STMICROELECTRONICS TDA9210

STV9553
12 ns TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER
above is required, ensuring a maximum quality of
the still pictures or moving video.
Perfecly matched with the STV921x ST
preamplifiers, it provides a highly performant and
very cost effective video system.
FEATURES
■
■
■
■
■
■
■
■
■
■
■
Triple-channel video amplifier
Supply voltage up to 115 V
80V Output dynamic range
Perfect for PICTURE BOOST application
requiring high video amplitude
Pinning for easy PCB layout
Supports DC coupling (optimum cost saving)
and AC coupling applications.
Built-in Voltage Gain: 20 (Typ.)
Rise and Fall Times: 12 ns (Typ.)
Bandwidth: 29 MHz (Typ.)
Very low stand-by power consumption
Perfectly matched with the STV921x
preamplifiers
CLIPWATT 11
(Plastic Package)
DESCRIPTION
The STV9553 is a triple-channel video amplifier
designed in a 120V-high voltage technology and
able to drive in DC-coupling mode the 3 cathodes
of a CRT monitor.
The STV9553 supports PICTURE BOOST
applications where video amplitude up to 50V or
ORDER CODE: STV9553
PIN CONNECTIONS
11
10
9
8
7
6
5
4
3
2
1
OUT1
OUT2
OUT3
GNDP
VDD
GNDS
GNDA
IN3
VCC
IN2
IN1
Version 4.0
February 2002
1/24
1
Table of Contents
1
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4
THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6
THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.1
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2
Output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7
POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8
TYPICAL PERFORMANCE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9
INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10 APPLICATION HINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.1
How to choose the high supply voltage value (VDD) in DC coupling mode . . . . . . . . 12
10.2
Arcing Protection: schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10.3
Arcing protection: layout and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.4
Video response optimization: schematics in DC-coupling mode . . . . . . . . . . . . . . . . . 14
10.5
Video response optimization: outputs networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10.6
Video response optimization: inputs networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10.7
Video response optimization: layout and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . 15
10.8
AC - Coupling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
10.9
Stand-by mode, spot suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.10
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
11 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2
2/24
2
STV9553
1
BLOCK DIAGRAM
OUT1 GNDP
11
8
OUT2
10
OUT3
9
STV9553
VDD
GNDP
GNDP
VDD
VDD 7
VCC 3
V REF
6
GNDS
2
1
5
IN1 GNDA
2
4
IN2
IN3
PIN DESCRIPTION
Pin
Name
Function
1
IN1
Video Input (channel 1)
2
IN2
Video Input (channel 2)
3
VCC
Low Supply Voltage
4
IN3
Video Input (channel 3)
5
GNDA
Ground Analog
6
GNDS
Ground Substrat
7
VDD
8
GNDP
High Supply Voltage
Ground Power
9
OUT3
Video output (channel 3)
10
OUT2
Video output (channel 2)
11
OUT1
VIdeo output (channel 1)
3/24
3
STV9553
3
ABSOLUTE MAXIMUM RATINGS
Symbol
4
Value
Unit
VDD
High supply voltage
120
V
VCC
Low supply voltage
16.5
V
VESD
ESD susceptibility
Human Body Model (100pF discharged through 1.5KΩ)
EIAJ norm (200pF discharged through 0Ω)
2
300
kV
V
IOD
Output source current (pulsed < 50µs)
80
mA
IOG
Output sink current (pulsed < 50µs)
80
mA
VIN Max
Maximum Input Voltage
V CC + 0.3
V
VIN Min
Minimum Input Voltage
- 0.5
V
TJ
Junction Temperature
150
°C
TSTG
Storage Temperature
-20 + 150
°C
THERMAL DATA
Symbol
4/24
3
Parameter
Value
Unit
Rth (j-c)
Junction-Case Thermal Resistance (Max.)
Parameter
3
°C/W
R th (j-a)
Junction-Ambient Thermal Resistance (Typ.)
35
°C/W
STV9553
5
ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Test Condit ions
Min.
Typ
Max
Unit
SUPPLY parameters (VCC = 12V, VDD = 110V, Tamb = 25 °C, unless otherwise specified)
VDD
High supply voltage
20
110
115
V
VCC
Low supply voltage
10
12
15
V
IDD
VDD supply current
VOUT = 50V
15
mA
IDDS
VDD stand-by supply current
VCC : switched off (<1.5V)
VOUT: low (Note 1)
60
µA
ICC
VCC supply current
VOUT = 50V
40
mA
STATIC parameters (VCC = 12V, VDD = 110V, Tamb = 25 °C)
DC output voltage
VIN=1.90 V
High voltage supply rejection
VOUT = 50V
0.5
%
dV OUT/dT
Output voltage drift versus temperature
VOUT = 80V
15
mV/°C
d∆VOUT/dT
Output voltage matching versus
temperature (Note 2)
VOUT = 80V
1
mV/°C
Video input resistor
VOUT = 50V
2
kΩ
VOUT
dV OUT/dVDD
R IN
77
80
83
V
VSATH
Output saturation voltage to supply
I0 = -60mA (Note 3)
VDD - 6.5
V
V SATL
Output saturation voltage to GND
I0 = 60mA (Note 3)
11
V
G
Video Gain
VOUT = 50V
20
LE
Linearity Error
17 V<VOUT<VDD-15 V
3
VREF
Internal voltage reference
5.6
8
%
V
Note 1: The STV9553 goes into stand-by mode when Vcc is switched off (<1.5V).
In stand-by mode, Vout is set to low level.
Note 2: Matching measured between each channel.
Note 3: Pulsed current width < 50µs
5/24
3
STV9553
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Condit ions
Min.
Typ
Max
Unit
DYNAMIC parameters (see Figure 1)
tR
Rise time
VDC=50V, ∆V=40VPP
10.8
ns
tF
Fall time
VDC=50V, ∆V=40VPP
12.8
ns
5
%
OSR
Overshoot, white to black transition
OSF
Overshoot, black to white transition
∆G
Low frequency gain matching (Note 4)
0
VDC = 50V, f=1MHz
%
5
%
BW
Bandwidth at -3dB
VDC=50V, ∆V=20VPP
29
MHz
tSET
2.5% Settling time
15
ns
CTL
Low frequency crosstalk
VDC=50V, ∆V=40VPP
VDC=50V, ∆V=20VPP
f = 1 MHz
50
dB
CTH
High frequency crosstalk
VDC=50V, ∆V=20VPP
f = 20MHz
32
dB
VDC=50V, ∆V=60VPP
15
ns
Overshoot white to black or black to white
VDC=50V, ∆V=60VPP
transition
9
%
DYNAMIC parameter in PICTURE BOOST condition (Note 5)
tPB
OSPB
Rise/fall time
Note 4: Matching measured between each channel.
Note 5: PICTURE BOOST condition (video amplitude at 50V or above) is used in some applications when displaying
still picture or moving video. In this condition the high level of contrast improves the pictures quality at the
expense of the video performances (tR, tF and Overshoot) which are slightly deteriorated.
Figure 1. AC test circuit
VCC
50Ω
12V
110V
3
7
VDD
OUT RP = 300 Ω
1
11
IN
8
VREF
STV9553
6/24
3
VDC
CL=8pF
GNDP
5
GNDA
∆V
STV9553
6
THEORY OF OPERATION
6.1
General
The STV9553 is a three-channel video amplifier supplied by a low supply voltage: VCC (typ.12V) and a
high supply voltage: VDD (up to 115V).
The high values of VDD supplying the amplifier output stage allow direct control of the CRT cathodes (DC
coupling mode).
In DC coupling mode, the application schematic is very simple and only a few external components are
needed to drive the cathodes. In particular, there is no need of the DC-restore circuitry which is used in
classical AC coupling applications.
The output voltage range is wide enough (Figure 2) to provide simultaneously :
– Cut-off adjustment (typ. 25V)
– Video contrast (typ. up to 40V),
– Brightness (with the remaining voltage range).
In normal operation, the output video signal must remain inside the linear region whatever the cut-off,
brightness and contrast adjustments are.
Figure 2. Output signal, level adjustments
VDD
(A) Top Non-Lin ear Region
15V
(B) Cut-off Adjust. (25V Typ.)
Linear region
(C) Brightness Adjust. (10V Typ.)
Blanking pulse
(D) Contrast Adjust. (40V Typ.)
Video Signal
(E) Bottom Non-Linear Region
17V
GND
7/24
3
STV9553
6.2
Output voltage
A very simplified schematic of each STV9553 channel is shown in Figure 3.
The feedback network of each channel is integrated with a typical built-in voltage gain of G=20 (40k/2k).
The output voltage VOUT is given by the following formula:
VOUT = (G+1) x VREF - (G x VIN)
for G = 20 and VREF = 5.6V, we have
VOUT = 117.6 - 20 x VIN
Figure 3. Simplified schematic of one channel
VDD
40k
2k
-
IN
+
VREF
GNDA
8/24
GNDP
OUT
STV9553
7
POWER DISSIPATION
The total power dissipation is the sum of the static DC and the dynamic dissipation:
PTOT = PSTAT + PDYN.
The static DC power dissipation is approximately:
PSTAT = VDD x IDD + VCC x ICC
The dynamic dissipation is, in the worst case (1 pixel On/ 1 pixel Off pattern):
PDYN = 3 VDD x CL x VOUT(PP) x f x K (see Note 6)
where f is the video frequency and K the ratio between the active line and the total horizontal line duration.
Example:
for VDD = 110V, VCC = 12V,
IDD = 15mA, ICC = 40mA,
VOUT = 40 VPP, f = 25MHz,
CL = 8pF and K = 0.72.
We have:
PSTAT = 2.13W and PDYN = 1.90W
Therefore:
PTOT =4.03W.
Note 6: This worst thermal case must only be considered for TJmax calculation. Nevertheless, during the average life
of the circuit, the conditions are closer to the white picture conditions.
9/24
STV9553
8
TYPICAL PERFORMANCE CHARACTERISTICS
VDD=110V, VCC=12V, C L=8pF, R P=300Ω, ∆V=40VPP, unless otherwise specified - see Figure 1
Figure 4. STV9553 pulse response
Figure 5. VOUT versus VIN
tr=10.8ns
12
overshoot = 5%
120
100
Vout (V)
80
60
40
20
tf=12.8ns
12
overshoot = 0%
0
0
1
2
3
4
5
6
Vin (V)
Figure 6. Power dissipation versus frequency
Figure 7. Speed versus temperature
5.00
14
13.5
4.00
Tf
13
Vdd=100
Speed (ns)
Power dissipation (W)
Vdd=110V
3.00
Vdd=90V
2.00
12.5
12
11.5
11
Tr
10.5
1.00
10
50
60
0.00
10
20
Frequency (MHz)
(72% active time)
70
80
Case Temperature (°C)
90
100
30
Figure 8. Speed versus offset
Figure 9. Speed versus load capacitance
17
14
16
Speed (ns)
Speed (ns)
18
15
Tf
13
12
11
15
Tf
14
13
12
Tr
Tr
10
11
40
45
50
55
Offset (Vdc)
60
65
70
10
8
10
12
14
16
Load capacitance (pF)
10/24
18
20
STV9553
9
INTERNAL SCHEMATICS
Figure 10. RGB inputs
Figure 11. RGB outputs
VDD
VCC
OUT
IN
pins 1, 2, 4
pins 9, 10, 11
GNDS
GNDS
Figure 12. VDD
Figure 13. VCC
VDD
VCC
GNDS
GNDS
Figure 14. GNDP
Figure 15. GNDA
GNDA
GNDP
GNDS
GNDS
11/24
STV9553
10
APPLICATION HINTS
10.1 How to choose the high supply voltage value (VDD) in DC coupling mode
The VDD high supply voltage must be chosen carefully. It must be high enough to provide the necessary
video adjustment but set to minimum value to avoid unecessary power dissipation.
Example (see Figure 2):
The following example shows how the optimum VDD voltage value is determined:
– Cut-off adjustment range (B) : 25V
– Max contrast (D) : 40V
Case 1:
10V Brightness (C) adjusted by the preamplifier :
VDD = A + B + C + D + E
VDD = 15V + 25V + 10V + 40V + 17V = 107V
Case 2:
10V Brightness (C) adjusted by the G1 anode:
VDD = A + B + D + E
VDD = 15V + 25V + 40V + 17V = 97V
10.2 Arcing Protection: schematics
As the amplifier outputs are connected to the CRT cathodes, special attention must be given to protect
them against possible arcing inside the CRT.
Protection must be considered when starting the design of the video CRT board. It should always be
implemented before starting to adjust the dynamic video response of the system.
The arcing network that we recommend (see Figure 16) provides efficient protection without deteriorating
the amplifier video performances.
The total resistance between the amplifier and the CRT cathode (R10+R11) protects the device against
overvoltages. We recommend to use R10+R11 > 300 Ω.
Spark gaps are strongly recommended for arcing protection.
12/24
STV9553
Figure 16. Arcing protection network (one channel)
VDD
R19(**)
C12(*)
100nF/250V
33-40Ω
VDD
C24
4.7µF/150V
C18
100nF
D12
FDH400
OUT
L1
R10
STV9553
0.33µH
150Ω/0.5W
C29(***)
0.22µF
GNDS
GNDA
D13
FDH400
R11
A
CRT
150Ω/0.5W
F1
Spark gap
200V
B
GNDP
R29(***)
1-10Ω
(*): To be connected as close as possible to the device
(**): R19 must be mandatorily used
(***): Ground separation network
10.3 Arcing protection: layout and decoupling
Several layout precautions have to be considered to get the optimum arcing protection:
Sparkgap grounding: when an arc occurs, the energy must flow through the CRT ground without
reaching the amplifier. This is obtained by connecting the sparkgap grounding (point B) to the CRT
ground (socket) via a wide/short trace. Conversely the point B must be connected to the amplifier
ground via a longer/narrower trace.
Grounding separation: In order to set apart the amplifer ground and CRT ground, the R29/C29 network (Figure 16) can be used.
Amplifier grounding: The 3 grounds GNDS, GNDA and GNDP must be connected together as
close as possible to the device.
13/24
STV9553
10.4 Video response optimization: schematics in DC-coupling mode
The dynamic video response is optimized by carefully designing the supply decoupling of the video board
(see Section 10.7), the tracks (see Section 10.7), then by adjusting the input/output component network
(see Section 10.5).
For dynamic measurements such as rise/fall time and bandwidth, a 8pF load is used (total load including
the parasitic capacitance of the PC board and CRT Socket).
When used in kit with the STV921x preamplifier from ST, the preamplifier bandwidth register (BW, register
13) must be set to minimum (o dec) for an application with tR/tF>5.5ns.
Figure 17. Video response optimization for one channel - DC coupling application
C11
4.7µF
C10(*)
100nF
C24
4.7µF
C12(*)
100nF
R19(***)
VCC
Reference
Input Network #1
IN
OUT
R1(**)
51Ω
C2
10pF
V DD
33-40Ω
STV9553
C1
1.5nF
STV921x
VDD
-
+
VREF
OUT
R10
L1
R11
CRT
150Ω 0.33µH 150Ω
GNDS
GNDA
GNDP
Caution: For Application with Tr/Tf> 5.5ns, the PreAmplifier bandwidth register (BW, Register 13)
must be set to minimum value (0 dec)
( *): To be connected as close as possible to the device
( **): R1 must be not be higher than 100Ω
(***): R19 must be mandatorily used
2 other Input Networks (Network #2 and #3 below) can be used in replacement of the reference Input Network #1.
See Application note AN1510 for complete description.
Input Network #2
Input Network #3
L1
0.33µH
IN
R1
82Ω
14/24
C2
10pF
IN
R1
33Ω
C2
15pF
STV9553
10.5 Video response optimization: outputs networks
The output network (R10/L1/R11) is used to adjust the amplifier video performances. Once R10 and R11
resistors are set to protect the application against arcing (R10 + R11>300Ω), it is possible to increase the
bandwidth by increasing L1.
10.6 Video response optimization: inputs networks
The input network also plays an important role in the device dynamic behaviour. We recommend to use
the reference input network #1, which is described in Figure 17, but 2 other networks (#2 and #3) can be
used to better match the required performances and the video board layout. Refer to the application note
referenced AN1510 for the complete description of these input networks.
10.7 Video response optimization: layout and decoupling
The decoupling of VCC and VDD through good quality HF capacitors (respectively C10 and C12) close to
the device is necessary to improve the dynamic performance of the video signal.
Careful attention has to be given to the three output channels of the amplifier.
Capacitor: The parasitic capacitive load on the amplifier outputs must be as small as possible.
Figure 9 from Section 8 clearly shows the deterioration of the tR/tF when the capacitive load
increases. Reducing this capacitive load is achieved by moving away the output tracks from the other
tracks (especially ground) and by using thin tracks (<0.5mm), see Figure 17.
Cross talk: Output and input tracks must be set apart. The STV9553 pin-out allows the easy separation of input and output tracks on opposite sides of the amplifier (see Figure 21).
Length: Connection between amplifier output and cathode must be as short and direct as possible.
15/24
STV9553
10.8 AC - Coupling mode
The STV9553 can be used in AC-Coupling mode in kit with the TDA9207/9212 preamplifier from ST. As
for the DC-coupling mode, the STV9553 drives perfectly the video signal in PICTURE BOOST conditions.
A typical schematic is given on the Figure 18 below.
Figure 18. Video response optimization for one channel - AC coupling application
C11
4.7µF
C10(*)
100nF
C24
4.7µF
C12(*)
100nF
R19(***)
VCC
Reference
Input Network #1 (****)
VDD
STV9553
C1
1.5nF
TDA9207
R1(**)
51Ω
C2
10pF
C
OUT
IN
OUT
VDD
33-40Ω
R10
-
L1
C1
R11
1µF
150Ω
CRT
+
150Ω 0.33µH
V REF
GNDS
Vrestore
GNDA
GNDP
Cut-off
DC Restore
circuitry
Caution: For Application with Tr/Tf> 5.5ns, the PreAmplifier bandwidth register (BW, Register 13)
must be set to minimum value (0 dec)
(*): To be connected as close as possible to the device
(**): R1 must be not be higher than 100Ω
(***): R19 must be mandatorily used
(****): Input Networks #2 and #3 can be used as well
The advantage of such an architecture is to use smaller VDD and therefore to have smaller power
consumption. This is due to the fact that the STV9553 provides only the video signal and not the cut-off
adjustment. The disadvantage is to have an application with more components (DC restore circuitry).
Note that it is mandatory to keep the output video signal (point C) inside the linear area of the amplifier
(from 17V to VDD - 15V).
16/24
STV9553
10.9 Stand-by mode, spot suppression
The usual way to set a monitor in stand-by mode is to switch-off the Vcc (12V).
The STV9553 has an extremely low power consumption (IDDS = 60µA when VCC<1.5V) in stand-by mode
and the outputs are set to low level (white picture).
To avoid the display of a spot effect during the switch-off phase, it is necessary to adjust the G1 circuitry
(Resistors Rx and Cx, see Figure 19) to pull the G1 voltage to low value during a sufficient time duration.
Figure 19. Stand-by mode, spot effect
+80V
Cathode
0V
Case #1: Low Rx.Cx
A spot might appear during
the switch-off phase
-30V
G1
Case #2: High Rx.Cx
No spot effect
-120V
EHT
(27kV)
Typical G1 generator circuitry
R1
Cx
-120V
G1
Rx
-30V
17/24
STV9553
10.10 Conclusion
Video response is always a compromise between several parameters. For example, the rise/fall time
improvement leads to the overshoot deterioration.
The recommended way to optimize the video response is:
1 To set R10+R11 for arcing protection (min. 300 Ω)
2. To adjust R20 and R10+R11.
Increasing their value increases the
tR/tF values and decrease the overshoot
3. To adjust L1
Increasing L1 speeds up the device but increases the overshoot.
4. To adjust the input network for the final dynamic tunning (e.g.: critical damping)
We recommend our customers to use the schematic shown on Figure 23 as a starting point for the video
board and then to apply the optimization they need.
18/24
STV9553
Figure 20.STV9553/9555/9556 + TDA9210/STV9211 + STV9936 S/P
DC-coupling demonstration board: Silk Screen and Trace
19/24
STV9553
Figure 21. Outputs trace (from figure 19)
Figure 22. CRT socket trace (from figure 19)
20/24
3.3V
C32
100µF/25V
L5 1µH
U3
VS
SCL
SDA
1
2
3
4
5
6
VCO
RP
14
15
16
AVSS
R10
75Ω
Red
R5
75Ω
Green
5
STV9936S/P
8 OVDD ROUT 9
7 TEST GOUT10
DVSS BOUT11
DVDD FBLK
12
R45 15kΩ
R34 330Ω
R33 330Ω
R32 330Ω
Sync
J17
IN2
ABL
VS
HS
HFLY
HEATER
G1
3.3V
OSD1
SDA
OUT3
14
9
1
2
3
4
5
6
7
8
Power
J16
R17 51Ω
SDA
C27
47µF/25V
47µF/25V
J10
I2C
1
2
3
4
ZD1
3.3V
5V
10pF
C25
3V0
R37 51Ω
47µF/25V
47µF/25V
C16
C12
100pF
C15
C24
10pF
C36 1.5nF
R13 51Ω
C27
5V
C23
C33 1.5nF 10pF
R9 51Ω
C31 1.5nF
ABL
BLK
110V
12V
8V
C8
12V
47µF/25V
8V
R11 2.7Ω
5V
R19 2.7kΩ
C5 100nF
15
OUT2 16
GNDA GNDP
VCCA
18
19
20
VCCP 17
OUT1
HS/CLP
BLK
C26
100pF
13
R40 100Ω
R21 2.7kΩ
12
OSD2
SCL
R47 100Ω
SCL
10
11
OSD3
FBLK
C13
100pF
TDA9210
8
7
C22 100nF 6
C6 100nF 5
IN3
L4 1µH
7
6
5
4
3
2
1
U1
IN1
C9 100nF 4
GNDL
C4 100nF 3
2
C3 100nF 1
R4
2.7Ω
C37
100µF/25V
R43
1MΩ
100nF
C2
R36 330Ω
AVdd
Vco R44 5.6kΩ C34 10nF
Rp
R16 2.7Ω
R46 5.6kΩ C35 10nF
1N4148
D8
R12 15Ω
1N4148
D6
1N4148
D5 R8 15Ω
1N4148
D4
5V
R2 15Ω
ABL
5V
1N4148
D3
R3
75Ω
4 HFLY AVDD13
3
2
1
C28 100nF 6
HFLY R41 100Ω
VS
R39 100Ω
SCL
R35 100Ω
R38 100Ω
SDA
video
J1
1N4148
Blue
D1
5V
C1
100pF
C7
4
2
1
100nF
In3
In2
In1
HS1
R28 0Ω
9 R22
110Ω/0.25W
C21
10nF/250V
optional
110V
R7
J7
GND
FDH400
D13
FDH400
D9
R23
G1
RK
B
G
R
D11
Heater
F1
200V
BK
F4
200V
GK
F2
200V
9 H2
4.7nF/1kV
C20
C14
100nF
12 GND
J8
G2
30Ω/0.5W
R31
C19
4.7nF/2kV
CRT smallneck
1 GND
F3
1.5Ω
WednesdayOctober3, 2001
Version1.4
Rev.
C
EVALCRT52/STV955xdemoboard(AB25)
STMicroelectronics
MonitorBusinessUnit- Videoapplication
CMG - Imagingand DisplayDivision(IDD)
12, rue JulesHorowitz- B.P.217
38019Grenoblecedex - FRANCE
1N4004
150Ω/0.25W
R27
0.33µH 110Ω/0.25W
L3
FDH400
L2
R15
0.33µH 110Ω/0.25W
D12
FDH400
D10 110V 0.33µH 110Ω/0.25W
FDH400
D7
L1
4.7µF/160V
C18
R29 39Ω
FDH400
D2
110V
R6
11
110Ω/0.25W
110V
Out3
RadAB20
1
2
3
Out1
10nF/250V
C10
STV9553
10 R14
Out2
110Ω/0.25W 110V
U2
7
Vdd
3
Vcc
GNDA
5
GNDS
6
GNDP
8
R25 100Ω
10 H1
BLK
5 G1
R1 100Ω
7 G2
HS
STV9553
Figure 23. STV9553/55/56 + STV9936 + TDA9210/STV9211 DC-coupling demo - board schematic
21/24
STV9553
11
PACKAGE MECHANICAL DATA
11 PIN - CLIPWATT
V1
H3
H2
S
A
C
Shaded area ewpose d from plasti cbod y
Typical 30 µm
H1
V1
V2
L3
V1
V1
R2
L2
R
L1
R1
V
R3
D
R3
R3
M1
M
LEAD#1
E
Dimensions
22/24
B
G
G1
F
F1
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
2.95
3
3.05
0.116
0.118
0.12
B
0.95
1
1.05
0.037
0.039
0.041
C
-
0.15
-
-
0.006
-
D
1.3
1.5
1.7
0.051
0.059
0.061
E
0.49
0.515
0.55
0.0.019
0.02
0.021
F
0.78
0.8
0.86
0.03
0.031
0.034
F1
-
0.05
0.1
-
0.002
0.004 (6)
G
1.6
1.7
1.8
0.063
0.067
0.071
G1
16.9
17
17.1
0.665
0.669
0.673
H1
-
12
-
-
0.472
-
H2
18.55
18.6
18.65
0.73
0.732
0.734
H3
19.9
20
20.1
0.783
0.787
0.791 (5)
L
17.7
17.9
18.1
0.696
0.704
0.712
L1
14.35
14.55
14.65
0.564
0.572
0.576
L2
10.9
11
11.1
0.429
0.433
0.437(5)
L3
5.4
5.5
5.6
0.212
0.216
0.22
M
2.34
2.54
2.74
0.092
0.1
0.107
M1
2.34
2.54
2.74
0.092
0.1
0.107
R
1.45
-
-
0.057
-
-
STV9553
Dimensions
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
R1
3.2
3.3
3.4
0.126
0.13
0.134
R2
-
0.3
-
-
0.012
-
R3
-
0.5
-
-
0.019
-
S
0.65
0.7
0.75
0.025
0.027
0.029
V
10deg.
10deg.
V1
5deg.
5deg.
V2
75deg.
75deg.
Note 5: “H3 and L2” do not include mold flash or protrusions
Mold flash or protrusions shall not exceed 0.15mm per side.
Note 6: No intrusions allowed inwards the leads
Critical dimensions:
Lead split (M1)
Total length (L)
23/24
STV9553
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may
result from its use. No license is granted by implication or otherwise under any patent or patent rights of
STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication
supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as
critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics.
 2002 STMicroelectronics - All Rights Reserved
Purchase of I2C Components of STMicroelectronics, conveys a license under the Philips I2C Patent.
Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C Standard
Specifications as defined by Philips.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The
Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www.st.com
24/24
4