TDA9536 7.5 NS TRIPLE HIGH VOLTAGE VIDEO AMPLIFIER PRELIMINARY DATA FEATURE ■ ■ ■ ■ ■ ■ ■ ■ TRIPLE CHANNEL VIDEO AMPLIFIER SUPPLY VOLTAGE: 110V TYPICAL RISE AND FALL TIMEs: 7.5ns TYPICAL BANDWIDTH: 50Mhz TYPICAL 80 VOLTS OUTPUT DYNAMIC RANGE LOW POWER CONSUMPTION WELL MATCHED WITH TDA9210 PREAMP FULL PIN COMPATIBILITY WITH TDA9535 DESCRIPTION The TDA9536 is a triple video amplifier with high voltage Bipolar/CMOS/DMOS technology (BCD) for use in color monitor application. Used with TDA9210 preamp in DC coupled mode, it provides for a low component, high performance and cost effective system solution. Other features include 1024 x 768 displays, pixelclock frequencies up to 100MHz, and DC or AC coupling designs. CLIPWATT 11 (Plastic Package) ORDER CODE: TDA9536 PIN CONNECTIONS 11 10 9 8 7 6 5 4 3 2 1 OUT3 GND3 IN3 VCC IN2 GND2 OUT2 VDD IN1 GND1 OUT1 Version 3.2 March 2000 This is preliminary information on a new product now in development. Details are subject to change without notice. 1/9 1 TDA9536 BLOCK DIAGRAM OUT2 GND2 5 6 OUT1 GND1 1 2 OUT3 GND3 11 10 TDA9536 VDD 4 VCC 8 Vref Vref Vref 3 7 9 IN1 IN2 IN3 ABSOLUTE MAXIMUM RATINGS Symbol 2/9 2 Parameter Value Unit VDD High Supply Voltage 120 V VCC Low Supply Voltage 17 V VESD ESD Susceptibility Human Body Model, 100pF. Discharge through 1.5KΩ EIAJ Norm, 200pF. Discharge through 0Ω 2 250 kV V IOD Output Source Current (pulsed < 50µs) 80 mA I OG Output Sink Current (pulsed < 50µs) 80 mA V I Max Maximum Input Voltage 15 V VI Min Minimum Input Voltage - 0.5 V TJ Junction Temperature 150 °C TSTG Storage Temperature -20 + 150 °C TDA9536 THERMAL DATA Symbol Parameter Value Unit Rth (j-c) Junction-Case Thermal Resistance (Max.) 3 °C/W R th (j-a) Junction-Ambient Thermal Resistance (Typ.) 35 °C/W ELECTRICAL CHARACTERISTICS (VCC = 12V, VDD = 110V, Tamb = 25 °C) Symbol Parameter VDD High Supply Voltage (Pin 4) VCC Low Supply Voltage (Pin 8) IDD ICC High Voltage Supply Internal DC Current Low Voltage Supply Internal DC Current Test Conditions Min 10 VOUT = 50V Typ Max Unit 110 115 V 12 15 V 25 60 mA mA dVOUT/dVDD High Voltage Supply Rejection VOUT = 50V 0.5 % dVOUT/dTemp Output Voltage Drift Versus Temperature for any Channel VOUT = 80V 15 mV/°C Max. Output Voltage Min. Output Voltage I0 =-60mA, (1) I0 =60mA, (1) VDD - 6.5 11 V V VOUT SATH VOUT SATL AVR Typical Video Gain VOUT = 50V 20 E lin Linearity Error 17<VOUT<VDD-15V 5 OS Overshoot 8 5 % % Low Frequency Gain Matching VOUT = 50V, f=1MHz R IN Video Input Resistor VOUT = 50V 2 KΩ BW Bandwidth at -3dB VOUT=50V, CLOAD=8pF RP=200Ω, ∆VOUT=20V 50 MHz Rise and Fall Time VOUT=50V, CLOAD=8pF RP=200Ω, ∆VOUT=40V 7.5 ns 50 32 dB dB Lf ∆g/g tR, tF Lf CT Hf CT Low Frequency Crosstalk High Frequency Crosstalk Note: 1 VOUT=50V, CLOAD=8pF RP=200Ω, ∆VOUT=20V f = 1 MHz f = 20MHz 5 % Pulsed current width < 50 µs 3/9 2 TDA9536 TYPICAL APPLICATION PC Board Lay-out The best performance is obtained with a carefully designed HF PC board, especially for the output and input capacitors. Rise/fall time and bandwidth are measured on a 10pF load. The best rise/fall time and bandwidth results will be obtained with low Rp resistor value while the best CRT arcing protection will be obtained by a righ Rp resistor value. Finally a value between 150 and 200Ω is agood compromise. Power Dissipation The power dissipation is the sum of the DC and the dynamic dissipation. As the feedback resistors are integrated, the DC power dissipation (capacitive load) can be estimated by: PSTAT = VDD . I DD + VCC . ICC The dynamic dissipation in worst case (full bandwidth and black pixel/white pixel picture - Note 2) is: PDYN = 3 VDD . CL . VOUT(PP) . f . K where f is the video frequency and K the active line duration / total duration. Example: for VDD = 110V, VCC = 12V, VOUT = 40 VPP, IDD = 25mA, ICC = 60mA, fVIDEO = 40MHz, CL = 8pF and K = 0.72. We have: PSTAT = 3.47W and PDYN =3.04W Therefore: Ptot = 6.51W. Note: 2 This worst thermal case must be considered only for TJmax calculation. Nevertheless, during the average life of the circuit, the conditions are very close to the white picture conditions. Figure 1. VCC VCC 75Ω VDD 110V 8 4 VDD TDA9536 3 IN1 OUT1 RP 1 CL 2 GND1 75Ω 7 IN2 OUT2 RP 5 CL 6 GND2 75Ω 9 IN3 OUT3 RP 11 CL 10 GND3 4/9 2 TDA9536 Figure 2. TDA9535/9536 - TDA9210 - Demonstration Board: Silk Screen and Trace (scale 1:1) 5/9 2 6/9 2 1 2 3 4 1 2 3 4 5 6 Supply J17 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 Power J16 Video J1 110V A 5V 8V 12V BLU RED R10 75R R3 75R R5 75R 47uF C15 47uF C16 47uF C17 VsOut R18 100R GRN Hs Out A R20 100R 5V D5 1N4148 D6 Hs Out Vs Out G1 Heater 1N4148 D8 1N4148 C3 100nF 100nF 15R 5 4 3 15 16 FBLK 11 SCL 12 SCA 13 OUT3 14 GNDP OUT2 VCCP 17 OUT1 18 HS 19 BLK 20 TDA9210 OSD3 OSD2 OSD1 VCCA GNDA IN3 GNDL IN2 ABL IN1 U1 100pF C12 C13 100pF R21 2K7 R19 2K7 5V C5(1)100nF 5V 1 2 3 4 R17 R13 R9 I2C J10 R11 2R7 100pF C1(1) C B C 8V 15R/33R 15R/33R 15R/33R 2: The purpose of all components followed by (2) is to ensure a good protectionagainst overvoltage(arcing protection) 1: All capacitorsfollowed by (1) are decoupling capacitors which must be connected as close as possible to the device 10 9 8 7 C22(1) 100nF 6 R12 C9(1) 100nF R8 15R 2 1 100R R2 15R 2R7 R4 Notes: R16 2R7 5V C6 1N4148 C4 100nF D4 5V 5V 1N4148 D3 1N4148 D1 5V B R1 24R R24 24R R33 24R R29 47pF C25 47pF C24 47pF C23 8 4 D C21 100nF/ 250V 10R R28 G1 D2(2) 110V 6 G2 R H2 4.7nF/1kV C20 150R 5 G 10 H1 7 G2 150R 10nF/ 2KV C19 J8 10nF/ 400V 9 C14 Heater R23 FDH400 D9(2) 110V 8 150R FDH400 R15 150R D7(2) 110V R7 E F1(2) F2(2) February16,2000 Date: Wednesday, E Sheet 1 of CRT3 with TDA9210 + TDA9535/36 R27 G1 11 0.33uH S_R L3 Size DocumentNumber CustomVersion1.4 Title 1 GND J5 12 GND B R22 120R 110V 0.33uH S_R L2 R31 0.33uH L1 4.7uF/ 150V R32 C18 R26(2) 39R R14 47uF 120R 120R C8 100nF/ 250V C10(1) 100nF R6 R30 FDH400 transientresponse optimisation S_R 12V C7(1) GND_CRT J7 OUT1 1 GND1 2 VDD OUT2 5 GND2 6 VCC TDA9535/36 IN1 IN2 IN3 110V 3 7 9 11 GND3 10 OUT3 U2 D 1 F4(2) Rev 1 2 3 4 TDA9536 Figure 3. TDA9535/9536 - TDA9210 - Demonstration Board Schematic TDA9536 PACKAGE MECHANICAL DATA 11 PIN - CLIPWATT V V1 H3 H2 S A C H1 V1 V2 V1 L3 V1 R2 L2 R L1 L R1 V R3 D R3 R3 M1 M B lead#1 E Dimensions G F G2 G1 Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 2.95 3.00 3.05 0.116 0.118 0.120 B 0.95 1.00 1.05 0.037 0.039 0.041 C 0.15 0.006 D 1.30 1.50 1.70 0.051 0.059 0.066 E 0.49 0.515 0.55 0.019 0.020 0.021 F 0.78 0.80 0.88 0.031 0.033 0.034 G 1.60 1.70 1.80 0.063 0.067 0.071 G1 16.90 17.00 17.10 0.665 0.669 0.673 H1 12.00 0.472 H2 18.55 18.60 18.65 0.730 0.732 0.734 H3 19.90 20.00 20.10 0.783 0.787 0.791 (3) L 17.70 17.90 18.10 0.696 0.704 0.712 L1 14.35 14.55 14.65 0.564 0.572 0.576 L2 10.90 11.00 11.10 0.429 0.433 0.437(3) L3 5.40 5.50 5.60 0.212 0.216 0.220 M 2.34 2.54 2.74 0.092 0.100 0.107 M1 2.34 2.54 2.74 0.092 0.100 0.107 R 1.45 R1 3.20 0.130 0.134 0.057 3.30 3.40 0.126 7/9 TDA9536 Dimensions Millimeters Min. R2 Min. 0.50 0.65 0.70 Typ. Max. 0.012 0.019 0.75 0.025 0.027 V 10deg. V1 5deg. 5deg. V2 75deg. 75deg. Note: 3 8/9 Max. 0.30 R3 S Typ. Inches “H3 and L2” do not include mold flash or protrusions Mold flash or protrusions shall not exceed 0.15mm per side. 10deg. 0.029 TDA9536 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this public ation are subject to change witho ut notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. 2000 STMicroelectronics - All Rights Reserved Purchase of I2C Components of STMicroelectronics, conveys a license under the Philip s I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C Standard Specifications as defined by Philip s. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www .st.com 9/9 3