M72DW64000B 64Mbit (x8/ x16, Multiple Bank, Boot Block) Flash Memory and 16Mbit Pseudo SRAM, 3V Supply, Multiple Memory Product PRELIMINARY DATA FEATURES SUMMARY ■ MULTIPLE MEMORY PRODUCT Figure 1. Package – 64Mbit (8M x8 or 4M x16), Multiple Bank, Page, Boot Block, Flash Memory – 16Mbit (1M x 16) Pseudo Static RAM ■ SUPPLY VOLTAGE – VCCF = VCCP = 2.7 to 3.3V – VPPF = 12V for Fast Program (optional) ■ ACCESS TIME: 70, 90ns ■ LOW POWER CONSUMPTION ■ ELECTRONIC SIGNATURE FBGA LFBGA73 (ZA) 8 x 11.6mm – Manufacturer Code: 0020h – Device Code: 227Eh + 2202h + 2201h FLASH MEMORY ■ ASYNCHRONOUS PAGE READ MODE – Page Width: 4 Words – Page Access: 25, 30ns ■ PROGRAMMING TIME – 10µs per Byte/Word typical ■ VPP/WP PIN for FAST PROGRAM and WRITE PROTECT MEMORY BLOCKS ■ – Quadruple Bank Memory Array: 8Mbits + 24Mbits + 24Mbits + 8Mbits TEMPORARY BLOCK UNPROTECTION MODE ■ COMMON FLASH INTERFACE – 4 Words/ 8 Bytes at-a-time Program ■ – Parameter Blocks (at both Top and Bottom) ■ DUAL OPERATIONS – 64 bit Security Code ■ – While Program or Erase in a group of banks (from 1 to 3), Read in any of the other banks ■ – Extra block used as security block or to store additional information PROGRAM/ERASE SUSPEND and RESUME MODES ■ – Read from any Block during Program Suspend PSRAM ■ ACCESS TIME: 70ns ■ DEEP POWER DOWN CURRENT: 10µA ■ LOW VCC DATA RETENTION: 2.3V ■ LOW STANDBY CURRENT: 70µA – Read and Program another Block during Erase Suspend ■ EXTENDED MEMORY BLOCK UNLOCK BYPASS PROGRAM COMMAND 100,000 PROGRAM/ERASE CYCLES per BLOCK – Faster Production/Batch Programming October 2003 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/19 M72DW64000B TABLE OF CONTENTS SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. LFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Address Inputs (A0-A21). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Data Inputs/Outputs (DQ8-DQ14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Data Input/Output or Address Input (DQ15A–1).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Flash-1 Chip Enable (EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 VPP/Write Protect (VPP/WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Reset/Block Temporary Unprotect (RPF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PSRAM Chip Enable inputs (E1P, E2P).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PSRAM Upper Byte Enable (UBP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PSRAM Lower Byte Enable (LBP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VCCF Supply Voltage (2.7 to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VCCP Supply Voltage (2.7 to 3.3V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 VSS Ground.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 2. Main Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4. Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 FLASH MEMORY DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PSRAM DEVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 4. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 6. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 5. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 6. Flash DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 7. PSRAM DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2/19 M72DW64000B PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 7. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Bottom View Package Outline15 Table 8. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Package Mechanical Data. . . 16 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 9. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 10. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3/19 M72DW64000B SUMMARY DESCRIPTION The M72DW64000B is a low voltage Multiple Memory Product which combines two memory devices; a 64 Mbit Multiple Bank, Boot Block Flash memory (M29DW640D) and a 16 Mbit Pseudo SRAM. This document should be read in conjunction with the M29DW640D and M69AW024B datasheets. Recommended operating conditions do not allow more than one of the internal memory devices to be active at the same time. The memory is offered in an LFBGA73 (8 x 11.6mm, 0.8 mm pitch) package and is supplied with all the bits erased (set to ‘1’). Figure 2. Logic Diagram VPP/WP VCCF VCCP 22 Table 1. Signal Names A0-A19 Address Inputs common to the Flash Memory and PSRAM Components DQ0-DQ7 Data Inputs/Outputs DQ8-DQ14 Data Inputs/Outputs DQ15A–1 Data Input/Output or Address Input G Output Enable Input W Write Enable Input VCCF Flash Memory Power Supply VPP/WP VPP/Write Protect VSS Ground VCCP PSRAM Power Supply NC Not Connected Internally Flash Memory Control Functions A0-A21 A20-A21 Address Inputs EF Flash-1 Chip Enable Input RPF Reset/Block Temporary Unprotect RB Ready/Busy Output BYTE Byte/Word Organization Select 15 DQ0-DQ14 EF G W DQ15A–1 M72DW64000B RB RPF PSRAM Control Functions BYTE E1P, E2P Chip Enable Inputs E1P UBP Upper Byte Enable Input E2P LBP Lower Byte Enable Input UBP LBP VSS AI08527 4/19 M72DW64000B Figure 3. LFBGA Connections (Top view through package) 1 A NC B NC C NC 2 3 4 5 6 7 8 9 10 NC NC NC NC A7 LBS VPP /WP W A8 A11 D A3 A6 UBS RPF E2S A19 A12 A15 E A2 A5 A18 RB A20 A9 A13 A21 F NC A1 A4 A17 A10 A14 NC NC G NC A0 VSS DQ1 DQ6 NC A16 NC H EF G DQ9 DQ3 DQ4 DQ13 DQ15 /A-1 BYTE J E1S DQ0 DQ10 VCCF VCCS DQ12 DQ7 VSS DQ8 DQ2 DQ11 NC DQ5 DQ14 NC NC K M NC N NC NC NC AI08528 5/19 M72DW64000B SIGNAL DESCRIPTION See Figure 2 Logic Diagram and Table 1,Signal Names, for a brief overview of the signals connected to this device. Address Inputs (A0-A21). Address lines A0-A19 are common inputs for the Flash Memory and PSRAM components. Address line A20-A21 are inputs for the Flash Memory component. The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the internal state machine. The Flash memory is accessed through the Chip Enable (EF) and Write Enable (W) signals, while the PSRAM is accessed through two Chip Enable signals (E1S and E2S) and the Write Enable signal (W). Data Inputs/Outputs (DQ0-DQ7). The Data I/O outputs the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the Command Interface of the Program/Erase Controller. Data Inputs/Outputs (DQ8-DQ14). The Data I/O outputs the data stored at the selected address during a Bus Read operation when BYTE is High, VIH. When BYTE is Low, VIL, these pins are not used and are high impedance. During Bus Write operations the Command Register does not use these bits. When reading the Status Register these bits should be ignored. Data Input/Output or Address Input (DQ15A– 1). When BYTE is High, VIH, this pin behaves as a Data Input/Output pin (as DQ8-DQ14). When BYTE is Low, VIL, this pin behaves as an address pin; DQ15A–1 Low will select the LSB of the addressed Word, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data Input/Output to include this pin when BYTE is High and references to the Address Inputs to include this pin when BYTE is Low except when stated explicitly otherwise. Flash-1 Chip Enable (EF). The Chip Enable input activates the memory to which it is attached, allowing Bus Read and Bus Write operations to be performed. When Chip Enable is High, VIH, all other pins are ignored. Output Enable (G). The Output Enable, G, controls the Bus Read operation of the Flash Memory and PSRAM components. Write Enable (W). The Write Enable, W, controls the Bus Write operation of the Flash Memory and PSRAM components. VPP/Write VPP/Write Protect (VPP/WP). The Protect pin provides two functions. The VPP function allows the Flash memory to use an external high voltage power supply to reduce the time re- 6/19 quired for Program operations. This is achieved by bypassing the unlock cycles and/or using the multiple Word (2 or 4 at-a-time) or multiple Byte Program (2, 4 or 8 at-a-time) commands. The Write Protect function provides a hardware method of protecting the four outermost boot blocks (two at the top, and two at the bottom of the address space). When V PP/Write Protect is Low, VIL, the memory protects the four outermost boot blocks; Program and Erase operations in these blocks are ignored while VPP/Write Protect is Low, even when RPF is at VID. When VPP/Write Protect is High, VIH, the memory reverts to the previous protection status of the four outermost boot blocks (two at the top, and two at the bottom of the address space). Program and Erase operations can now modify the data in these blocks unless the blocks are protected using Block Protection. When V PP/Write Protect is raised to VPP the memory automatically enters the Unlock Bypass mode. When V PP/Write Protect returns to VIH or VIL normal operation resumes. During Unlock Bypass Program operations the memory draws IPP from the pin to supply the programming circuits. See the description of the Unlock Bypass command in the Command Interface section. The transitions from VIH to V PP and from V PP to VIH must be slower than tVHVPP. See the M29DW640D datasheet for more details. Never raise VPP/Write Protect to VPP from any mode except Read mode, otherwise the memory may be left in an indeterminate state. The VPP/Write Protect pin must not be left floating or unconnected or the device may become unreliable. A 0.1µF capacitor should be connected between the V PP/Write Protect pin and the VSS Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Unlock Bypass Program, I PP. Reset/Block Temporary Unprotect (RPF). The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all Blocks that have been protected. Note that if V PP/WP is at VIL, then the two outermost boot blocks will remain protected even if RPF is at VID. A Hardware Reset is achieved by holding Reset/ Block Temporary Unprotect Low, V IL, for at least tPLPX. After Reset/Block Temporary Unprotect goes High, V IH, the memory will be ready for Bus Read and Bus Write operations after tPHEL or M72DW64000B tRHEL, whichever occurs last. See the M29DW640D datasheet for more details. Holding RPF at VID will temporarily unprotect the protected Blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from VIH to VID must be slower than tPHPHH. Ready/Busy Output (RB). The Ready/Busy pin is an open-drain output that can be used to identify when the Flash memory is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, VOL. Ready/Busy is high-impedance during Read mode, Auto Select mode and Erase Suspend mode. After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy becomes high-impedance. The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy. Byte/Word Organization Select (BYTE). The Byte/Word Organization Select pin is used to switch between the x8 and x16 Bus modes of the Flash memory. When Byte/Word Organization Select is Low, V IL, the Flash memory is in x8 mode, when it is High, V IH, the Flash memory is in x16 mode. PSRAM Chip Enable inputs (E1P, E2P). The Chip Enable inputs activate the PSRAM control logic, input buffers and decoders. E1 P at VIH with E2P at VIH deselects the memory, reducing the power consumption to the standby level, whereas E2P at VIL deselects the memory and reduces the power consumption to the Power-down level, re- gardless of the level of E1P. E1P and E2P can also be used to control writing to the PSRAM memory array, while WP remains at VIL. It is not allowed to set EF1 at VIL, E1P at VIL and E2P at VIH at the same time. PSRAM Upper Byte Enable (UBP). The Upper Byte Enable input enables the upper byte for PSRAM (DQ8-DQ15). UBP is active low. PSRAM Lower Byte Enable (LBP). The Lower Byte Enable input enables the lower byte for PSRAM (DQ0-DQ7). LBP is active low. VCCF Supply Voltage (2.7 to 3.3V). VCCF provides the power supply for Flash memory operations (Read, Program and Erase). The Command Interface is disabled when the VCCF Supply Voltage is less than the Lockout Voltage, VLKO . This prevents Bus Write operations from accidentally damaging the data during power up, power down and power surges. If the Program/ Erase Controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid. A 0.1µF capacitor should be connected between the VCCF Supply Voltage pin and the VSS Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Program and Erase operations, ICC3. VCCP Supply Voltage (2.7 to 3.3V). VCCP provides the power supply for the PSRAM. VSS Ground. VSS is the ground reference for all voltage measurements in the Flash and PSRAM chips. 7/19 M72DW64000B FUNCTIONAL DESCRIPTION The Flash Memory and PSRAM components have a common power supply. The components are distinguished by four chip enable inputs: EF for the Flash memory, and E1P and E2P for the PSRAM. Recommended operating conditions do not allow more than one component (Flash Memory or PSRAM) to be in active mode at the same time. The most common example is simultaneous read operations on the Flash Memory and PSRAM components which would result in a data bus contention. Therefore it is recommended, when reading from one memory component, to put the other in the high impedance state (see Table 2 Main Operation Modes for details). Table 2. Main Operation Modes Flash Memory Operation Mode(3) RPF G W Read VIL VIH VIL VIH Write VIL VIH VIH VIL E2P X VIH VIH VIH VIH VCC ±0.3 X X X VIL X X VIL VIH VIL VIH VIL PSRAM Data Output VIH VIL VIL VIH VIL PSRAM Data Input VIH VIH VIL VIH X X X VIH VIH X X X X VIL X DQ15-DQ0 Flash Memory Data Output PSRAM must be in Standby Output Disable Standby Reset Read PSRAM E1P UBP, LBP(2) EF1 Write Output Disable Standby Deep Power Down Flash Memory must be in Standby Any Flash Memory mode is allowable Flash Memory Data Input Any PSRAM mode is allowed Flash Memory Hi-Z PSRAM Hi-Z Note: 1. X = Don’t Care (V IL or VIH). 2. UB P and LBP are tied together. 3. This table is valid when BYTE = VIH. This table is also valid when BYTE = VIL , with the only difference that DQ15-DQ8 are always high impedance when the Flash Memory components are being accessed. 4. For the Block Protect and Unprotect features, refer to the M29DW640D datasheet. Only the In-System Technique is available in the stacked product. 5. To read the Manufacturer Code, the Device Code, the Block Protection Status and the Extended Block indicator bit, refer to the “Auto Select Command” in the M29DW640D datasheet. 8/19 M72DW64000B Figure 4. Functional Block Diagram VCCF VPPF/WP A20-A21 EF 64 Mbit Flash Memory RBF RPF A0-A19 BYTEF DQ15/A-1 to DQ0 VDDP E1P 16 Mbit PSRAM G W E2P UBP LBP VSS AI08529 9/19 M72DW64000B FLASH MEMORY DEVICES The M72DW64000B contains a 64Mbit Flash memory. For detailed information on how to use it, see the M29DW640D datasheet, which is avail- able on the www.st.com. PSRAM DEVICE The M72DW64000B contains a 16Mbit Pseudo SRAM. For detailed information on how to use it, see the M69AW024B datasheet, which is avail- able from your local STMicroelectronics distributor. 10/19 STMicroelectronics web site, M72DW64000B MAXIMUM RATING Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im- plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 3. Absolute Maximum Ratings Value Symbol Parameter Unit Min Max Ambient Operating Temperature (1) –40 85 °C TBIAS Temperature Under Bias –50 125 °C TSTG Storage Temperature –65 150 °C Input or Output Voltage –0.5 VCCF +0.3 V VCCF Flash Supply Voltage –0.6 4 V VID Identification Voltage –0.6 13.5 V VPPF Program Voltage –0.6 13.5 V VCCP PSRAM Supply Voltage –0.5 3.6 V TA VIO Note: 1. Depends on range. 11/19 M72DW64000B DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 4, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. The operating and AC measurement parameters given in this section (see Table 4 below) correspond to those of the stand-alone Flash Memory and PSRAM components. For compatibility purposes, the M29DW640D voltage range is restricted to VCCS in the stacked product. Table 4. Operating and AC Measurement Conditions Flash Memory PSRAM Parameter Units Min Max Min Max VCCF Supply Voltage 2.7 3.6 – – V VCCS Supply Voltage – – 2.7 3.3 V –40 85 –30 85 °C Ambient Operating Temperature Load Capacitance (CL) 30 50 Input Rise and Fall Times pF 10 Input Pulse Voltages Input and Output Timing Ref. Voltages Figure 5. AC Measurement I/O Waveform 4 ns 0 to VCCF 0 to VCCP V VCCF/2 VCCP/2 V Figure 6. AC Measurement Load Circuit VCCF VCCF VCCF/2 VPP 0V VCCF 25kΩ AI08186 DEVICE UNDER TEST CL 0.1µF 25kΩ 0.1µF CL includes JIG capacitance AI08187 Table 5. Device Capacitance Symbol CIN COUT Parameter Input Capacitance Output Capacitance Note: Sampled only, not 100% tested. 12/19 Test Condition Typ Max Unit VIN = 0V, f=1 MHz 12 pF VOUT = 0V, f=1 MHz 15 pF M72DW64000B Table 6. Flash DC Characteristics Symbol Parameter Test Condition Min Max Unit 0V ≤ VIN ≤ VCC ±1 µA ILI Input Leakage Current ILO Output Leakage Current 0V ≤ VOUT ≤ VCC ±1 µA Supply Current (Read) EF = VIL, G = VIH, f = 6MHz 10 mA Supply Current (Standby) EF = VCC ±0.2V, RPF = VCC ±0.2V 100 µA VPP/WP = VIL or VIH 20 mA VPP/WP = VPP 20 mA ICC1(2) ICC2 ICC3 (1,2) Supply Current (Program/ Erase) Program/Erase Controller active VIL Input Low Voltage –0.5 0.8 V VIH Input High Voltage 0.7VCC VCC +0.3 V VPP Voltage for VPP/WP Program Acceleration VCC = 3.0V ±10% 11.5 12.5 V IPP Current for VPP/WP Program Acceleration VCC = 3.0V ±10% 15 mA VOL Output Low Voltage IOL = 1.8mA 0.45 V VOH Output High Voltage IOH = –100µA VID Identification Voltage 11.5 12.5 V Program/Erase Lockout Supply Voltage 1.8 2.3 V VLKO VCC –0.4 V Note: 1. Sampled only, not 100% tested. 2. In Dual operations the Supply Current will be the sum of I CC1(read) and I CC3 (program/erase). 13/19 M72DW64000B Table 7. PSRAM DC Characteristics Symbol IDD1 (1) Parameter Operating Supply Current ILI Input Leakage Current ILO Output Leakage Current IPD Deep Power Down Current ISB Standby Supply Current CMOS VIH (2) Input High Voltage VIL (3) Input Low Voltage VOH VOL Output High Voltage Output Low Voltage Test Condition VDDP = 3.3V, VIN = VIH or VIL, E1P = VIL, E2P = VIH, IOUT = 0mA Min Max Unit tRC/tWC = Min 20 mA tRC/tWC = 1µs 3.0 mA 0V ≤ VIN ≤ VDDP –1 1 µA 0V ≤ VOUT ≤ VDDP –1 1 µA VDDP = 3.3V, VIN = VIH or VIL, E2P ≤ 0.2V 10 µA 3.1V ≤ VDDP ≤ 3.3V, VIN = VIH or VIL, E1P = VIH and E2P = VIH, IOUT = 0mA 1.5 mA 2.7V ≤ VDDP ≤ 3.1V, VIN = VIH or VIL, E1P = VIH and E2P = VIH, IOUT = 0mA 1 mA 3.1V ≤ VDDP ≤ 3.3V, VIN ≤ 0.2V or ≥ VDDP –0.2V, E1P ≥ VDDP –0.2V and E2P ≥ VDDP –0.2V), IOUT = 0mA 100 µA 2.7V ≤ VDDP ≤ 3.1V, VIN ≤ 0.2V or ≥ VDDP –0.2V, E1P ≥ VDDP –0.2V and E2P ≥ VCC –0.2V), IOUT = 0mA 70 µA 3.1V ≤ VDDP ≤ 3.3V 2.6 VCC + 0.3 V 2.7V ≤ VDDP ≤ 3.1V 2.2 VCC + 0.3 V 3.1V ≤ VDDP ≤ 3.3V –0.3 0.6 V 2.7V ≤ VDDP ≤ 3.1V –0.3 0.5 V 3.1V ≤ VDDP ≤ 3.3V, IOH = –0.5mA 2.5 V 2.7V ≤ VDDP ≤ 3.1V, IOH = –0.5mA 2.2 V VDDP = 3V, IOL = 1mA Note: 1. Average AC current, Outputs open, cycling at tAVAX (min). 2. Maximum DC voltage on input and I/O pins is VDDP + 0.3V. During voltage transitions, input may positive overshoot to VDDP + 1.0V for a period of up to 5ns. 3. Minimum DC voltage on input or I/O pins is –0.3V. During voltage transitions, input may positive overshoot to VSS + 1.0V for a period of up to 5ns. 14/19 0.4 V M72DW64000B PACKAGE MECHANICAL Figure 7. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Bottom View Package Outline D D1 FD FE E SD SE E1 BALL "A1" e b ddd A A2 A1 BGA-Z50 Note: Drawing is not to scale. 15/19 M72DW64000B Table 8. Stacked LFBGA73 8x11.6mm, 10x12 array, 0.8mm pitch, Package Mechanical Data millimeters inches Symbol Typ Min A Max Typ Min 1.400 A1 Max 0.0551 0.250 0.0098 A2 0.910 0.0358 b 0.400 0.350 0.450 0.0157 0.0138 0.0177 D 8.000 7.900 8.100 0.3150 0.3110 0.3189 D1 7.200 0.2835 ddd 0.100 E 11.600 E1 8.800 e 0.800 FD 0.400 0.0157 FE 1.400 0.0551 SD 0.400 – – SE 0.400 – – 16/19 11.500 11.700 0.0039 0.4567 0.4528 0.4606 – – 0.0157 – – 0.0157 – – 0.3465 – – 0.0315 M72DW64000B PART NUMBERING Table 9. Ordering Information Scheme Example: M72DW 6 4 0 0 0 B 70 Z T Device Type M72 = MMP (Flash + PSRAM) Architecture D = Dual Operation Operating Voltage W = VCCF = VCCP = 2.7V to 3.3V Flash Memory Device Size (Die1 Density) 6 = 64 Mbit PSRAM Device Size (Die2 Density) 4 = 16 Mbit Die3 0 = none present Die4 0 = none present Flash Memory Specification Details 0 = Multiple Bank Stacked Specification Details B=0.15µm Flash Memory and 0.18µm PSRAM Speed 70 = 70ns 90 = 90ns Package and Temperature Range Z = LFBGA73: 8 x 11.6mm, 0.8mm pitch Option T = Tape & Reel packing Note: This product is also available with the Extended Block factory locked. For further details and ordering information contact your nearest ST sales office. Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you. 17/19 M72DW64000B REVISION HISTORY Table 10. Document Revision History Date Version 26-May-2003 1.0 First Issue 24-Sep-2003 1.1 Voltage supply range extended 2.7V working at all speed options 18/19 Revision Details M72DW64000B Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2003 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 19/19