STMICROELECTRONICS TDA9536

TDA9536
7.5 NS TRIPLE HIGH VOLTAGE VIDEO AMPLIFIER
PRELIMINARY DATA
FEATURE
■
■
■
■
■
■
■
■
TRIPLE CHANNEL VIDEO AMPLIFIER
SUPPLY VOLTAGE: 110V TYPICAL
RISE AND FALL TIMEs: 7.5ns TYPICAL
BANDWIDTH: 50Mhz TYPICAL
80 VOLTS OUTPUT DYNAMIC RANGE
LOW POWER CONSUMPTION
WELL MATCHED WITH TDA9210 PREAMP
FULL PIN COMPATIBILITY WITH TDA9535
DESCRIPTION
The TDA9536 is a triple video amplifier with high
voltage Bipolar/CMOS/DMOS technology (BCD)
for use in color monitor application. Used with
TDA9210 preamp in DC coupled mode, it
provides for a low component, high performance
and cost effective system solution. Other features
include 1024 x 768 displays, pixelclock
frequencies up to 100MHz, and DC or AC
coupling designs.
CLIPWATT 11
(Plastic Package)
ORDER CODE: TDA9536
PIN CONNECTIONS
11
10
9
8
7
6
5
4
3
2
1
OUT3
GND3
IN3
VCC
IN2
GND2
OUT2
VDD
IN1
GND1
OUT1
Version 3.2
March 2000
This is preliminary information on a new product now in development. Details are subject to change without notice.
1/9
1
TDA9536
BLOCK DIAGRAM
OUT2 GND2
5
6
OUT1 GND1
1
2
OUT3 GND3
11
10
TDA9536
VDD 4
VCC 8
Vref
Vref
Vref
3
7
9
IN1
IN2
IN3
ABSOLUTE MAXIMUM RATINGS
Symbol
2/9
2
Parameter
Value
Unit
VDD
High Supply Voltage
120
V
VCC
Low Supply Voltage
17
V
VESD
ESD Susceptibility
Human Body Model, 100pF. Discharge through 1.5KΩ
EIAJ Norm, 200pF. Discharge through 0Ω
2
250
kV
V
IOD
Output Source Current (pulsed < 50µs)
80
mA
I OG
Output Sink Current (pulsed < 50µs)
80
mA
V I Max
Maximum Input Voltage
15
V
VI Min
Minimum Input Voltage
- 0.5
V
TJ
Junction Temperature
150
°C
TSTG
Storage Temperature
-20 + 150
°C
TDA9536
THERMAL DATA
Symbol
Parameter
Value
Unit
Rth (j-c)
Junction-Case Thermal Resistance (Max.)
3
°C/W
R th (j-a)
Junction-Ambient Thermal Resistance (Typ.)
35
°C/W
ELECTRICAL CHARACTERISTICS
(VCC = 12V, VDD = 110V, Tamb = 25 °C)
Symbol
Parameter
VDD
High Supply Voltage (Pin 4)
VCC
Low Supply Voltage (Pin 8)
IDD
ICC
High Voltage Supply Internal DC
Current
Low Voltage Supply Internal DC
Current
Test Conditions
Min
10
VOUT = 50V
Typ
Max
Unit
110
115
V
12
15
V
25
60
mA
mA
dVOUT/dVDD
High Voltage Supply Rejection
VOUT = 50V
0.5
%
dVOUT/dTemp
Output Voltage Drift Versus
Temperature for any Channel
VOUT = 80V
15
mV/°C
Max. Output Voltage
Min. Output Voltage
I0 =-60mA, (1)
I0 =60mA, (1)
VDD - 6.5
11
V
V
VOUT SATH
VOUT SATL
AVR
Typical Video Gain
VOUT = 50V
20
E lin
Linearity Error
17<VOUT<VDD-15V
5
OS
Overshoot
8
5
%
%
Low Frequency Gain Matching
VOUT = 50V,
f=1MHz
R IN
Video Input Resistor
VOUT = 50V
2
KΩ
BW
Bandwidth at -3dB
VOUT=50V,
CLOAD=8pF
RP=200Ω,
∆VOUT=20V
50
MHz
Rise and Fall Time
VOUT=50V,
CLOAD=8pF
RP=200Ω,
∆VOUT=40V
7.5
ns
50
32
dB
dB
Lf ∆g/g
tR, tF
Lf CT
Hf CT
Low Frequency Crosstalk
High Frequency Crosstalk
Note: 1
VOUT=50V,
CLOAD=8pF
RP=200Ω,
∆VOUT=20V
f = 1 MHz
f = 20MHz
5
%
Pulsed current width < 50 µs
3/9
2
TDA9536
TYPICAL APPLICATION
PC Board Lay-out
The best performance is obtained with a carefully
designed HF PC board, especially for the output
and input capacitors.
Rise/fall time and bandwidth are measured on
a 10pF load. The best rise/fall time and bandwidth
results will be obtained with low Rp resistor value
while the best CRT arcing protection will be obtained by a righ Rp resistor value. Finally a value
between 150 and 200Ω is agood compromise.
Power Dissipation
The power dissipation is the sum of the DC and
the dynamic dissipation.
As the feedback resistors are integrated, the DC
power dissipation (capacitive load) can be estimated by:
PSTAT = VDD . I DD + VCC . ICC
The dynamic dissipation in worst case (full bandwidth and black pixel/white pixel picture - Note 2)
is:
PDYN = 3 VDD . CL . VOUT(PP) . f . K
where f is the video frequency and K the active line
duration / total duration.
Example:
for VDD = 110V, VCC = 12V, VOUT = 40 VPP,
IDD = 25mA, ICC = 60mA, fVIDEO = 40MHz,
CL = 8pF and K = 0.72.
We have: PSTAT = 3.47W and PDYN =3.04W
Therefore: Ptot = 6.51W.
Note: 2
This worst thermal case must be considered
only for TJmax calculation. Nevertheless,
during the average life of the circuit, the
conditions are very close to the white picture
conditions.
Figure 1.
VCC
VCC
75Ω
VDD 110V
8
4
VDD
TDA9536
3
IN1
OUT1 RP
1
CL
2
GND1
75Ω
7
IN2
OUT2 RP
5
CL
6
GND2
75Ω
9
IN3
OUT3 RP
11
CL
10
GND3
4/9
2
TDA9536
Figure 2. TDA9535/9536 - TDA9210 - Demonstration Board: Silk Screen and Trace (scale 1:1)
5/9
2
6/9
2
1
2
3
4
1
2
3
4
5
6
Supply
J17
12
11
10
9
8
7
6
5
4
3
2
1
1
2
3
4
5
Power
J16
Video
J1
110V
A
5V
8V
12V
BLU
RED
R10
75R
R3
75R
R5
75R
47uF
C15
47uF
C16
47uF
C17
VsOut
R18 100R
GRN
Hs Out
A
R20 100R
5V
D5
1N4148
D6
Hs Out
Vs Out
G1
Heater
1N4148
D8
1N4148
C3
100nF
100nF
15R
5
4
3
15
16
FBLK 11
SCL 12
SCA 13
OUT3 14
GNDP
OUT2
VCCP 17
OUT1 18
HS 19
BLK 20
TDA9210
OSD3
OSD2
OSD1
VCCA
GNDA
IN3
GNDL
IN2
ABL
IN1
U1
100pF
C12
C13
100pF
R21 2K7
R19 2K7
5V
C5(1)100nF
5V
1
2
3
4
R17
R13
R9
I2C
J10
R11 2R7
100pF
C1(1)
C
B
C
8V
15R/33R
15R/33R
15R/33R
2: The purpose of all components followed by (2) is to ensure a
good protectionagainst overvoltage(arcing protection)
1: All capacitorsfollowed by (1) are decoupling capacitors
which must be connected as close as possible to the device
10
9
8
7
C22(1) 100nF 6
R12
C9(1) 100nF
R8 15R
2
1
100R
R2 15R
2R7
R4
Notes:
R16 2R7
5V
C6
1N4148 C4 100nF
D4
5V
5V
1N4148
D3
1N4148
D1
5V
B
R1
24R
R24
24R
R33
24R
R29
47pF
C25
47pF
C24
47pF
C23
8
4
D
C21
100nF/ 250V
10R
R28
G1
D2(2)
110V
6
G2
R
H2
4.7nF/1kV
C20
150R 5
G
10
H1
7
G2
150R
10nF/ 2KV
C19
J8
10nF/ 400V
9
C14
Heater
R23
FDH400
D9(2)
110V
8
150R
FDH400
R15 150R
D7(2)
110V
R7
E
F1(2)
F2(2)
February16,2000
Date: Wednesday,
E
Sheet
1
of
CRT3 with TDA9210 + TDA9535/36
R27
G1
11
0.33uH
S_R
L3
Size
DocumentNumber
CustomVersion1.4
Title
1
GND
J5
12
GND
B
R22
120R
110V
0.33uH
S_R
L2
R31
0.33uH
L1
4.7uF/ 150V
R32
C18
R26(2) 39R
R14
47uF
120R
120R
C8
100nF/ 250V
C10(1)
100nF
R6
R30
FDH400
transientresponse optimisation
S_R
12V
C7(1)
GND_CRT
J7
OUT1 1
GND1 2
VDD
OUT2 5
GND2 6
VCC
TDA9535/36
IN1
IN2
IN3
110V
3
7
9
11
GND3 10
OUT3
U2
D
1
F4(2)
Rev
1
2
3
4
TDA9536
Figure 3. TDA9535/9536 - TDA9210 - Demonstration Board Schematic
TDA9536
PACKAGE MECHANICAL DATA
11 PIN - CLIPWATT
V
V1
H3
H2
S
A
C
H1
V1
V2
V1
L3
V1
R2
L2
R
L1
L
R1
V
R3
D
R3
R3
M1
M
B
lead#1
E
Dimensions
G
F
G2
G1
Millimeters
Inches
Min.
Typ.
Max.
Min.
Typ.
Max.
A
2.95
3.00
3.05
0.116
0.118
0.120
B
0.95
1.00
1.05
0.037
0.039
0.041
C
0.15
0.006
D
1.30
1.50
1.70
0.051
0.059
0.066
E
0.49
0.515
0.55
0.019
0.020
0.021
F
0.78
0.80
0.88
0.031
0.033
0.034
G
1.60
1.70
1.80
0.063
0.067
0.071
G1
16.90
17.00
17.10
0.665
0.669
0.673
H1
12.00
0.472
H2
18.55
18.60
18.65
0.730
0.732
0.734
H3
19.90
20.00
20.10
0.783
0.787
0.791 (3)
L
17.70
17.90
18.10
0.696
0.704
0.712
L1
14.35
14.55
14.65
0.564
0.572
0.576
L2
10.90
11.00
11.10
0.429
0.433
0.437(3)
L3
5.40
5.50
5.60
0.212
0.216
0.220
M
2.34
2.54
2.74
0.092
0.100
0.107
M1
2.34
2.54
2.74
0.092
0.100
0.107
R
1.45
R1
3.20
0.130
0.134
0.057
3.30
3.40
0.126
7/9
TDA9536
Dimensions
Millimeters
Min.
R2
Min.
0.50
0.65
0.70
Typ.
Max.
0.012
0.019
0.75
0.025
0.027
V
10deg.
V1
5deg.
5deg.
V2
75deg.
75deg.
Note: 3
8/9
Max.
0.30
R3
S
Typ.
Inches
“H3 and L2” do not include mold flash or protrusions
Mold flash or protrusions shall not exceed 0.15mm per side.
10deg.
0.029
TDA9536
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no
responsibility for the consequences of use of such information nor for any infringement of patents or other
rights of third parties which may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of STMicroelectronics. Specifications mentioned in this public ation are subject to change
witho ut notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics.
 2000 STMicroelectronics - All Rights Reserved
Purchase of I2C Components of STMicroelectronics, conveys a license under the Philip s I2C Patent.
Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C
Standard Specifications as defined by Philip s.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The
Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www .st.com
9/9
3