TDA9530 9.5NS TRIPLE HIGH VOLTAGE VIDEO AMPLIFIER FEATURE • TRIPLE CHANNEL VIDEO AMPLIFIER • SUPPORTs DC OR AC COUPLING APPLICATIONS • BUILT IN VOLTAGE GAIN: 20 • RISE AND FALL TIMES: 9.5ns TYPICAL • BANDWIDTH: 37MHz TYPICAL • SUPPLY VOLTAGE: 110V • ADDITIONAL CUT-OFF INPUT CONTROL DESCRIPTION The TDA9530 is a triple video amplifier with high voltage Bipolar/CMOS/DMOS technology (BCD). It can drive the 3 cathodes of a monitor CRT in DC or AC coupling mode. A DC coupling application is obtained by connecting a triple DC controlled circuit either on the input pin or on the cut-off pin. MULTIWATT 15 (Plastic Package) ORDER CODE: TDA9530 PIN CONNECTIONS OUT3 C.OFF3 GND3 IN3 VCC IN2 GND2 GNDS OUT2 C.OFF2 VDD IN1 GND1 C.OFF1 OUT1 Version 4.1 March 2000 1/8 1 TDA9530 BLOCK DIAGRAM OUT1 GND1 1 OUT2 GND2 7 3 OUT3 GND3 9 15 13 TDA9530 VDD 5 VCC 11 4 IN1 2 10 C.OFF1 IN2 6 C.OFF2 12 IN3 14 8 C.OFF3 GNDS ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit VDD High Supply Voltage 120 V VCC Low Supply Voltage 17 V VESD ESD Susceptibility Human Body Model, 100pF. Discharge through 1.5KΩ EIAJ Norm, 200pF. Discharge through 0Ω 2 250 kV V IOD Output Source Current (pulsed < 50µs) 80 mA I OG Output Sink Current (pulsed < 50µs) 80 mA V I Max Maximum Input Voltage 15 V VI Min Minimum Input Voltage - 0.5 V VIC OFF Max Maximum C. off Input Voltage VCC + 0.5 V VIC OFF Min Minimum C. off Input Voltage - 0.5 V 2/8 TJ Junction Temperature 150 °C TSTG Storage Temperature -20 + 150 °C TDA9530 THERMAL DATA Symbol Parameter Value Unit Rth (j-c) Junction-Case Thermal Resistance (Max.) 3 °C/W R th (j-a) Junction-Ambient Thermal Resistance (Typ.) 35 °C/W ELECTRICAL CHARACTERISTICS (VCC = 12V, VC OFF = 2.5V, VDD = 110V, Tamb = 25 °C, unless otherwise specified) Symbol Parameter Test Conditions VDD High Supply Voltage (Pin 5) VCC Low Supply Voltage (Pin 11) IDD ICC High Voltage Supply Internal DC Current Low Voltage Supply Internal DC Current VOUT = 50V High Voltage Supply Rejection VOUT = 50V dVOUT/dVDD Min Typ Max Unit 20 110 115 V 10 12 15 V 15 40 mA mA 0.5 % VOUT = 80V 15 mV/ °C Differential Output Voltage Offset Drift Versus Temperature VOUT = 80V 5 mV/ °C ∆V OUT/ ∆VC.OFF Cut-Off Control Gain VOUT = 80V 1V < VC OFF < 4V 14 IBC .OFF Cut-Off Control Bias Current VOUT = 80V Max. Output Voltage Min. Output Voltage I0 =-60mA, see Note 1 I0 =60mA, see Note 1 dV OUT/d θ Output Voltage Drift Versus Temperature for any Channel d∆VOUT/dθ VOUT SATH VOUT SATL 10 VDD 6.5 11 AVR Typical Video Gain (see note 2) VOUT = 50V 20 E lin Linearity Error 17<V OUT<VDD-15V 5 OS Overshoot µA V V 8 % 5 % 5 % Low Frequency Gain Matching VOUT = 50V, f=1MHz R IN Video Input Resistor VOUT = 50V 2 KΩ BW Bandwidth at -3dB VOUT =50V,CLOAD=8pF R P=200Ω, ∆VOUT=20V 37 MHz tR, tF Rise and Fall Time VOUT =50V,CLOAD=8pF R P=200Ω, ∆V OUT=40V 9.5 ns 50 32 dB dB Lf ∆g/g Lf CT Hf CT Low Frequency Crosstalk High Frequency Crosstalk VOUT =50V,CLOAD=8pF R P=200 Ω,∆V OUT=20V f = 1 MHz f = 20MHz Pulsed current width < 50µs Note: 1 Theoretically VOUT = 140V - 14VC OFF - 20V IN. 3/8 TDA9530 TYPICAL APPLICATION PC Board Lay-out The best performance is obtained with a carefully designed HF PC board, especially for the output and input capacitors. Rise/fall time and bandwidth are measured on a 8pF load (including a PC board parasitical, socket and a CRT capacitor). The input voltage range for the cut-off adjustment pins is from 1 to 4 volts and a 10 nF to 47 nF bypass capacitor is recommended on these pins. Power Dissipation The power dissipation is the sum of the DC and the dynamic dissipation. As the feedback resistors are integrated, the DC power dissipation (capacitive load) can be estimated by: VCC VCC 75Ω PSTAT = VDD . IDD + VCC . I CC The dynamic dissipation in worst case (full bandwidth and black pixel/white pixel picture - see Note 3) is: PDYN = 3 VDD . CL . VOUT(PP) . f . K where f is the video frequency and K the active line duration / total duration. Example: for VDD = 110V, VCC = 12V, VOUT = 40 VPP, I DD = 15mA, ICC = 40mA, fVIDEO = 30MHz, CL = 8pF and K = 0.72. We have: PSTAT = 2.13W and PDYN = 2.28W Therefore: Ptot = 4.41W. Note: 2 This worst thermal case must only be considered for TJmax calculation. Nevertheless, during the average life of the circuit, the conditions are very close to the white picture conditions. VDD 110V 11 5 VDD 8 GNDS TDA9530 OUT1 RP 4 1 IN1 VC.OFF1 2 C.OFF1 CL 3 GND1 75Ω OUT2 RP 10 7 IN2 VC.OFF2 6 C.OFF2 CL 9 GND2 75Ω IN3 OUT3 RP 12 VC.OFF3 14 15 C.OFF3 CL 13 GND3 4/8 TDA9530 Figure 1. TDA9207/9209 - TDA9533/9530 Demonstration Board: Silk Screen and Trace (scale 1:1) 5/8 1 2 75R R17 75R R25 A C7 100nF 100nF R15 R9 S7 FBLK C22 47uF C21 47uF Jump Jump Jump Jump Jump 47uF C23 12V S6 OSD3 5-8V S5 OSD2 5V S4 S3 33R 33R 33R OSD1 AV 100nF C13 R23 1N4148 D5 1N4148 D4 1N4148 D3 5V 1N4148 D8 D2 1N4148 C4 5V 1N4148 D7 5V 75R R12 Video Bi n J2 1 3 Gin 2 VSYNC HSYNC 6/8 3 4 5 6 7 8 9 10 11 12 4 A R5 R6 C6(1) C9(1) B HSYNC BLANK 5-8V J6 12 11 10 9 8 7 6 5 4 3 2 1 VFly HFly VSYNC 5-8V 5V HSYNC BLANK HEAT G1 110V 12V SCL SDA CUT3 CUT2 OUT3 GNDP OUT2 VCCP OUT1 CUT1 Hs/BPCP 13 14 15 16 17 18 19 C17 100nF 100pF 100pF C1(1) OSD J7 100pF 100pF C16 20 C8(1) 21 22 23 C5(1) 24 100R 2R7 R3 C 1 2 3 4 5 6 7 8 9 10 11 12 5V SCL SDA AV OSD1 OSD2 OSD3 FBLK SDA SCL HSYNC HFly VFly 100nF C14(1) J4 C G1 R28 10 R29 D OUT1 GND1 VDD OUT2 GND2 VCC GND3 OUT3 2K7 R2 D Date: Size A4 Title 150R 6 G2 KR 10nF/ 2KV C20 J5 Monday,January 17,2000 DocumentNumber <Doc> Sheet E 1 L3 .33uH CRT4 TDA9207/09+TDA9533 7 8 9 R22 FDH400 of F2(2) F1(2) R27 FDH400 D9(2) 110V L2 .33uH D6(2) 110V 1 Rev F3(2) 150R / 0.5W 150R / 0.5W R11 150R / 0.5W FDH400 D1(2) 110V L1 .33uH 10nF/ 400V C19 HEAT 120R / 0.5W KG G2 R H2 R26 10nF/ 400V C25 G 5 H1 10 G1 B 11 KB 47uF C11 R21 120R / 0.5W 100nF 120R / 0.5W 12V R10 C10(1) 1 GND 12 100nF/250V Bout Rout 100nF/250V C12(1) Gout 4.7uF / 150V E transient response optimisation 33R C24 R19(2) 110V GND J3 1 3 5 7 9 11 13 15 SDA SCL C18 110V TDA9530/33 C_OFF1 IN1 C_OFF2 GNDS IN2 IN3 100nF 2: The purpose of all componentsfollowed by (2) is to ensure a good protectionagainst overvoltage(arcing protection) U2 2K7 R1 C_OFF3 C15(1) 2 4 6 8 10 GND_CRT 100R 15R/50R R20 R24 100R R18 15R/50R R16 12 14 100nF 15R/50R 100R 1 2 3 4 C3(1) R14 R13 I2C J1 5V 1: All capacitorsfollowed by (1) are decoupling capacitors which must be connected as close as possible to the device Notes: U1 R8 100R BLK Jump Jump R7 S1 TDA9207/09 FBLK OSD3 OSD2 OSD1 VDDL/AV VCCA GNDA IN3 S2 5V GNDL IN2 ABL IN1 Supply 12 11 10 9 8 7 100nF 6 5 100nF 4 3 2 1 C2(1) 100nF 2R7 2R7 2R7 R4 5V B 1 2 3 4 TDA9530 Figure 2. TDA9207/9209 - TDA9533/9530 Demonstration Board Schematic Rin TDA9530 PACKAGE MECHANICAL DATA 15 PIN - PLASTIC MULTIWATT H1 A S L7 S1 C L4 L D L2 L1 L3 Dia 1 H2 B E F M1 Dimensions M G1 Millimeters Min. Typ. G Inches Max. Min. Typ. Max. A 5 0.197 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030 G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.772 H2 20.2 0.795 L 21.9 22.2 22.5 0.862 0.874 L1 21.7 22.1 22.5 0.854 0.870 0.886 L2 17.65 18.1 0.695 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 0.886 0.713 L7 2.65 2.9 0.104 M 4.25 4.55 4.85 0.167 0.179 0.114 M1 4.63 5.08 5.53 0.182 0.200 S 1.9 2.6 0.075 0.191 0.218 0.102 S1 1.9 2.6 0.075 0.102 Dia. 1 3.65 3.85 0.144 0.152 7/8 TDA9530 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this public ation are subject to change witho ut notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. 2000 STMicroelectronics - All Rights Reserved Purchase of I2C Components of STMicroelectronics, conveys a license under the Philip s I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C Standard Specifications as defined by Philip s. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www .st.com 8/8