first paragraph of Summary Description. 28/29 Revision Details M69AW024B Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 29/29