STMICROELECTRONICS TDA9556

TDA9556
7.5 NS TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER
PRODUCT PREVIEW
FEATURES
■
■
■
■
■
■
■
■
■
■
Triple-channel video amplifier
Pinning for easy PCB layout
Supports DC coupling (optimum cost saving)
and AC coupling applications.
Built-in Voltage Gain: 19.3 (Typ.)
Rise and Fall Times: 7.5ns (Typ.)
Bandwidth: 50MHz (Typ.)
Very low stand-by power consumption
80V Output dynamic range
Supply voltage: 110V
Perfectly matched with the TDA9210
preamplifier
CLIPWATT 11
(Plastic Package)
ORDER CODE: TDA9556
DESCRIPTION
The TDA9556 is a triple-channel video amplifier
designed in BCD technology (Bipolar/CMOS/
DMOS) able to drive the 3 cathodes of a CRT
monitor.
Perfectly matched with the ST Preamplifier
TDA9210, it provides a high performance, and
very cost effective DC coupling system.
PIN CONNECTIONS
11
10
9
8
7
6
5
4
3
2
1
OUT1
OUT2
OUT3
GNDP
VDD
GNDS
GNDA
IN3
VCC
IN2
IN1
Version 2.0
October 2000
1/16
1
Table of Contents
1
2
3
4
5
6
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
3
4
4
5
7
7
6.2 - How to choose the high supply voltage value (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.3 - Amplifier gain and cut-off adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 ARCING PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 VIDEO RESPONSE OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.1 Supply decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.2 - Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8.3 - Network adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
9 POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10 TYPICAL PERFORMANCE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
11 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2
2/16
2
TDA9556
1 BLOCK DIAGRAM
OUT1 GNDP
8
11
OUT2
10
OUT3
9
TDA9556
VDD
GNDP
VDD
VDD 7
GNDP
VCC 3
VREF
6
GNDS
1
5
IN1 GNDA
2
4
IN2
IN3
2 PIN CONNECTIONS
Pin
Name
Function
1
IN1
Video Input-channel 1
2
IN2
Video Input-channel 2
3
VCC
Low Supply Voltage
4
IN3
Video Input-channel 3
5
GNDA
Ground Analogic (signal)
6
GNDS
Ground Substrate
7
VDD
8
GNDP
Ground Power
9
OUT3
Output-channel 3
10
OUT2
Output-channel 2
11
OUT1
Output-channel 1
High Supply Voltage
3/16
3
TDA9556
3 ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
VDD
High supply voltage
120
V
VCC
Low supply voltage
17
V
VESD
ESD susceptibility
Human Body Model (100pF discharged through 1.5KΩ)
EIAJ norm (200pF discharged through 0Ω)
2
300
kV
V
IOD
Output source current (pulsed < 50µs)
80
mA
I OG
Output sink current (pulsed < 50µs)
80
mA
VIN Max
Maximum Input Voltage
15
V
VIN Min
Minimum Input Voltage
- 0.5
V
TJ
Junction Temperature
150
°C
TSTG
Storage Temperature
-20 + 150
°C
Value
Unit
4 THERMAL DATA
Symbol
4/16
3
Parameter
Rth (j-c)
Junction-Case Thermal Resistance (Max.)
3
°C/W
R th (j-a)
Junction-Ambient Thermal Resistance (Typ.)
35
°C/W
TDA9556
5 ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Test Conditions
Min.
SUPPLY parameters (VCC = 12V, VDD = 110V, Tamb = 25 °C, unless otherwise specified)
High supply voltage
20
VDD
10
Typ
Max
Unit
110
115
V
12
15
V
VCC
Low supply voltage
IDD
V DD supply current
VOUT = 50V
25
mA
IDDS
V DD stand-by supply current
VCC : switched off (<1.5V)
VOUT: low (Note 1)
60
µA
ICC
V CC supply current
VOUT = 50V
60
mA
STATIC parameters (VCC = 12V, VDD = 110V, Tamb = 25 °C)
dVOUT/dVDD
High Voltage supply rejection
VOUT = 50V
0.5
%
dV OUT/dT
Output Voltage drift versus temperature
VOUT = 80V
15
mV/°C
d∆V OUT/dT
Output voltage matching versus
temperature (Note 2)
VOUT = 80V
5
mV/°C
Video Input Resistor
VOUT = 50V
Output Saturation Voltage to Supply
I0 =-60mA (Note 3)
R IN
V SATH
VSATL
VG
LE
VREF
Output Saturation Voltage to GND
I0 =60mA (Note 3)
Video Gain
VOUT = 50V
Linearity Error
17<V OUT<VDD-15V
Internal Voltage Reference
2
kΩ
VDD - 6.5
V
11
V
19.3
5
5.5
8
%
V
Note 1: The TDA 9556 goes into stand-by mode when Vcc is switched off (<1.5V).
In stand-by mode, Vout is set to low level.
Note 2: Matching measured between each channel.
Note 3: Pulsed current width < 50µs
5/16
3
TDA9556
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Conditions
Min.
Typ
Max
Unit
DYNAMIC parameters (see Figure 1)
OS1
Overshoot, White to Black transition
5
%
OS2
Overshoot, Black to White transition
1
%
∆VG
Low frequency gain matching (Note 4)
VDC = 50V, f=1MHz
BW
Bandwidth at -3dB
VDC=50V, ∆V=20V PP
50
MHz
5
%
tR
Rise time
VDC=50V, ∆V=40V PP
7.2
ns
tF
Fall time
VDC=50V, ∆V=40V PP
7.9
ns
2.5% Settling time
VDC=50V, ∆V=40V PP
15
ns
Low frequency Crosstalk
VDC=50V,∆V=20VPP
f = 1 MHz
50
dB
High frequency Crosstalk
VDC=50V,∆V=20VPP
f = 20MHz
32
dB
tSET
CTL
CTH
Note 4: Matching measured between each channel.
Figure 1. AC test circuit
12V
VCC
75Ω
TDA9556
3
110V
7
VDC
VDD
OUT
1
IN
VREF
8
CL=8pF
GND
6/16
3
RP = 200 Ω
11
∆V
TDA9556
6 THEORY OF OPERATION
6.1 - General
The TDA9556 is a three-channel video amplifier
supplied by a low supply voltage: VCC (typ.12V)
and a high supply voltage: VDD (up to 115V).
The high values of VDD supplying the amplifier output stage allow direct control of the CRT cathodes
(DC coupling mode).
In DC coupling mode, the application schematic is
very simple and only a few external components
are needed to drive the cathodes. In particular,
there is no need of the DC-restore circuitry which
is used in classical AC coupling applications.
The output voltage range is wide enough
(Figure 2) to provide simultaneously :
– Cut-off adjustment (typ. 25V)
– Video contrast (typ. up to 40V),
– Brightness (with the remaining voltage range).
In normal operation, the output video signal must
remain inside the linear region whatever the cutoff / brightness / contrast adjustment is.
Figure 2. Output signal, level adjustments
V DD
(A) Top Non-Lin ear Region
15V
(B) Cut-off Adjust. (25V Typ.)
Linear region
(C) Brightness Adjust. (10V Typ.)
Blanking pulse
(D) Contrast Adjust. (40V Typ.)
Video Signal
(E) Bottom Non-Linear Region
17V
GND
6.2 - How to choose the high supply voltage value (VDD)
The VDD high supply voltage must be chosen carefully. It must be high enough to provide the necessary video adjustment but set to minimum value to
avoid unecessary power dissipation.
Example:
The following example shows how the optimum
VDD voltage value is determined:
– Cut-off adjustment range (B) : 25V
– Max contrast (D) : 40V
Case 1:
10V Brightness (C) adjusted by the preamplifier :
VDD = A + B + C + D + E
VDD = 15V + 25V + 10V + 40V + 17V = 107V
Case 2:
10V Brightness (C) adjusted by the G1 anode:
VDD = A + B + D + E
VDD = 15V + 25V + 40V + 17V = 97V
7/16
3
TDA9556
6.3 - Amplifier gain and cut-off adjustment
The output voltage VOUT is given by the following
formula:
VOUT = (VG+1) x VREF - (VG x VIN)
for VG = 19.3 and VREF = 5.5V, we have
VOUT = 111.6 - 19.3 x VIN
A very simplified schematic of each TDA9556
channel is shown in Figure 3.
The feedback net of each channel is integrated
with a built-in voltage gain of 19.3 (40k/2k).
Figure 3. Simplified schematic of one channel
VDD
40k
2k
-
IN
OUT
+
VREF
GND
7 ARCING PROTECTION
As the amplifier outputs are connected to the CRT
cathodes, special attention must be given to portect them against possible arcing inside the CRT.
Protection must be considered when starting the
design of the video CRT board. It should always
be implemented before starting to adjust the dynamic video response of the system.
The arcing network that we recommend (see
Figure 4) provides efficient protection without deteriorating the amplifier video performances.
The total resistance value between the amplifier
and the CRT cathode (R10+R11) should not be
less than 300 Ω.
Spark gap diodes are strongly recommended for
protection against arcing.
Figure 4. Arcing protection network (one channel)
R19
C12 (*)
100nF/250V
VDD
33Ω
C24
4.7µF/150V
C18
100nF
D12
FDH400
R10
TDA9556
High Voltage (90-110V)
OUT
150Ω/0.5W
L1
0.39µH
R11
150Ω/0.5W
F1
Spark gap
GND
R29
10Ω
(*): To be connected as close as possible to the device.
8/16
TDA9556
8 VIDEO RESPONSE OPTIMIZATION
The dynamic video response is optimized by carefully designing the supply decoupling of the video
board (see Section 8.1), the tracks (see
Section 8.2), then by adjusting the input/output
component network (see Section 8.3).
For dynamic measurements such as rise/fall time
and bandwidth, a 8pF load is used (total load including the parasitic capacitance of the PC board
and CRT Socket).
Figure 5. Video response optimization for one channel
C11
4.7µF
C10(*)
C12(*)
100nF
100nF
C24
4.7µF
VDD
VCC
CRT
R20
TDA9210
15/50Ω
R10
+
IN
OUT 150Ω
VREF
L1
R11
0.39µH
150Ω
TDA9556
GNDS
GND
(*): To be connected as close as possible to the device
8.1 Supply decoupling
The decoupling of VCC and VDD through good
quality HF capacitors (respectively C10 and C12)
close to the device is necessary to improve the dynamic performance of the video signal.
8.2 - Tracks
Careful attention has to be given to the three output channels of the amplifier.
– Capacitor: The parasitic capacitive load on the
amplifier outputs must be as small as possible.
Figure 11 clearly shows the deterioration of
the tR/tF when the capacitive load increases.
Reducing this capacitive load is achieved
moving away the output tracks from the other
tracks (especially ground) and by using thin
tracks (<0.5mm), see Figure 13.
– Cross talk: Output and input tracks must be set
apart. The TDA9556 pin-out allows the easy
separation of input and output tracks on opposite sides of the amplifier (see Figure 13).
– Length: Connection between amplifier output
and cathode must be as short and direct as
possible.
8.3 - Network adjustment
Video response is always a compromise between
several parameters. An improvement of the rise/
fall time leads to a deterioration of the overshoot.
The recommended way to optimize the video response is:
1 To set R10+R11 for arcing protection (min.
300 Ω)
2. To adjust R20 and R10+R11.
Increasing their value increases the
tR/tF values and decrease the overshoot
3. To adjust L1
Increasing L1 speeds up the device and
increases the overshoot.
We recommend our customers to use the schematic shown on Figure 5 as a starting point for the
video board and then to apply the optimization
they need.
9/16
TDA9556
9 POWER DISSIPATION
The total power dissipation is the sum of the static
DC and the dynamic dissipation:
PSTAT = VDD x IDD + VCC x ICC
Example:
for VDD = 110V, VCC = 12V,
IDD = 25mA, ICC = 60mA,
VOUT = 40 VPP, f = 40MHz,
CL = 8pF and K = 0.72.
The dynamic dissipation is, in the worst case (1
pixel On/ 1 pixel Off pattern):
We have:
PDYN = 3 VDD x CL x VOUT(PP) x f x K
PSTAT = 3.47W, PDYN = 3.04W
where f is the video frequency and K the ratio between the active line and the total horizontal line
duration.
Therefore:
PTOT = PSTAT + PDYN.
The static DC power dissipation is approximately:
PTOT = 6.51W.
Note 4:
This worst thermal case must only be
considered for TJmax calculation.
Nevertheless, during the average life of the
circuit, the conditions are closer to the white
picture conditions.
10/16
TDA9556
10 TYPICAL PERFORMANCE CHARACTERISTICS
VDD=110V, VCC=12V, CL=8pF, RP=300Ω, ∆V=40VPP, unless otherwise specified - see Figure 1
Figure 6. TDA9556 pulse response
Figure 7. VOUT versus VIN
120
100
Vout (V)
80
60
40
20
0
0
1
2
3
4
5
6
Vin (V)
Figure 8. Power dissipation versus frequency
Figure 9. Speed versus temperature
12
8.3
8
8.1
7.9
Speed (ns)
Total Power Dissipation (W)
8.5
10
6
4
tf
7.7
7.5
7.3
7.1
2
6.9
tr
6.7
0
10
20
30
40
Square Wave Frequency (MHz)
6.5
50
60
(72% Active Time)
Figure 10. Speed versus offset
120
Figure 11. Speed versus load capacitance
10
10
9.5
Rp = 100 Ohms
9.5
9
9
8.5
tf
8
Speed (ns)
Speed (ns)
70
80
90 100 110
Cas e Temperature (°C)
7.5
7
6.5
tr
tf
8.5
8
tr
7.5
7
6
6.5
5.5
6
5
40
45
50
55
60
Offset Voltage (Vdc)
65
70
8
12
16
20
Load Capacitance (MHz)
11/16
TDA9556
Figure 12. TDA9210 - TDA9556 - STV9935 Demonstration Board: Silk Screen and Trace
Figure 13. Amplifier and Preamplifier Outputs. Trace Routing (detail)
Note that the amplifier outputs are well separated from the ground area while the amplifier inputs are
surrounding by the ground
12/16
1
2
3
4
AVdd
Filter
Ire f
C34
C35
R43
100pF
A
C32
R44
R45
R46
C28 100nF
100pF
1uH
R4 1 10 0R
R3 5 100R
SCL
SDA
C 33
SCL
L5
R10
75 R
75 R
R3
100pF
C30
Blue
Green
R ed
C31
5V
5V1
D10
1K
R42
12
11
10
9
8
7
6
5
4
3
2
1
SDA
Hfly
Video
J1
8
7
6
5
4
3
2
1
Rout
Gout
Bo ut
FBl k
AVdd
Filter
Ire f
AGND
1
2
3
4
5
Power
J16
9
10
11
12
13
14
15
11 0V
1N 4148
D8
C2
L4
100nF
5V
8V
12V
R34 1K
R33 1K
R32 1K
AVdd
Filter
Ir ef
100nF
15 R
C15 47uF
C16 47uF
C17 47uF
9
8
7
6
5
4
3
2
1
10
100R
100nF
5V
R12
C9
R8 15 R
R 2 15 R
C22
B
R1
2R 7
R4
5V
1uH
10 0nF
100nF
10 0 nF
R16 2R 7
5V
C6
1 N414 8
D6
1N 4148
D5
16
C3
C4
1 N414
8
D4
5V
5V
1N 4148
D3
1N 4148
D1
5V
STV9935
OVss
NC
DVss
DVdd
Hfly
Vsy nc
SCL
SDA
100pF
U3
C29
R5
7 5R
Vs Out
R 18 100R
B
1
2
3
4
5
6
7
Supply
J17
FBLK
SCL
SCA
OUT3
GNDP
OUT2
VCCP
TDA9 210
OSD3
OSD2
OSD1
VCCA
G N DA
IN3
HS
BLK
OUT1
U1
R25 100R
GNDL
IN2
ABL
IN1
BLK
11
12
13
14
1 00nF
C13
100pF
C1 2
C
SDA
33R
33 R
Hfly
1
2
3
4
1K6
R2 4
Hs Out
1K6
R30
1K6
R29
C7
4
2
1
Ou t 1
In 3
In 2
Ou t 3
Ou t 2
TDA9556
U2
In 1
C21
100n F / 250V
1 10 V
I2C
J10
Vs Out
G1
C8
12V
47uF 100n F
STO2
1
2
J9
5V
33 R
Heater
5V
R17
C25 4.7 n F
R13
C24 4.7nF
R9
BLK
SCL
R2 1 2K7
1 00pF
8V
C23 4. 7n F
2R7
100pF
C1
R11
R1 9 2K7
C5
15
16
17
18
19
20
100pF
C26
C
J7
G1
GN D _C R T
J5
9
10
11
6
G
G2
R
H2
4.7 nF / 1kV
C20
15 0 R 5
1 10 V
D
C14
7
8
G2
4. 7nF / 2KV
C19
J8
100n F
9
BK
180R
Heater
FDH400
R 23
D9
110V
FDH40 0
R1 5 18 0R
D7
110V
R 7 18 0 R
FDH40 0
D2
110V
RK
F1
BK
GK
RK
E
F2
Do cument Number
Vers ion 1.4
Sheet
1
E
of
1
GK
CRT31 with TDA9210 + TDA9535/36
R27
H1
10
R 22 1 80R
180R
R6 1 80R
R14
G1
11
B
39R
4.7uF / 15 0V
C 18
R26
Date: Thursday, S ep tembe r 14, 2 00 0
Size
A4
Title
1
GND
12
0.22uH
L3
0.22uH
L2
0.22uH
L1
10nF / 250V
C10
D
GND
R28 10R
GNDA
5
Hs Out
GNDS
6
A
3
Vcc
7
Vdd
GNDP
8
R2 0 1 00R
Rev
F4
1
2
3
4
TDA9556
Figure 14. TDA9535/9536 - TDA9210 Demonstration Board Schematic
13/16
TDA9556
11 PACKAGE MECHANICAL DATA
11 PIN - CLIPWATT
V
V1
H3
H2
S
A
C
H1
V1
V2
V1
L3
V1
R2
L2
R
L1
L
R1
V
R3
D
R3
R3
M1
M
B
lead#1
E
G
F
G2
G1
Table 1
Dimensions
Millimeters
Typ.
Max.
Min.
Typ.
Max.
A
2.95
3.00
3.05
0.116
0.118
0.120
B
0.95
1.00
1.05
0.037
0.039
0.041
C
0.15
0.006
D
1.30
1.50
1.70
0.051
0.059
0.066
E
0.49
0.515
0.55
0.019
0.020
0.021
F
0.78
0.80
0.88
0.031
0.033
0.034
G
1.60
1.70
1.80
0.063
0.067
0.071
G1
16.90
17.00
17.10
0.665
0.669
0.673
H1
14/16
Inches
Min.
12.00
0.472
H2
18.55
18.60
18.65
0.730
0.732
0.734
H3
19.90
20.00
20.10
0.783
0.787
0.791 (5)
L
17.70
17.90
18.10
0.696
0.704
0.712
L1
14.35
14.55
14.65
0.564
0.572
0.576
L2
10.90
11.00
11.10
0.429
0.433
0.437(5)
L3
5.40
5.50
5.60
0.212
0.216
0.220
M
2.34
2.54
2.74
0.092
0.100
0.107
M1
2.34
2.54
2.74
0.092
0.100
0.107
R
1.45
0.057
TDA9556
Table 1
Dimensions
R1
Millimeters
Min.
3.20
Inches
Typ.
Max.
Min.
3.30
3.40
0.126
Typ.
Max.
0.130
0.134
R2
0.30
0.012
R3
0.50
0.019
S
V
0.65
0.70
0.75
10deg.
0.025
0.027
0.029
10deg.
V1
5deg.
5deg.
V2
75deg.
75deg.
Note 5: “H3 and L2” do not include mold flash or protrusions
Mold flash or protrusions shall not exceed 0.15mm per side.
15/16
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no
responsibility for the consequences of use of such information nor for any infringement of patents or other
rights of third parties which may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of STMicroelectronics. Specifications mentioned in this public ation are subject to change
witho ut notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics.
 2000 STMicroelectronics - All Rights Reserved
Purchase of I2C Components of STMicroelectronics, conveys a license under the Philip s I2C Patent.
Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C
Standard Specifications as defined by Philip s.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The
Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
http://www .st.com
16/16
4