STMICROELECTRONICS M72DW64000B70ZT

M72DW64000B
64Mbit (x8/ x16, Multiple Bank, Boot Block) Flash Memory and
16Mbit Pseudo SRAM, 3V Supply, Multiple Memory Product
PRELIMINARY DATA
FEATURES SUMMARY
■ MULTIPLE MEMORY PRODUCT
Figure 1. Package
– 64Mbit (8M x8 or 4M x16), Multiple Bank, Page,
Boot Block, Flash Memory
– 16Mbit (1M x 16) Pseudo Static RAM
■ SUPPLY VOLTAGE
– VCCF = VCCP = 2.7 to 3.3V
– VPPF = 12V for Fast Program (optional)
■
ACCESS TIME: 70, 90ns
■
LOW POWER CONSUMPTION
■
ELECTRONIC SIGNATURE
FBGA
LFBGA73 (ZA)
8 x 11.6mm
– Manufacturer Code: 0020h
– Device Code: 227Eh + 2202h + 2201h
FLASH MEMORY
■ ASYNCHRONOUS PAGE READ MODE
– Page Width: 4 Words
– Page Access: 25, 30ns
■ PROGRAMMING TIME
– 10µs per Byte/Word typical
■
VPP/WP PIN for FAST PROGRAM and WRITE
PROTECT
MEMORY BLOCKS
■
– Quadruple Bank Memory Array:
8Mbits + 24Mbits + 24Mbits + 8Mbits
TEMPORARY BLOCK UNPROTECTION
MODE
■
COMMON FLASH INTERFACE
– 4 Words/ 8 Bytes at-a-time Program
■
– Parameter Blocks (at both Top and Bottom)
■
DUAL OPERATIONS
– 64 bit Security Code
■
– While Program or Erase in a group of banks
(from 1 to 3), Read in any of the other banks
■
– Extra block used as security block or to store
additional information
PROGRAM/ERASE SUSPEND and RESUME
MODES
■
– Read from any Block during Program
Suspend
PSRAM
■ ACCESS TIME: 70ns
■ DEEP POWER DOWN CURRENT: 10µA
■ LOW VCC DATA RETENTION: 2.3V
■ LOW STANDBY CURRENT: 70µA
– Read and Program another Block during
Erase Suspend
■
EXTENDED MEMORY BLOCK
UNLOCK BYPASS PROGRAM COMMAND
100,000 PROGRAM/ERASE CYCLES per
BLOCK
– Faster Production/Batch Programming
October 2003
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
1/19
M72DW64000B
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 3. LFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Inputs/Outputs (DQ8-DQ14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Data Input/Output or Address Input (DQ15A–1).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Flash-1 Chip Enable (EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
VPP/Write Protect (VPP/WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Reset/Block Temporary Unprotect (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PSRAM Chip Enable inputs (E1P, E2P).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PSRAM Upper Byte Enable (UBP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PSRAM Lower Byte Enable (LBP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
VCCF Supply Voltage (2.7 to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
VCCP Supply Voltage (2.7 to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
VSS Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
FLASH MEMORY DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
PSRAM DEVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6. Flash DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 7. PSRAM DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2/19
M72DW64000B
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Bottom View Package Outline15
Table 8. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Package Mechanical Data. . . 16
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 10. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3/19
M72DW64000B
SUMMARY DESCRIPTION
The M72DW64000B is a low voltage Multiple
Memory Product which combines two memory devices; a 64 Mbit Multiple Bank, Boot Block Flash
memory (M29DW640D) and a 16 Mbit Pseudo
SRAM. This document should be read in conjunction with the M29DW640D and M69AW024B
datasheets.
Recommended operating conditions do not allow
more than one of the internal memory devices to
be active at the same time.
The memory is offered in an LFBGA73
(8 x 11.6mm, 0.8 mm pitch) package and is supplied with all the bits erased (set to ‘1’).
Figure 2. Logic Diagram
VPP/WP
VCCF
VCCP
22
Table 1. Signal Names
A0-A19
Address Inputs common to the Flash
Memory and PSRAM Components
DQ0-DQ7
Data Inputs/Outputs
DQ8-DQ14
Data Inputs/Outputs
DQ15A–1
Data Input/Output or Address Input
G
Output Enable Input
W
Write Enable Input
VCCF
Flash Memory Power Supply
VPP/WP
VPP/Write Protect
VSS
Ground
VCCP
PSRAM Power Supply
NC
Not Connected Internally
Flash Memory Control Functions
A0-A21
A20-A21
Address Inputs
EF
Flash-1 Chip Enable Input
RPF
Reset/Block Temporary Unprotect
RB
Ready/Busy Output
BYTE
Byte/Word Organization Select
15
DQ0-DQ14
EF
G
W
DQ15A–1
M72DW64000B
RB
RPF
PSRAM Control Functions
BYTE
E1P, E2P
Chip Enable Inputs
E1P
UBP
Upper Byte Enable Input
E2P
LBP
Lower Byte Enable Input
UBP
LBP
VSS
AI08527
4/19
M72DW64000B
Figure 3. LFBGA Connections (Top view through package)
1
A
NC
B
NC
C
NC
2
3
4
5
6
7
8
9
10
NC
NC
NC
NC
A7
LBS
VPP
/WP
W
A8
A11
D
A3
A6
UBS
RPF
E2S
A19
A12
A15
E
A2
A5
A18
RB
A20
A9
A13
A21
F
NC
A1
A4
A17
A10
A14
NC
NC
G
NC
A0
VSS
DQ1
DQ6
NC
A16
NC
H
EF
G
DQ9
DQ3
DQ4
DQ13
DQ15
/A-1
BYTE
J
E1S
DQ0
DQ10
VCCF
VCCS
DQ12
DQ7
VSS
DQ8
DQ2
DQ11
NC
DQ5
DQ14
NC
NC
K
M
NC
N
NC
NC
NC
AI08528
5/19
M72DW64000B
SIGNAL DESCRIPTION
See Figure 2 Logic Diagram and Table 1,Signal
Names, for a brief overview of the signals connected to this device.
Address Inputs (A0-A21). Address lines A0-A19
are common inputs for the Flash Memory and
PSRAM components. Address line A20-A21 are
inputs for the Flash Memory component. The Address Inputs select the cells in the memory array
to access during Bus Read operations. During Bus
Write operations they control the commands sent
to the Command Interface of the internal state machine. The Flash memory is accessed through the
Chip Enable (EF) and Write Enable (W) signals,
while the PSRAM is accessed through two Chip
Enable signals (E1S and E2S) and the Write Enable signal (W).
Data Inputs/Outputs (DQ0-DQ7). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation. During Bus Write
operations they represent the commands sent to
the Command Interface of the Program/Erase
Controller.
Data Inputs/Outputs (DQ8-DQ14). The Data I/O
outputs the data stored at the selected address
during a Bus Read operation when BYTE is High,
VIH. When BYTE is Low, VIL, these pins are not
used and are high impedance. During Bus Write
operations the Command Register does not use
these bits. When reading the Status Register
these bits should be ignored.
Data Input/Output or Address Input (DQ15A–
1). When BYTE is High, VIH, this pin behaves as
a Data Input/Output pin (as DQ8-DQ14). When
BYTE is Low, VIL, this pin behaves as an address
pin; DQ15A–1 Low will select the LSB of the addressed Word, DQ15A–1 High will select the MSB.
Throughout the text consider references to the
Data Input/Output to include this pin when BYTE is
High and references to the Address Inputs to include this pin when BYTE is Low except when
stated explicitly otherwise.
Flash-1 Chip Enable (EF). The Chip Enable input activates the memory to which it is attached,
allowing Bus Read and Bus Write operations to be
performed. When Chip Enable is High, VIH, all other pins are ignored.
Output Enable (G). The Output Enable, G, controls the Bus Read operation of the Flash Memory
and PSRAM components.
Write Enable (W). The Write Enable, W, controls
the Bus Write operation of the Flash Memory and
PSRAM components.
VPP/Write
VPP/Write Protect (VPP/WP). The
Protect pin provides two functions. The VPP function allows the Flash memory to use an external
high voltage power supply to reduce the time re-
6/19
quired for Program operations. This is achieved
by bypassing the unlock cycles and/or using the
multiple Word (2 or 4 at-a-time) or multiple Byte
Program (2, 4 or 8 at-a-time) commands. The
Write Protect function provides a hardware method of protecting the four outermost boot blocks
(two at the top, and two at the bottom of the address space).
When V PP/Write Protect is Low, VIL, the memory
protects the four outermost boot blocks; Program
and Erase operations in these blocks are ignored
while VPP/Write Protect is Low, even when RPF is
at VID.
When VPP/Write Protect is High, VIH, the memory
reverts to the previous protection status of the four
outermost boot blocks (two at the top, and two at
the bottom of the address space). Program and
Erase operations can now modify the data in these
blocks unless the blocks are protected using Block
Protection.
When V PP/Write Protect is raised to VPP the memory automatically enters the Unlock Bypass mode.
When V PP/Write Protect returns to VIH or VIL normal operation resumes. During Unlock Bypass
Program operations the memory draws IPP from
the pin to supply the programming circuits. See the
description of the Unlock Bypass command in the
Command Interface section. The transitions from
VIH to V PP and from V PP to VIH must be slower
than tVHVPP. See the M29DW640D datasheet for
more details.
Never raise VPP/Write Protect to VPP from any
mode except Read mode, otherwise the memory
may be left in an indeterminate state.
The VPP/Write Protect pin must not be left floating
or unconnected or the device may become unreliable. A 0.1µF capacitor should be connected between the V PP/Write Protect pin and the VSS
Ground pin to decouple the current surges from
the power supply. The PCB track widths must be
sufficient to carry the currents required during
Unlock Bypass Program, I PP.
Reset/Block Temporary Unprotect (RPF). The
Reset/Block Temporary Unprotect pin can be
used to apply a Hardware Reset to the memory or
to temporarily unprotect all Blocks that have been
protected.
Note that if V PP/WP is at VIL, then the two outermost boot blocks will remain protected even if RPF
is at VID.
A Hardware Reset is achieved by holding Reset/
Block Temporary Unprotect Low, V IL, for at least
tPLPX. After Reset/Block Temporary Unprotect
goes High, V IH, the memory will be ready for Bus
Read and Bus Write operations after tPHEL or
M72DW64000B
tRHEL, whichever occurs last. See the
M29DW640D datasheet for more details.
Holding RPF at VID will temporarily unprotect the
protected Blocks in the memory. Program and
Erase operations on all blocks will be possible.
The transition from VIH to VID must be slower than
tPHPHH.
Ready/Busy Output (RB). The Ready/Busy pin
is an open-drain output that can be used to identify
when the Flash memory is performing a Program
or Erase operation. During Program or Erase operations Ready/Busy is Low, VOL. Ready/Busy is
high-impedance during Read mode, Auto Select
mode and Erase Suspend mode.
After a Hardware Reset, Bus Read and Bus Write
operations cannot begin until Ready/Busy becomes high-impedance.
The use of an open-drain output allows the Ready/
Busy pins from several memories to be connected
to a single pull-up resistor. A Low will then indicate
that one, or more, of the memories is busy.
Byte/Word Organization Select (BYTE). The
Byte/Word Organization Select pin is used to
switch between the x8 and x16 Bus modes of the
Flash memory. When Byte/Word Organization Select is Low, V IL, the Flash memory is in x8 mode,
when it is High, V IH, the Flash memory is in x16
mode.
PSRAM Chip Enable inputs (E1P, E2P). The
Chip Enable inputs activate the PSRAM control
logic, input buffers and decoders. E1 P at VIH with
E2P at VIH deselects the memory, reducing the
power consumption to the standby level, whereas
E2P at VIL deselects the memory and reduces the
power consumption to the Power-down level, re-
gardless of the level of E1P. E1P and E2P can also
be used to control writing to the PSRAM memory
array, while WP remains at VIL. It is not allowed to
set EF1 at VIL, E1P at VIL and E2P at VIH at the
same time.
PSRAM Upper Byte Enable (UBP). The Upper
Byte Enable input enables the upper byte for
PSRAM (DQ8-DQ15). UBP is active low.
PSRAM Lower Byte Enable (LBP). The Lower
Byte Enable input enables the lower byte for
PSRAM (DQ0-DQ7). LBP is active low.
VCCF Supply Voltage (2.7 to 3.3V). VCCF provides the power supply for Flash memory operations (Read, Program and Erase).
The Command Interface is disabled when the
VCCF Supply Voltage is less than the Lockout Voltage, VLKO . This prevents Bus Write operations
from accidentally damaging the data during power
up, power down and power surges. If the Program/
Erase Controller is programming or erasing during
this time then the operation aborts and the memory contents being altered will be invalid.
A 0.1µF capacitor should be connected between
the VCCF Supply Voltage pin and the VSS Ground
pin to decouple the current surges from the power
supply. The PCB track widths must be sufficient to
carry the currents required during Program and
Erase operations, ICC3.
VCCP Supply Voltage (2.7 to 3.3V). VCCP provides the power supply for the PSRAM.
VSS Ground. VSS is the ground reference for all
voltage measurements in the Flash and PSRAM
chips.
7/19
M72DW64000B
FUNCTIONAL DESCRIPTION
The Flash Memory and PSRAM components have
a common power supply. The components are distinguished by four chip enable inputs: EF for the
Flash memory, and E1P and E2P for the PSRAM.
Recommended operating conditions do not allow
more than one component (Flash Memory or
PSRAM) to be in active mode at the same time.
The most common example is simultaneous read
operations on the Flash Memory and PSRAM
components which would result in a data bus contention. Therefore it is recommended, when reading from one memory component, to put the other
in the high impedance state (see Table 2 Main Operation Modes for details).
Table 2. Main Operation Modes
Flash Memory
Operation Mode(3)
RPF
G
W
Read
VIL
VIH
VIL
VIH
Write
VIL
VIH
VIH
VIL
E2P
X
VIH
VIH
VIH
VIH
VCC
±0.3
X
X
X
VIL
X
X
VIL
VIH
VIL
VIH
VIL
PSRAM Data Output
VIH
VIL
VIL
VIH
VIL
PSRAM Data Input
VIH
VIH
VIL
VIH
X
X
X
VIH
VIH
X
X
X
X
VIL
X
DQ15-DQ0
Flash Memory Data
Output
PSRAM must be in Standby
Output Disable
Standby
Reset
Read
PSRAM
E1P
UBP, LBP(2)
EF1
Write
Output Disable
Standby
Deep Power Down
Flash Memory
must be in
Standby
Any Flash
Memory mode
is allowable
Flash Memory Data
Input
Any PSRAM mode is allowed
Flash Memory Hi-Z
PSRAM Hi-Z
Note: 1. X = Don’t Care (V IL or VIH).
2. UB P and LBP are tied together.
3. This table is valid when BYTE = VIH. This table is also valid when BYTE = VIL , with the only difference that DQ15-DQ8 are always
high impedance when the Flash Memory components are being accessed.
4. For the Block Protect and Unprotect features, refer to the M29DW640D datasheet. Only the In-System Technique is available in
the stacked product.
5. To read the Manufacturer Code, the Device Code, the Block Protection Status and the Extended Block indicator bit, refer to the
“Auto Select Command” in the M29DW640D datasheet.
8/19
M72DW64000B
Figure 4. Functional Block Diagram
VCCF
VPPF/WP
A20-A21
EF
64 Mbit
Flash
Memory
RBF
RPF
A0-A19
BYTEF
DQ15/A-1 to DQ0
VDDP
E1P
16 Mbit
PSRAM
G
W
E2P
UBP
LBP
VSS
AI08529
9/19
M72DW64000B
FLASH MEMORY DEVICES
The M72DW64000B contains a 64Mbit Flash
memory. For detailed information on how to use it,
see the M29DW640D datasheet, which is avail-
able on the
www.st.com.
PSRAM DEVICE
The M72DW64000B contains a 16Mbit Pseudo
SRAM. For detailed information on how to use it,
see the M69AW024B datasheet, which is avail-
able from your local STMicroelectronics distributor.
10/19
STMicroelectronics
web
site,
M72DW64000B
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 3. Absolute Maximum Ratings
Value
Symbol
Parameter
Unit
Min
Max
Ambient Operating Temperature (1)
–40
85
°C
TBIAS
Temperature Under Bias
–50
125
°C
TSTG
Storage Temperature
–65
150
°C
Input or Output Voltage
–0.5
VCCF +0.3
V
VCCF
Flash Supply Voltage
–0.6
4
V
VID
Identification Voltage
–0.6
13.5
V
VPPF
Program Voltage
–0.6
13.5
V
VCCP
PSRAM Supply Voltage
–0.5
3.6
V
TA
VIO
Note: 1. Depends on range.
11/19
M72DW64000B
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC
and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 4,
Operating and AC Measurement Conditions. Designers should check that the operating conditions
in their circuit match the measurement conditions
when relying on the quoted parameters.
The operating and AC measurement parameters
given in this section (see Table 4 below) correspond to those of the stand-alone Flash Memory
and PSRAM components. For compatibility purposes, the M29DW640D voltage range is restricted to VCCS in the stacked product.
Table 4. Operating and AC Measurement Conditions
Flash Memory
PSRAM
Parameter
Units
Min
Max
Min
Max
VCCF Supply Voltage
2.7
3.6
–
–
V
VCCS Supply Voltage
–
–
2.7
3.3
V
–40
85
–30
85
°C
Ambient Operating Temperature
Load Capacitance (CL)
30
50
Input Rise and Fall Times
pF
10
Input Pulse Voltages
Input and Output Timing Ref. Voltages
Figure 5. AC Measurement I/O Waveform
4
ns
0 to VCCF
0 to VCCP
V
VCCF/2
VCCP/2
V
Figure 6. AC Measurement Load Circuit
VCCF
VCCF
VCCF/2
VPP
0V
VCCF
25kΩ
AI08186
DEVICE
UNDER
TEST
CL
0.1µF
25kΩ
0.1µF
CL includes JIG capacitance
AI08187
Table 5. Device Capacitance
Symbol
CIN
COUT
Parameter
Input Capacitance
Output Capacitance
Note: Sampled only, not 100% tested.
12/19
Test Condition
Typ
Max
Unit
VIN = 0V, f=1 MHz
12
pF
VOUT = 0V, f=1 MHz
15
pF
M72DW64000B
Table 6. Flash DC Characteristics
Symbol
Parameter
Test Condition
Min
Max
Unit
0V ≤ VIN ≤ VCC
±1
µA
ILI
Input Leakage Current
ILO
Output Leakage Current
0V ≤ VOUT ≤ VCC
±1
µA
Supply Current (Read)
EF = VIL, G = VIH,
f = 6MHz
10
mA
Supply Current (Standby)
EF = VCC ±0.2V,
RPF = VCC ±0.2V
100
µA
VPP/WP =
VIL or VIH
20
mA
VPP/WP = VPP
20
mA
ICC1(2)
ICC2
ICC3
(1,2)
Supply Current (Program/
Erase)
Program/Erase
Controller active
VIL
Input Low Voltage
–0.5
0.8
V
VIH
Input High Voltage
0.7VCC
VCC +0.3
V
VPP
Voltage for VPP/WP Program
Acceleration
VCC = 3.0V ±10%
11.5
12.5
V
IPP
Current for VPP/WP Program
Acceleration
VCC = 3.0V ±10%
15
mA
VOL
Output Low Voltage
IOL = 1.8mA
0.45
V
VOH
Output High Voltage
IOH = –100µA
VID
Identification Voltage
11.5
12.5
V
Program/Erase Lockout Supply
Voltage
1.8
2.3
V
VLKO
VCC –0.4
V
Note: 1. Sampled only, not 100% tested.
2. In Dual operations the Supply Current will be the sum of I CC1(read) and I CC3 (program/erase).
13/19
M72DW64000B
Table 7. PSRAM DC Characteristics
Symbol
IDD1
(1)
Parameter
Operating Supply
Current
ILI
Input Leakage
Current
ILO
Output Leakage
Current
IPD
Deep Power Down
Current
ISB
Standby Supply
Current CMOS
VIH (2)
Input High Voltage
VIL (3)
Input Low Voltage
VOH
VOL
Output High Voltage
Output Low Voltage
Test Condition
VDDP = 3.3V,
VIN = VIH or VIL,
E1P = VIL, E2P = VIH, IOUT = 0mA
Min
Max
Unit
tRC/tWC =
Min
20
mA
tRC/tWC =
1µs
3.0
mA
0V ≤ VIN ≤ VDDP
–1
1
µA
0V ≤ VOUT ≤ VDDP
–1
1
µA
VDDP = 3.3V,
VIN = VIH or VIL,
E2P ≤ 0.2V
10
µA
3.1V ≤ VDDP ≤ 3.3V,
VIN = VIH or VIL,
E1P = VIH and E2P = VIH, IOUT = 0mA
1.5
mA
2.7V ≤ VDDP ≤ 3.1V,
VIN = VIH or VIL,
E1P = VIH and E2P = VIH, IOUT = 0mA
1
mA
3.1V ≤ VDDP ≤ 3.3V,
VIN ≤ 0.2V or ≥ VDDP –0.2V,
E1P ≥ VDDP –0.2V and
E2P ≥ VDDP –0.2V), IOUT = 0mA
100
µA
2.7V ≤ VDDP ≤ 3.1V,
VIN ≤ 0.2V or ≥ VDDP –0.2V,
E1P ≥ VDDP –0.2V and
E2P ≥ VCC –0.2V), IOUT = 0mA
70
µA
3.1V ≤ VDDP ≤ 3.3V
2.6
VCC + 0.3
V
2.7V ≤ VDDP ≤ 3.1V
2.2
VCC + 0.3
V
3.1V ≤ VDDP ≤ 3.3V
–0.3
0.6
V
2.7V ≤ VDDP ≤ 3.1V
–0.3
0.5
V
3.1V ≤ VDDP ≤ 3.3V, IOH = –0.5mA
2.5
V
2.7V ≤ VDDP ≤ 3.1V, IOH = –0.5mA
2.2
V
VDDP = 3V, IOL = 1mA
Note: 1. Average AC current, Outputs open, cycling at tAVAX (min).
2. Maximum DC voltage on input and I/O pins is VDDP + 0.3V.
During voltage transitions, input may positive overshoot to VDDP + 1.0V for a period of up to 5ns.
3. Minimum DC voltage on input or I/O pins is –0.3V.
During voltage transitions, input may positive overshoot to VSS + 1.0V for a period of up to 5ns.
14/19
0.4
V
M72DW64000B
PACKAGE MECHANICAL
Figure 7. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Bottom View Package Outline
D
D1
FD
FE
E
SD
SE
E1
BALL "A1"
e
b
ddd
A
A2
A1
BGA-Z50
Note: Drawing is not to scale.
15/19
M72DW64000B
Table 8. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.400
A1
Max
0.0551
0.250
0.0098
A2
0.910
0.0358
b
0.400
0.350
0.450
0.0157
0.0138
0.0177
D
8.000
7.900
8.100
0.3150
0.3110
0.3189
D1
7.200
0.2835
ddd
0.100
E
11.600
E1
8.800
e
0.800
FD
0.400
0.0157
FE
1.400
0.0551
SD
0.400
–
–
SE
0.400
–
–
16/19
11.500
11.700
0.0039
0.4567
0.4528
0.4606
–
–
0.0157
–
–
0.0157
–
–
0.3465
–
–
0.0315
M72DW64000B
PART NUMBERING
Table 9. Ordering Information Scheme
Example:
M72DW 6 4 0 0 0
B
70
Z T
Device Type
M72 = MMP (Flash + PSRAM)
Architecture
D = Dual Operation
Operating Voltage
W = VCCF = VCCP = 2.7V to 3.3V
Flash Memory Device Size (Die1 Density)
6 = 64 Mbit
PSRAM Device Size (Die2 Density)
4 = 16 Mbit
Die3
0 = none present
Die4
0 = none present
Flash Memory Specification Details
0 = Multiple Bank
Stacked Specification Details
B=0.15µm Flash Memory and 0.18µm PSRAM
Speed
70 = 70ns
90 = 90ns
Package and Temperature Range
Z = LFBGA73: 8 x 11.6mm, 0.8mm pitch
Option
T = Tape & Reel packing
Note: This product is also available with the Extended Block factory locked. For further details and ordering
information contact your nearest ST sales office.
Devices are shipped from the factory with the memory content bits erased to ’1’.
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,
please contact the STMicroelectronics Sales Office nearest to you.
17/19
M72DW64000B
REVISION HISTORY
Table 10. Document Revision History
Date
Version
26-May-2003
1.0
First Issue
24-Sep-2003
1.1
Voltage supply range extended 2.7V working at all speed options
18/19
Revision Details
M72DW64000B
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2003 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
19/19