VISHAY TCET1204G1

TCET120.(G) up to TCET2200
Vishay Semiconductors
Optocoupler with Phototransistor Output
Description
The TCET120./ TCET2200 consists of a
phototransistor optically coupled to a gallium arsenide
infrared-emitting diode in a 4-lead up to 8-lead plastic
dual inline package.
The elements are mounted on one leadframe using a
coplanar technique, providing a fixed distance
between input and output for highest safety
requirements.
Applications
Circuits for safe protective separation against
electrical shock according to safety class II
(reinforced isolation):
15123
D For appl. class I – IV at mains voltage ≤ 300 V
D For appl. class I – III at mains voltage ≤ 600 V
according to VDE 0884, table 2, suitable for:
Switch-mode power supplies, line receiver,
computer peripheral interface, microprocessor
system interface.
Emitter Coll.
15115
VDE Standards
These couplers perform safety functions according
to the following equipment standards:
Anode Cath.
4 PIN
D VDE 0884
8 PIN
Optocoupler for electrical safety requirements
D IEC 950/EN 60950
Office machines (applied for reinforced isolation
for mains voltage ≤ 400 VRMS)
D VDE 0804
Telecommunication
processing
apparatus
and
data
D IEC 65
C
Safety for mains-operated electronic and related
household apparatus
Document Number 83501
Rev. A2, 08–Feb–01
www.vishay.com
1 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors
Order Instruction
Ordering Code
CTR Ranking
TCET1200/ TCET1200G1)
50 to 600%
TCET1201/ TCET1201G1)
40 to 80%
1)
TCET1202/ TCET1202G
63 to 125%
TCET1203/ TCET1203G1)
100 to 200%
TCET1204/ TCET1204G1)
160 to 320%
TCET2200
50 to 600%
1) G = Leadform 10.16 mm; G is not marked on the body
Remarks
4 Pin = Single channel
4 Pin = Single channel
4 Pin = Single channel
4 Pin = Single channel
4 Pin = Single channel
8 Pin = Dual channel
Features
Approvals (are applied):
D BSI: BS EN 41003, BS EN 60095 (BS 415),
BS EN 60950 (BS 7002),
Certificate number 7081 and 7402
D FIMKO (SETI): EN 60950,
D Creepage current resistance according to
VDE 0303/IEC 112
Comparative Tracking Index: CTI ≥ 175
D Thickness through insulation ≥ 0.75 mm
D Internal creepage distance > 4 mm
Certificate number 202117
D Underwriters Laboratory (UL) 1577 recognized,
file number E-76222 – Double Protection
D CSA (C-UL) 1577 recognized
file number E- 76222 - Double Protection
D VDE 0884, Certificate number 115667
VDE 0884 related features:
D Rated impulse voltage (transient overvoltage)
VIOTM = 8 kV peak
D Isolation test voltage
(partial discharge test voltage) Vpd = 1.6 kV
D Rated isolation voltage (RMS includes DC)
VIOWM = 600 VRMS (848 V peak)
D Rated recurring peak voltage (repetitive)
VIORM = 600 VRMS
www.vishay.com
2 (12)
General features:
D CTR offered in 5 groups
D Isolation materials according to UL94-VO
D Pollution degree 2
(DIN/VDE 0110 / resp. IEC 664)
D Climatic classification 55/100/21 (IEC 68 part 1)
D Special construction:
Therefore, extra low coupling capacity of
typical 0.2 pF, high Common Mode Rejection
D Low temperature coefficient of CTR
D G = Leadform 10.16 mm;
provides creepage distance > 8 mm,
for TCET2200 optional; suffix letter ‘G’ is not
marked on the optocoupler
D Coupling System U
Document Number 83501
Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors
Absolute Maximum Ratings
Input (Emitter)
Parameter
Reverse voltage
Forward current
Forward surge current
Power dissipation
Junction temperature
Test Conditions
tp ≤ 10 ms
Tamb ≤ 25°C
Symbol
VR
IF
IFSM
PV
Tj
Value
6
60
1.5
100
125
Unit
V
mA
A
mW
°C
Symbol
VCEO
VECO
IC
ICM
PV
Tj
Value
70
7
50
100
150
125
Unit
V
V
mA
mA
mW
°C
Symbol
VIO
Ptot
Tamb
Value
5
250
–40 to +100
Unit
kV
mW
°C
Tstg
Tsd
–55 to +125
260
°C
°C
Output (Detector)
Parameter
Collector emitter voltage
Emitter collector voltage
Collector current
Collector peak current
Power dissipation
Junction temperature
Test Conditions
tp/T = 0.5, tp ≤ 10 ms
Tamb ≤ 25°C
Coupler
Parameter
Isolation test voltage (RMS)
Total power dissipation
Operating ambient temperature
range
Storage temperature range
Soldering temperature
Document Number 83501
Rev. A2, 08–Feb–01
Test Conditions
Tamb ≤ 25°C
2 mm from case t ≤ 10 s
www.vishay.com
3 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors
Electrical Characteristics (Tamb = 25°C)
Input (Emitter)
Parameter
Forward voltage
Junction capacitance
Test Conditions
IF = ± 50 mA
VR = 0 V, f = 1 MHz
Symbol
VF
Cj
Min.
Typ.
1.25
50
Max.
1.6
Unit
V
pF
Test Conditions
IC = 1 mA
IE = 100 mA
VCE = 20 V, If = 0, E = 0
Symbol
VCEO
VECO
ICEO
Min.
70
7
Typ.
Max.
10
100
Unit
V
V
nA
Test Conditions
IF = 10 mA, IC = 1 mA
Symbol
VCEsat
Min.
Typ.
Max.
0.3
Unit
V
VCE = 5 V, IF = 10 mA,
RL = 100
f = 1 MHz
fc
110
kHz
Ck
0.3
pF
Output (Detector)
Parameter
Collector emitter voltage
Emitter collector voltage
Collector emitter cut-off
current
Coupler
Parameter
Collector emitter
saturation voltage
Cut-off frequency
Coupling capacitance
W
Current Transfer Ratio (CTR)
Parameter
IC/IF
Test Conditions
VCE = 5 V, IF = 5 mA
VCE = 5 V, IF = 10 mA
www.vishay.com
4 (12)
Type
TCET1200(G)/
TCET2200
TCET1201(G)
TCET1202(G)
TCET1203(G)
TCET1204(G)
Symbol
CTR
Min.
0.50
CTR
CTR
CTR
CTR
0.40
0.63
1.0
1.6
Typ.
Max.
6.0
Unit
0.8
1.25
2.0
3.2
Document Number 83501
Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors
Maximum Safety Ratings (according to VDE 0884) see figure 1
This device is used for protective separation against electrical shock only within the maximum safety ratings.
This must be ensured by using protective circuits in the applications.
Input (Emitter)
Parameters
Forward current
Test Conditions
Symbol
Isi
Value
130
Unit
mA
Test Conditions
Tamb ≤ 25°C
Symbol
Psi
Value
265
Unit
mW
Test Conditions
Symbol
VIOTM
Tsi
Value
8
150
Unit
kV
°C
Output (Detector)
Parameters
Power dissipation
Coupler
Parameters
Rated impulse voltage
Safety temperature
Insulation Rated Parameters (according to VDE 0884)
Parameter
Partial discharge test voltage –
Routine test
Partial discharge
g test voltage
g –
Lot test (sample test)
Test Conditions
100%, ttest = 1 s
Insulation resistance
VIO = 500 V
VIO = 500 V,
Tamb = 100°C
VIO = 500 V,
Tamb = 150°C
tTr = 60 s, ttest = 10 s,
(see figure 2)
Symbol
Vpd
Min.
1.6
VIOTM
Vpd
RIO
RIO
8
1.3
1012
1011
RIO
109
Typ.
Max.
Unit
kV
kV
kV
W
W
W
Ptot – Total Power Dissipation ( mW )
(construction test only)
VIOTM
300
t1, t2 = 1 to 10 s
t3, t4 = 1 s
ttest = 10 s
tstres = 12 s
Phototransistor
Psi ( mW )
250
200
VPd
150
VIOWM
VIORM
100
IR-Diode
Isi ( mA )
50
0
0
0
94 9182
25
50
75
100
125
Tsi – Safety Temperature ( °C )
Figure 1. Derating diagram
Document Number 83501
Rev. A2, 08–Feb–01
150
13930
t3 ttest t4
t1
tTr = 60 s
t2
tstres
t
Figure 2. Test pulse diagram for sample test according to
DIN VDE 0884
www.vishay.com
5 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors
Switching Characteristics
Parameter
Delay time
Rise time
Turn-on time
Storage time
Fall time
Turn-off time
Turn-on time
Turn-off time
IF
0
Test Conditions
VS = 5 V, IC = 2 mA, RL = 100 ((see figure
g
3))
Symbol
td
tr
ton
ts
tf
toff
ton
toff
W
VS = 5 V, IF = 10 mA, RL = 1 k
W ((see figure
g
4))
Typ.
3.0
3.0
6.0
0.3
4.7
5.0
9.0
10.0
+5V
IF
W
IF
0
t
tp
m
m
m
m
m
m
m
m
m
96 11698
IC = 2 mA; adjusted through
input amplitude
RG = 50
tp
= 0.01
T
tp = 50 s
Unit
s
s
s
s
s
s
s
s
IC
Channel I
Oscilloscope
50
W
100
Channel II
W
RL = 1 M
W
100%
90%
CL = 20 pF
95 10804
Figure 3. Test circuit, non-saturated operation
10%
0
t
tr
ts
td
0
IF
ton
+5V
IF = 10 mA
tp
td
tr
ton (= td + tr)
IC
W
RG = 50
tp
= 0.01
T
tp = 50 s
m
tf
toff
pulse duration
delay time
rise time
turn-on time
ts
tf
toff (= ts + tf)
storage time
fall time
turn-off time
Figure 5. Switching times
Channel I
50
W
1k
W
Channel II
Oscilloscope
RL > 1 M
W
CL < 20 pF
95 10843
Figure 4. Test circuit, saturated operation
www.vishay.com
6 (12)
Document Number 83501
Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors
Typical Characteristics (Tamb = 25_C, unless otherwise specified)
10000
Coupled device
ICEO– Collector Dark Current,
with open Base ( nA )
P tot – Total Power Dissipation ( mW )
300
250
200
Phototransistor
150
IR-diode
100
50
VCE=20V
IF=0
1000
100
10
0
1
0
40
80
120
Tamb – Ambient Temperature ( °C )
96 11700
0
Figure 6. Total Power Dissipation vs.
Ambient Temperature
IC – Collector Current ( mA )
I F – Forward Current ( mA )
100
75
100
100.0
10.0
1.0
0.1
VCE=5V
10
1
0.1
0.01
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VF – Forward Voltage ( V )
96 11862
0.1
100
10
Figure 10. Collector Current vs. Forward Current
2.0
100
20mA
IC – Collector Current ( mA )
VCE=5V
IF=5mA
1.5
1.0
0.5
0
–25
1
IF – Forward Current ( mA )
95 11027
Figure 7. Forward Current vs. Forward Voltage
CTR rel – Relative Current Transfer Ratio
50
Figure 9. Collector Dark Current vs. Ambient Temperature
1000.0
95 11025
25
Tamb – Ambient Temperature ( °C )
95 11026
IF=50mA
10mA
10
5mA
2mA
1
1mA
0.1
0
25
50
75
Tamb – Ambient Temperature ( °C )
Figure 8. Relative Current Transfer Ratio vs.
Ambient Temperature
Document Number 83501
Rev. A2, 08–Feb–01
0.1
95 10985
1
100
10
VCE – Collector Emitter Voltage ( V )
Figure 11. Collector Current vs. Collector Emitter Voltage
www.vishay.com
7 (12)
TCET120.(G) up to TCET2200
1.0
t on / t off – Turn on / Turn off Time ( m s )
VCEsat – Collector Emitter Saturation Voltage ( V )
Vishay Semiconductors
20%
0.8
CTR=50%
0.6
0.4
0.2
10%
8
Non Saturated
Operation
VS=5V
RL=100
W
ton
6
toff
4
2
0
0
1
100
10
IC – Collector Current ( mA )
95 11028
0
4
10
6
Figure 15. Turn on / off Time vs. Collector Current
50
m
t on / t off – Turn on / Turn off Time ( s )
1000
2
IC – Collector Current ( mA )
95 11030
Figure 12. Collector Emitter Saturation Voltage vs.
Collector Current
CTR – Current Transfer Ratio ( % )
10
VCE=5V
100
10
1
Saturated Operation
VS=5V
RL=1k
40
W
30
toff
20
10
ton
0
0.1
1
100
10
IF – Forward Current ( mA )
95 11029
Figure 13. Current Transfer Ratio vs. Forward Current
Pin1 Indication
0
95 11031
5
10
15
20
IF – Forward Current ( mA )
Figure 16. Turn on / off Time vs. Forward Current
Type
ET1100
820UTK63
15081
Date
Code
(YM)
Coupling
System
Indicator
Company
Logo
Production
Location
Figure 14. Marking example
www.vishay.com
8 (12)
Document Number 83501
Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors
Dimensions of TCET120. in mm
14789
Document Number 83501
Rev. A2, 08–Feb–01
www.vishay.com
9 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors
Dimensions of TCET120.G in mm
14792
www.vishay.com
10 (12)
Document Number 83501
Rev. A2, 08–Feb–01
TCET120.(G) up to TCET2200
Vishay Semiconductors
Dimensions of TCET2200 in mm
14784
Document Number 83501
Rev. A2, 08–Feb–01
www.vishay.com
11 (12)
TCET120.(G) up to TCET2200
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the
buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
www.vishay.com
12 (12)
Document Number 83501
Rev. A2, 08–Feb–01
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.